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A dominated ergodic estimate for I, spaces with weights
by
E. ATENCIA and A. DE LA TORRE (Malaga)

Abstract. In this note we characterize those positive funetions w such that the
ergodic maximal funection associated to an invertible, measure preserving ergodic
transformation on a probability space is a bounded operator in L, (wdy).

1. Inireduction. Let. (X, §, #) be a non-atomic probability space
and let T: X—X be an ergodie, invertible measure preserving transfor-
mation.

For each pair of non negative integers #, m we define the operator

T, m, acting on measurable functions, as

Tpuf@) = (n+m+1)7 ' |f(Ta).

i=—n

It is well known that in order to study the a.e. convergence of the averages
T, it is enough to prove a Dominated BErgodic Estimate (D.E.B.) with

M

respect to the measure p, ie. if
f*@) = sup T, .f (=),
n,m=0
then there exists a constant, namely p/(p—1), such that

Il < 2 Iy tor all 7€ L, (@p)
which certainly holds for » > 1 [8].

Our aim is to study the a.e. convergence of T, ,.f but with respect
to another measure wdu where w is a positive integrable function. We
are thus led to try and characterize those positive functions w such that
the D.E.E. holds but with respect to the measure wdu. Let us fix p > 1.
We will say that T satisfies the D.B.E. with respect to the weight w if

(1.1) [ rwip< 0, [|fPwdp for all f in L,(wdy).
X X
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Our main result is given by the following:

TEEOREM. In the above situation (1.1) holds if and only if w satisfies
the condition:

(A,) There ewists a constant M such that for a.e. @

k~1 k=1

(1.2) B w(Tfa:)-[k—l Z (w(.’l’i,aa))-”‘1"—1’]1""1 <M
i=0 =0
for all positive integers .

Condition A, is nothing but the condition in Theorem 10 of [2]
with a constant independent of # and. the natural analogue of Mucken-
houpt's condition for the Hardy-Littlewood Maximal Operator [4].

Observe that if w satisties Ay, we have a D.BE.E, for T as an operator
from I, (wdp) into L,(wdu). T is obviously a positive operator but it
is not, in general, a contraction in I, (wdu) and its powers do not form,
in general, a uniformly bounded group of positive operators, i.e we obtain
a2 D.BE.E. for an operator 7 which, even though it separates supports,
is not power bounded as in [3].

2. Main results. In this section we will prove our result using the
ideas in [1] adapted to our situation.

Our main tool will be the idea of “ergodic rectangle”.

DrrINiTION. Let B be a subset of X with positive measure and &
a positive integer such that

(T'BAT'B) =0, i %§, 0<4, j<k—1.

k-1
Then the set B = | T°B will be called an (ergodic) rectangle with base

B and length %. =

Obviously u(R) = ku(B).

In the proof of the theorem will be needed the following two results:
(2.1) ProrosrTION. Let & be a positive integer and let A < X be-a subset
of positive measure. Then there emists B = A such that B is base of a roc-
tangle of length k.

(2.2) LmvMA. X can be written as a coum,mble union of bases of rectangles
of length %.

Proof of the proposition. First we will consider the cage & == 2.
We may assume u(d)< 1. Since T’ is ergodic, A is mot invariant. If
#(4NnTA) = 0, then we choose B = A and we are done.

I u(AnT4) >0, then p(d—(4nTA)) > 0 since otherwise 4 would
be invariant. So now we pick B = A —(4AnTA); obviously wu(B) >0,
and BnTB = 0.

The general case follows by applying the same method.
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Proof of the lemma. Let §, = {B = X, B is base of a rectangle
of length %}. Because of the proposition, %, is not empty. Let 5, = sup u(B).

Qlearly 0 < 7, <1. We pick B'e{,, u(B') > 7,/2. Let

={Bef: BnB' =0}, 1, =supu(B),

BeF,

and choose B? €F,, u(B?) > 7,/2. We proceed by induction and define

n-1 .
§, = {B e Br‘\(U1 B} =@}, =, =£S?uépy(B)
and choose B €§,, u(B*) > 1,/2.
If for some n {, is empty, then X = U B! a.e. Indeed, if X — U B
= A and u(4d)>0, then by the propos1t10n there is B < 4, B eﬁl,
and obviously Bn (U BY) = @ against §, being empty.

If no &, is empty, we obtain an infinite pairwise disjoint sequence
B, B% ...,B" ... and we claim that

X =UB"
n

Let us prove it. First of all note that lim 4(B") = 0 since the sets are
n .

disjoints and u(X) is finite. If X — (JB" = A and u(4) >0, we choose
Bef, Bc A p(B) =8>0. Then there is n, such that u(B,) < é/3
and observe that B €, which means 7,, > 8 50 by the method of choosing
B, it should be u(B, )> é/2 against /u(B,,o) < §/3.

Condition (1.1) 'melws w satisfies A,: Let k be a non-negative integer
and let us fix a rectangle with base B and length %. For each integer n
we consider the subset of B

k—1
B,, ={oeB: 2n <k Y w o (i) < gl
1=0
Clearly B = UB

Let us ﬁx n and let A be an arbitrary measurable subset of B, with
#(A) > 0. Let R be the rectangle with base 4 and length k. l‘rom the
definition of our maximal operator it is obvious that

k—1
(2.3) (wHED Qe (Tig) 2 K Z‘ w Ve (Tigy =2 wed,0<<j<k.

3==0
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The last inequality on the right holds since » € A = B,. Raising to the
power p, multiplying by w(I?x), and integrating over 4 we obtain

[ w00 g2 (Tigyw (To)dp > 2" [ w (T w)dp.

4 4

Adding up in 7 from 0 to % —1 and keeping in mind that u(T°4 NT7A) = 0
0<1, j<k—1, we have

2" [w(y)du< [ PN y5)" (y)w(y) du.
B bl

’

But using (1.1) the last termy is majorized by
Cp [ oD () gy (y) dp =0, [wH=Ddy,
by #

i.e.
(2.4) 2 [wap< 0, [w ey
# &
or
(2.5) griiw f wdu( f w-ll‘f’—l)dﬂ)‘lgopzp.

On the other hand, we have

ke
J’k- 2 w— Y- 1)(171? )d,u<2n+1

=0

and raising to the power p and using (2.5) we get
k-1
(”(A)f-xif k—lzul‘ w“”"’“”(l"m)d,u)ﬂ f’w‘lﬂ( f,w—ll(ﬂfl)d,u)’l
. i= R i

o(n+1)p fwdp( fw—x(p—l)dM)"l < 0,27
B ]
or

(u(B)™ f w=w- nd,u)y f wau f w N )™ < 0,27

B B

which' can be written ag

(4,) wE&™ f wdp(u(B)™ f wHED gut < 22,

We call it A, because it looks like condition A, in [4] but with the special
recta.ngles R instead of the cubes of the cla.ssmal case.

icm®
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Write A, as
k-1 k-1
2 Y w(Ta)ap(a(d) [B2 Y w“”(‘"”(T‘m)d,u)”_l
4 i=0 A i=0

< 0,22

Since this holds for every A4, arbitrary measurable subset of positive
measure of B,, we easily obtain A, for almost all 4 in B,. A straightfor-
ward application of the proposition and lemma gives A;,.

Before proving the converse we will state some results that will
be needed in the proof. These results are a discrete version of the Cal-
derén—Zygmund decomposition [6] and of some results in [1]. The proof
follows the same pattern as in [1] and we will include it only to make
the article selfcontained.

CALDERON-ZYGMUND DECOMPOSITION. Let us fix the integers 0,1, 2, ...
.o k=1 and let X be a real number such that

. F—1
A>T ) w(The)

i=0

where © is a fiz point of X. Then for the set of integers 0,1,2,...,k—1
we can choose a (possibly empty) family of disjoint subsets I, ..., I; each
of them made up of consecutive integers and such that the following holds:

(é,) For each I, i =1,...,1

1 .
< —_— w(TVs) < 34
i 2 (

where ILI denotes the number of 'mtegem in I;.
(b) If 9¢UL, 0<i<

Proof. Let us call a set of consecutive integers amn interval. Split
0,1, .., k-1 into two disjoint intervals I,, I, where I, =0,1,...
..,[(k—1)/2]. Now consider

07 Zw (T? ),

jel;

k—1, then w(Tiz) <2

i=1,2.

If this average is bigger than A, we select this interval and we have

1112”’

k-1

Z %) < 34
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It this average is not bigger than 1, we repeat the process. This process
will finish in a finite number of steps. The chosen intervals satisty (a)
and if an integer 7 is left out, then obviously

w(T'z) < 4.

In what follows we will often use for the averages the notation established
in the introduction. In particular remember that

k=1

B 3 w(T'0) = Ty w(@).

=0
(2.6) LemwA. Let w satisfy Aj; then there ewist positive comstants a, B
depending only on the constant M of condition A, such that if

k-1
B = {i: 0<i<k—1: w(T'a) > fk™ 3 w(wa)},
=0
then JH > ak (HF is the number of integers in H).
Proof. Observe that for any positive g it B’ = {0,1,..., k—1} 7,
then

2.7 BTETEP TS Ty w(w) (Irl Z’w(Tfm)-llm—D)”“‘

iell
this is because in E' is w(T'0)™" > (BT -, w ()" But the last term in
(2.7) is, obviously, dominated by

Lo, -1 (0)(Ty gy =0~ (m))?—l <M since A;.

Choose f<< M™% a =1—(MB)Y®Y and the lemma is proved.

Nome. If instead of 0 <i<<h—1 we start with any other interval I,
then we have

,Hf({z el: w(Ts) > /3|I|‘12'w(1’7'm)}) > a|l].
Jel
The Calderén-Zygmund decomposition and the preceding lemma
allow us to prove, in our context, the “roverse Flolder inequality .

(2.8) Lmmua. Let w salisfy A,, 1 <p < oo; then there ewist positive
constants O, & such that

k-1 k-1
- j 11+ -
(70 1%’ (w(T:lm))l—(-d)l ok 114';: w(T )

for every & and w.

e ©
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Proof. Let 1 be a positive number such that
A>Ty qw ().

We want to estimate > w(T'») extended to those i’s, 0 < i<k, where
w(T'x) > 1. Using the Calderén-Zygmund decomposition for this 1, we
have a family of disjoint intervals I; satisfying (a) and (b) of the said
decomposition, so

A ={: 0<i<k: w(T'2) > < U I

Now
D w(To)< Y Yw(Ta)< D) 341
1A (4) i tely E
<31 a",ﬁf{h eI w(T*0) > BIL~ Y w(T a)}
i iEIj

<8107t Y gihe Lz w(T*a) > B}
7
= 3da~ g {h e | I;: w(Tho) > A} < 3ha~' JpA(BA).
In other words, for any A>T, ,w(®) we have

w( Tt o) < 02 A (BA).

ieA(3)
Multiplying by 2°~! (6 > 0) and integrating we obtain

N w(Taa<o [ XA
Tg, k—1%(@) ied(4) g, 5 —1w(z)
k—1 w(T%)/B
<0 [ »a
i=0 0
k-1 .
= O+ 4707 D (w(Tia))**
=0
k-1
=0 (1487 Y (w(T* a))+.
i=0
The first term of this inequality can be written as
W) € ,\\6 4§
@9 SwTo) [ #aa=06" Y o(T'0)|(w(T) — (Lo w (@)’
?'51—(‘3) Tp, - 10(&) ed(D)

where I in A(Z) i8 Topw(®). Now if 0<j<k—1, j¢.4(J), then
w(TIw))° — (T, w1 (@) is mon-positive. Therefore the last term in (2.9)
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is not less than

k-1

871 X w(T'0) [(w(T7®))° — (To 0 (@))’] 5

) i=0
50 we obtain

To—1

867 —0'(1+8) 7%~ 2 (w(Tf i < ( Zw(11jm))l-l'd

j=0 j=0
and the lemma follows by choosing § small enough to make
’ 01+ 8)7 > 0.

(2. 10) LemmA. Let w satisfy A, then there ewisis e >0 so that w
satisfy A, py,
Proof. Check first that if w satisfies A;, then v = w=Y®-D gatisfies

Al with p~'+ ¢ = 1. Applying now the preceding lemma to » wo have
im some 6> 0

(To-k—I”HB(w,))l/uM) < 0Ly 10(2);
zeplacing » by @) and taking & = (p—1)8(L+8)~' we have

=1 k—-1

57 3 w (1) (52 3 (1 (Tia)[~Ho=e-0)p =

i=0 j=0
k=1 Lt
SO Y w(Tla) (67 3] (w (i) e < oot
j=0 j=0

The following maximal function appears in a natural way w%socnte{l
to the weight w

m

2, e s

EUtwf(w) = sup
n,m>0 24 w T1w

tem

- As we will see this maximal function contirols f* Indeed, if p~4-g~* =1,
‘we have

(nt+m+1)7" ' |f(T')|

eyt

= (m+m+1)™ 3T f(Th0)|wt (Tia)w= e (1)
((n+m+1) P (T )w (Tim))uzz((n+m+1)—1i’w-a/ﬂ(fim))l’“

-n
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(n+m+1) 3 (T w ()
< o f=—n <M(§Htwfﬂ(w))1/ﬂ “
(n+m-+1)7" V 'w(Tlm) . :

The next to the last mequahty is beca.use w sa»msﬁe@fA Ta.kmg sups
over n and m, we obtain

(2.11) ffloy< (imwf” e,

Since w satisfies also A, for some s such that 1 < s < p, we algo have

IH(@) < M (D).
‘Observe that
[ @) w(@)du < M [ (M1 (@))% () du
X X

where p/s > 1; so if we prove that the maximal operator 9, is bounded
in L. (wdg) for all »>1 we will have

(2.12) [ ()P wap < MO [ (] 1Pwin
X X

and we will be done. Since M, is obviously bounded in Z*, it will be enough
to prove weak type (1,1) and use the Marcinkiewiez interpolation theorem.

(2.13) TEEOREM. The maximal operator with weight defined by

1

> f(T'z)w(T'x)

(2.14) : R, f(@) = sup =
B S w(Tie)

i=0
48 of weak type (1,1) with respect to the measure wdu.
Proof. We may assume f is non-negative. Let 1 be a posn;we number
bigger than
Xf Jwap

= Twan

. x

and let
0, = {# € X: Ryf(e) > 1}
The set 0, is, clearly, measurable. For any z € X we consider the orbit
of o in 0,1, that we denote by J, i.e.
J, ={T"s € 0,, keZ}.

We associate, in a natural way, to the orbit of # in 0,,J,, the subset

of the integers given by
{k: T*z e 0,}

that we can express as a countable union of disjoint intervals |_J I7.
: 1
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Let is prove that, for almost all #, no I{ has infinite number of in-
tegers. The individual ergodic theorem tells us that
k-1

lim3™> 2 f( T ayw(Ta)(k Z (T'0) ™ = [fodu( [wau)]™ ae.
P X

If for some ¢ If ={I,1+1,1+2,...}, then, by the above-mentioned

theorem, we have
k-1

hmz T T o) (T T )(Z’ (T‘T‘m))_l=v.

k=00 G=p T

Thus, being A > », there exists a positive integer K such that

k—1 k1
(2.18) D (I o) w(T'T's) < 2 3 w(T'T's) (k> E).

=0 =0
Clearly, by the definitions of R, and 0, there exists » verifying
141 Itr

D f(Tayw(Tia) > 1 3 w(Tia) (T's € 0,)
[} 1

where, by (2.15), » < K. Considering now "+ (x) that belongs to 0,
there exists r, > r-+1 such that

iy T4y
D! f(Timyw(Tiz) > 2 D) w(Tia)
Lrl 14r+1

and applying the same process we obtain a sum of the type

8

D f(Tioyw(Tiw) > A ‘i’w(l”'m)
3 [

where s > K, in contradiction with (2.18). Therefore, there are not inter-
wvals of infinite lenght.
Choose now an interval I%, namely
IF={,1+1,..,14+m}

which means that T'w, ..., T'*"g ¢ 0, and TH™+ g Ty ¢ 0,. Tho aim
is to prove

m
(2.16) Zf(mf“ () > 2 Y w(Ta).
J=0 =0

If this were not the case, then for every positive integer » we would have

m-+r meAr
Zf _Tﬂ-l T::-H ng THlm)'w Tj-H ©)+ 2 f(T"'H (Tj+lw)
J= F=mA1

m-r

< ZZw(Tf*"w)—(—l D w(Tita)
J=0

J=m+1

icm
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where we have used that T"*™+lg ¢ 0,, so for every positive integer »
we would have

m+tr mtr

Z FIH gy () < 12 w(Ti+y
On the other hand, for some %, clearly not bigger than m it should be

Zf(T”’cc)w Tz > ZZw Ti+lg);

j=0
if we eall

h h
B = ma,x{h <m: D f(TH)w (1) > AZ‘w(TH’m)},
0 0
then we claim that % = m.

Suppose that % < m. Then T'+*+'z ¢ 0,, fact that implies the ex-
istence of a t> %1 such that

£ ¢
2.17) DT @)yw(THg) > 2 Y w(THa),
R+l R+l
and
(2.18) 2 F(TH m)w (THm) > A 2 w(T )

adding up (2.17) and (2.18) we obtain a contradiction with the agsumption
that 7 was the considered maximum. Therefore 5 = m, and the inequality
{2.16) follows.
Call now
B, ={®e0;: ..., '€ 0,, "z ¢ 0;, T ¢ 0;}.

B; is clearly measurable.
Let R; be defined by

R, = B,uTBu ... uT"'B,.
It is obvious that I™B;nI"B; =@, 0 <n, m<i—1, n #m and that
= U R,.
Consider now @ e B;:
i-1 i-1
Sw(Tia) <27 D) f(Ta)w(Ta).
j=0 =0
Therefore
[wap< ™ ffwd,u

Ly
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and summing over ¢ we have.

fwd,u <At ffwd‘u
0y 0,

and the theorem is proved.

To prove that M, is also of weak type (1,1) we just observe that
M,f is dominated by R, p—1f -+ N, rf where R, »f(x) is what we called
N,f () while N f,, »-1f (%) is the corresponding operator defined as R, ,.f ()
but using T-* instead 7.

3. Final remarks. If w is constant, then clcarly satistios A;, for any p.
But apart from this trivial case the natural question is if there existy
a non-constant w satisfying A,. In the case of the Hardy—Littlewood
maximal function in K™ Stein provides [5] an example: |z% —1l<a
< p —1. Unfortunately this does not make any sense in our context. There
is another way of producing good weights. It is to find a function w such
that w* is essentially dominated by Ow.

In [7] it is proved that if f iy any function in L, (X) and we construct

W = (f*)1/2a
then
(2.19) w* (@) < Ow (v)

for any » where O is an universal constant.
Since T ,w(z) < w*(T'®), 0< i< k—1, then by (2.19) we have

Tyw@) <0 w(Tz), 0<Kig<k—1

and this certainly implies A, for any » > 1 with M = (. Obgerve also
that A, implies easily that w(T@) < Cw(2) where € depends only on the
constant in A,. This means what we said in the introduction, that the
operator :

=If (Tf(e) = f(Tw)

maps LP(wdy) into L7 (wdu) but, since ¢ is in general bigger than 1, this
i3 neither a contraction nor a umiformly hounded group of operators.
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