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Convolution, product and Fourier transform of distributions
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Abstract. By modifying the Mikusifiski general scheme of defining operations
on distributions, we obtain particularly a sequential definition of the convolution
of distributions in several versions. Some of them are equivalent to the known defi-
nitions of the convolution given in [2], [18], [14], [16], [3]. Relations between defi-
nitions of the convolution and the product of distributions by using various classes
of unit-sequences and delta-sequences are examined. As a consequence, we explain
mutual relations of the exchange formulae # (fig) = & (f)# (g) and & (f-g) = F (f)»
»% (g9). In particular, it occurs that the second formula does not hold in the sense
of Itano [5].

1. Tntroduction. In the sequential approach to the theory of distri-
butions, it is natural to define for distributions (in some general way)
such operations which are given for smooth functions (see [10], [L]).
Some of operations can be defined for all distributions (regular operations),
others —only for particular distributions (irregular operations). The de-
fining operations in [10] and [1] are based on a concept of a delta-sequence
{8,}. In many cases, this method allows one to define in a simple way vari-
ous operations for sufficiently large classes of distributions.

It iy possible to adopt various versions of the definition. For instance,
the product of distributions f, g can be defined in the four ways:

&8 [fg] = Bm(fx8)-(g*8),
(2) [f1[4) = im(f«5)- (g% 3),

(3) [f1g zﬁglj}fgl(f*%%(ﬁ@) =lm(f«4)-g,
(4) flol = 11,13%(#61)-@*3{) =limf-(9+5),

whenever the limits (distributional) exist for any delta-sequences {4,}
and {8,} (see [12], [L], [11], [4], [15]). o ‘

Definitions (2)-(4) are equivalent (see Section 2); definition (1) is
more general.
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However, this method is less adequate for operations which are not
defined for all smooth functions as the convolution, for instance. Some
additional conditions are then needed (for the convolution see [1], pp. 153
and 131).

In this paper we propose to define such operations for distributions
by using so-called unit-sequences {z,} (see [7], [16] and [3]). 'The method
will be shown in the case of locally regular operations (sce Soction 2),
but it is possible to generalize it for any operation (see [8]).

In the case of the convolution of distributions our method leads
to the definitions:

() [fxg] = E{g(m-f)*(mg),
(6) [F1+0g] = lim (f) # (7:9)
W] [flxg = grzjlilg(mf)*(ﬁm) = Lim(n,f)*g,
® Fxlg] = 1ig}j£(njf)*(ﬁiy) = limf(7,9),

where the limits (distributional) are supposed to exist for any unit-se-
quences {n,}, {7}

By taking various classes of delta-sequences and unit-sequonces, we
can. obtain various definitions (1)-(8). Relations between them will be
discussed in the paper.

Also connections with known definitions will be considered. In par-
ticular, we shall show that definitions (6)-(8) of the convolution by using
the classes B of unit-sequences and I of speecial unit-sequences (B-con-
volution, H-convolution) are equivalent to each other and to the defi-
nitions of U. Chevalley [2], L. Schwartz [13], R. Shiraishi [14], V. 8. Va-
dimirov [16] and P. Dierolf~J. Voigt [3].

A gimilar result is obtained for convolutions in &'.

Definition (5) is essentially more general than definitions (6)-(8)
(in 2" and in ).

A generalization of amother type can be obtained by reslvieting
classes of unit- and delta-sequences. This leads to a concopt of model
unit- and delta-sequencos (seo Section 4). The classes of model soquences
are minimal in some sense (the sequences are generated by single functions).
The model sequences turn out to be very convenient in considlering ro-
lations between the convolution and the product of distributions with res-
pect to the Fourier transform:

F(f)(t) = f,, exp(2nitw)f(x)dz (¢t e RY),
I
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Namely, the two exchange formulae:

(9) F(fxg) =F(f)#(g)
and
(10) F(f-9) =F(f)+#F(g)

hold. for tempered distributions f, g, provided the convolution and the
product are defined by formulae (1)~(4) and (5)~(8), regpectively, and by
using model delta- and wnit-sequences (see Section 4; also [70.

Since definitions (2)-(4) of the product by using delta-sequences,
introduced in [1], and by model delta-sequences are equivalent (see Section
5), wo obtain immediately a generalization of the classical theorem on
the exchange formula (9).

On the other hand, the exchange formula (10) is not true for F-con-
volutions (5)~(8), which gives the negative answer to the problem of
M. Itano (see [57]). . :

Several unsolved problems are posed in Section 7.

2. A-operations and F-operations. We shall use the notation from [1]:

By a delta-sequence we meaxr. a sequence of smooth functions d, (@),
2 € R, for which there exists a sequence of positive numbers a, such
that a,—0 and

(8) 4(®) =0 for |»|> ay;

(b) [ 8, (0)do = 1; ‘

(¢) for every & € P? there is a constant M > 0. such that

oF f 849 ()| dow < L,

for n =1,2,... (see [1], p. 116).

The above class of delta-sequences will be denoted by 4.

It is well known that for any distributions fe 2’ and g €&’ and
for every {d,} e 4, the convolutions f*é,, g*d, are smooth functions
and

fxd,—~fin @', gwé,~g in &'
a8 N--00,

Now, we remind the Mikusidski definition of operations on distri-
butions (see [107, [1]). For simplicity, we consider operations of two
arguments. Let A(-,+) be some operation defined for smooth functions
@, v, rosulty of which are smooth functions again (or numbers which can
be interproted as constant functions), and let f, ¢ be distributions. If
for every delta-sequence {3,} € 4 the functions (numbers)

(1) D, = A(f10,, g%,)
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are defined for almost all n =1, 2, ... and the sequence {&,} is funda-
mental, i.e. distributionally convergent (in the case of mumbers, this
means the usual convergence of numbers), then we define
(12) A(f,9) =1lim®,,

N—+00
Tt is clear that limit (12) does not depend on the choice of a delta-
sequence {4,} e 4.

We shall say that A(f, g) exists as A-operation (in 2'). For instance,
formula (1) for {4,} € 4 defines the d-product [f-g] (in 2').

It iz possible to give some modifications of the above definition.
For example, we can take in (11) different delta-sequences {8,}, {5,} € 4
for f and g. Then the deﬁmtlon of the d-product [f1-[g] is obtained as a
Special case,

Sometimes an operation A(-,-) is regular with respect to each ar-
guments, i.e. A(f,g) exists for every pair (f, g) of distributions, one of
which being a smooth function. Then we can define A (f,g) for any
f, g2’ as imA(f«6,,g) or hmA(f,g*d ). In particular, the defi-

n->0a

nitions of the A-products [f]-g and F-[g] are obtained.

If f, g € % and the respective limit is tempered, then we say about
A-operation in &',

Note that the 4-product [f-g] exists for a wider class of distributions
than the A-products [f1-[g], [f]-¢g and f-[¢9]. For example, the product
27! 6(x) exists in the sense of (1), but does not in the sense of (2)~(4) (¢f. [7]).

On the other hand; we have

TuEOREM (R. Shiraishi, M. Ttano [157). Let f, g €. If one of limits
(2)—(4) exists in 9' Jor any delta-séquenes {0,}, {8,} € 4, then the other
limits also ewist for amy {8,}, {8,} € 4 and

_(13) [flg =f1l9] = [f]'[9]~

In. other words, A-products (2)-(4) are equivalent.

As a matter of fact, Shiraishi and Itano proved in [15] the ubove
theorem for a wider class of delta-sequences than 4, but it is possible
to do it also for 4 (see [8]).

Definition (12) is less useful for such operations as the convolution,
the integral, the Fourier tramsform. For those operations and, more
generally, for locally regular operations, we are going to present a defi-
nition based on a concept of a unit-sequence, We regtrict ourselves to opera-
tions of two arguments.

We say that a given operation A(-, ) i locally reqular if for any
intervals I,, I, = R? and for any fundamental sequences of smooth fune-
tions {g),}, {@w} such that the supports suppg,, are  included in
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.) the sequence
n=1,2,..)

Li=1,2n=12,.

{-A ((Pln? ¢2n)}

is fundamental.

Obviously, locally regular operations can be defined by formulae (11)
and (12) for arbitrary distributions f, g with compact supports.

A sequence {7, ()}, @ e R of functions of the class @ is said to be
a unit-sequence if

() for every ke P2

(1a(0) 1) >0

almost uniformly in R%;

(8) for every k e P? there exists M, >0 such that

I (@)] < M,

for all » e R? and n =1,2,... (see [3]).

A sequence {7,(®)}, # € R? of functions of the class 2 is said to be
@ special unit-sequence if it satisfies (B) and the following (stronger than (1))
condition:

(y) for every interval I = R? there exists m, such that #,(s) =1
for wel and # > n, (see [16] and [3D.

The clasges of all gpecial unit-sequences will be denoted by B and
I, rospectively.

If A is a locally regular operation, then A (nf,ng) exists for any
5 9e9 and ne2, so we can adopt the following definition for given
f9e2':
(14) A(f,9) = llmA (s 109)5

whenever the limit exists in 2’ for any {n,} el or {77,,} e B. 'We shall
say then that A.(f, g) exists as H-operation or E-operation, respectively.

Note that limit (14) does not depend on the choice of a unit-sequence
{1} € 2 ({n,} € E).

Since the operation of convolution is locally regulam, wo obtain es-
pocially definition. (5) of the convolution (in 2’ and in &'). We can modify
definition (14) similarly as in the case of J-operations, which leads to
definitions (6)~(8) of the convolution (in 2’ and in &)

Note that the H-convolution and F-convolution [fxg] exist for more
pairs of distributions than the B-convolutions and B-convolutions [f]x[g],
[f1*g snd f«[g]. Tn fact, the H-comvolution (H-convolution) 1xsgnw
exists in tho sonse of (8), but not in the sense of (6)~(8) (ef. [T]).

3. Convolution, Now we are going to show relations between various

definitions of the convolution for distributions. Applying results from [3]
and [14], we shall obtain:
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THEOREM 1. Let f, g € @'. If one of limits (6)—(8) ewists in D' for any
unit-sequences {n,}, {7} € B, then all limits ewist in 2’ for any {n,},{7,} e B
and
(15) [f1xg =f«[g] = [f1=[g].
In other words, B-convolutions and E-convolutions (6)-(8) in @' are
all equivalent.

Proof. Suppose that f, g ¢ 2'(R?) and that

[F1xg = lim (,f) g
n-roo
exists in @’ for any {n,} € B(R?). Since for any {5,} e Z(RY) wo have

Lmf)xgy 9> = <Flg™*@)y 1>y (v =1,2,...),
where ¢~ () = g(—), the assumption implies that the distribution
flg~*9) is integrable in R? by virtue of (1.1) Proposition in [3]. Hence
F(®)g (%) p(z-+9) is an integrable distribution in R*(», y € R*) by Theorem 2
in [14] (see also (1.3) Theorem in [3]). Applying (1.1) Proposition from [31
once again, we see that the limit

Lina CF(@) g (1) (& +4) 171, (©) T, (4) Dog =nl_i$ L f) *(7,9) s P4

exists for any {7,}, {i,} € B(RY) and ¢ € 2'(R%). This means that [f]+[g]
exists in 2’ and

[F1x[g]; @>g = F@)g (@) p(@+Y), 1oy = {Flg7x@), 1>y = [F1%g, #)q-

Similarly, if the F-convolution fx[g] exists in 2’, then the E-con-
volution [f]x[g] exists in 2’ and f*[g] = [f1x[g]

It remains to show that if the H-convolution [f]x[g] exists, themn:
also the E-convolutions [f]+¢g and fx[¢] exist, but this is obvious, because:

[F1+[g] =ilj'_ff°1° (m:5) *(7159)

for any {%,}, {7,} € B, where the limit is double.

Remark 1. Theorem 1 together with the result of P. Dierolf and
J. Voigt ([3], (1.3) Theorem) shows that definitions (6)~(8) of the con-
volution in 2’ are equivalent to the definitions of 0. Chevalley [2], L.
Schwartz [13], R. Shiraishi [14], V. 8. Vladimiroy [16] and P. Dicrolf-
J. Voigt [3].

Applying (1.1) Proposition in [3] and Theorem 8 in [14] (soo also
(2.3) Theorem in [3]), we can obtain in a similar way as Theorem 1 the
following result:

TemOREM 2. Let f, g € &', If one of limils (6)~(8) ewists in &' for amy
{%n} {in} € E, then the all limits exist in 5" for any {n,}, {7,} € B and (15)
holds,
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In other words, H-convolulions and B-convolutions (6)-(8) im &
are all equivalent. '

Romark 2. Theorem 2 together with (2.3) Theorem in [3] give us
the equivalence of the convolutions (6)~(8) in &' and the convolutions.
of C. Chevalley [2] (sece also [4]), L. Schwartz [13], R. Shiraishi [14],
V. 8. Viadimirov [16] and P. Dierolf - J. Voigt [3], applied for tempered
distributions.

In limits (6)~(8) in & unit-sequences belonging to the classes 7
and B involve. However, it seems to be natural to consider in this case
also the following unit-sequences:

A sequence 7,(w), # e R® of smooth functions iy said to be & wnii-
sequence (o special umit-sequence) in & if n, € for m =1,2,... and
conditions (a) and (B) ((B) and (y)) hold.

The classes of all unit-sequences in & will be denoted by E° and
I, rospectively.

Remark 3. By a little modifieation of the proof of (1.1) Prop-
osition in [3], it can be shown that a distribution fis integrable in R? if
and only if the sequence (f,n,>, is convergent for every {n.} € B* or,
equivalently, for every {n,} e B* (see [8]). This implies that unit-sequences.
in (6)~(8) in Theorem 2 can be replaced equivalently by unit-sequences.
of the ¢lass B or the class B

This remark can be written as

OororrAry 1. Let f, g € &'. The B, B, B* and E*-convolutions [f1x[g],
[f1xg, fxlg] in & are all equivalent.

4. Model sequences. The class 4 of delta-sequences contains obviously
the sequences of the form:

(16) 8,(0) = fio(8,0) (v RY),
where
(17 ceD,
Jo =1 and f,->oc0, .
Similarly, the clags B of unit-sequences containg the sequences:
(18) (@) =1y(@]B,) (2 cRY,
where
(19) ned,

7(0) = L and f,~+o0.

In general, operations defined by delta-sequences and unit-sequences.
of the form (16) and (18), respectively, can depend. on the choice of the
Tunctions o and #. Therefore wo define the classes 4, and B, of so-called
model delta- and unit-sequences, which are composed of a finite number
of sequences of the form (16) and (18), respectively (see [71).
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Tn the case where conditions (16) and (18) are replaced respectively
by the conditions:
(20) ced,
(21) nes,

we obtain the definitions of model delia- and unil-sequences in &. The
classes of such sequences are denoted by 4, and Hj,, respectively.

Model sequences are convenient in calculations. In particular, the
theorems on the exchange formulae for the Fourier transform. of tempered
distributions are easy to obtain. Namely, we have

TanorsM 3. Let f, g €. If the BS -convolution [fxg] ewists in &,
then the A%-product [F(f)-F (9)] ewists in &' and

F([f+g)) = [F(f)-#{g)]
If the A5-product [f-g] ewists in &', then the B2,-convolution [ (f)*
F(9)] exists in &' and

| F((f-9]) = [F(H)+F (9)].

TEEOREM 4. Let f, g € &'. If the BE,-convolution [f1x{g] ewists in &,
then the AS,-product [F(f)1-[F(9)] ewisis in &' and
{22) F([f1xlg)) = [#F (N1 [F (D]

. Ifthe A} -product [f1-[g] ewists in &', then the B2,-convolution [F (f)]*
*[F(9)] ewists in &' and ‘ ‘
F([f1-[g]) = [F(NI=[F (9]

TEEOREM 5. Let f, g € &'. If the HE-comvolution [flxg ewists in &',
then the AS-product [F(f)]-F (9) ewists in &' and
(23) - F([f1xg) = [F (N (9).

If the AS-product [f]-g ewists in &', then the BE-convolution [F(f)]*
*F (g) exists in &' and

F(f19) =[FN]1*F(9).

Proof. Theorems 3 and 4 are proved in [7] (cf. Theorems 1, 2 and
the remark after them; in the exchange formulae in [7] constants (2y/w)?
and (2y/7)"¢ appear, which is connected with a different definition of
the Fourier transform adopted there). The proof of Theorem § iy similar.
Namely we have

(242 F((nf)xg) = F f)F(9) = (F () »F (0))F (9)
an
(25) F((fx0)+g) = (F (o)F () xF (9)

for any f,ge% and nes.
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Equation (24) holds, because #f is a rapidly decreasing distribution
{see [6]) and (25) follows from (24). In fact, let f, = F(f), 41 =F(g) and
g, = F(0). Then (24) yields

-V((Uxﬁ)*.‘h) = (y’—(fl) *y(%))'g"(!h) = ((f*”)g)-:

where &~ (@) = h(—n). Hence
(F () F (N)F (9) = (oufu) xgs = F((fx0)g),
ag desired,
From (24) and (258), wo got
(26) F((nuf)g) = (F(f)x8,)# (g)
and
(27 F((f%8,)9) = (nu & (F))+# (9)

for any unit- and delta-sequences of the form (16) and (18) (with assump-
tions (20), (21), respectively), connected by the identities #(¢) =5
and #71(n) = o, respectively. Passing to the limit in (26) and (27), we
obtain our assertion.

5. Product. Now wo are going to show that definitions of the product
of distributions by using various classes of delta-sequences are equiv-
alent,

Beside tho classes 4, 4,, and 4%, we shall also consider the class
A° of delta-sequences in &.

We say that a sequence {9}y 9, €& tends to 0 in & in an open set
Q = R? (and. wo write ¢, 2 0 in Q) if P50 in @ for every polynomial p
and % e P2, ,

A sequonce {8,} of smooth functions is said to be a delta-sequence
in & if §,e& (n=1,2,...) and

(a’) ‘6,,—‘;;0 in RNI for every closed interval I containing 0;

() [y =1 (n=1,2,..);

(¢') tor every & e P? there exists M, > 0 such that

[ 1060 @) g < M, (n=1,2,...)

{cf. [6]).
Loyma. If fe ' and
28) L (f % 4,)(0)

ewists for all {8,} & 4,,, then (28) ewists for all {8,} € 4.
Iff € " and (28) owists for all {8,} & 4,,,, then (28) ewisis for all {3,} € 4°
Proof. We ghall prove only the second part of Lemma. The firgt
Dart can be shown analogously (see the proof of Theorem 12.2.1 and
Remark in 1], pp. 240-241).


GUEST


92 A. Kamifdski

Suppose that fe &, ie. f=F® for some k¢ P? and continuous
function F, bounded by a polynomial, and let (28) exist for all {4,} € 4,,.
That means :
(29) Lm(f*82%)(0) =¢

n—roed

for some constant ¢ and all {63} of the form (16) with assumption (17).
We have
(f*8)(0)—¢ = {f(—p7" 1) — 0, 0(t))
and thus (29) implies that
(30) flat)—e—>0

in 92’ ag a—0, i.e. f hag the value ¢ at 0 (see [9]; [1], p. 38).

By the Ziojasiewicz theorem (see [9] or [1], p. 40), there exist
a continuous function @ and ! € P? such that G = f in some neighbour-
hood of 0 and
(1) limz™'G(z) = o+ (1))~

Z~0

Of course, we can assume that & = I and thus the function @ is bounded
by some polynomial.

In view of (31), for any s> 0 there is a number y > 0 such that

o @ (@) —o(k)"Y <& for |o| <.
It {6,} € 4°, then

[(F%6,)(0) — o] < [ 16(—2) —o( ~a) (k1) ™|+ |89 () | do
e j].%Ik[agc)‘(w)ldw-{-sg e(M,-+1)

for sufficiently large n, in view of condition (a’).
This means that (f4,)(0)—¢ for any delta-sequence {6,}e4’ and
the proof is complete.

TemoREM 6. Let f, g € 2. The A-products and A,,-products [f1-[g],
[f1-g, f-[9] are equivalent in 9'.

Proof. If one of limifis (2)~(4) exists for all delta-sequences of the
clags 4, then all limits exist for delta-sequences of the classes 4, 4,, and
(13) holds, by the theorem of Shiraishi and Ltano [15] (see Section 2).

Now suppose that limit (3) exists in @' for all {8,)} e 4,,. Since

AF*09, 9> = <8, f2(9p)> = ((f*{g9)™)8,)(0)

for any ¢ e 9, limit (3) exists for all {8,} € 4, in view of the first part
of Lemma. Now, the existence of the remain limits and (13) follow from.
the previous remark.
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Tho proof is similar if (4) exists in @' for all {8,} e 4,,.

Tinally, assume that limit (2) exists for {6,), {8,} € 4,,. Then the
double limit Iji.m( T# ;) (gx0y) exists in 2. Consequently, lim(fx8,)g

%,j—+c0 100
exists in @' for any {4;} e 4,,, which reduces the question to the case
considered earlior.

OorornAwry 2. Let f, g e 2. If one of imits (2)~(4) evists in 9" for
any {8n}y {0,} € Ay, then the other Vimits also exist in 2 for amy {6,}
{6,} € 4,, and (13) holds.

Tugorrm 7. Let f, g &5, The products [f1-g in &' defined by the
classes Ay, A5,y A amd A°, respectively, are equivalent.

Proof. It suffices to prove that if limit (3) exists in & for delta-
sequences {d,} € 4, then this limit exists for all {3} e 4% But this
follows from the identity

F*0,)9, 9> = ((Fx(gp)™)8,)(0),

by wvirtue of the second part of Lemma,

In [8] it is proved the following result:

TarornM 8. Let f, g € 9. The products [f1-[g] in &' defined by the
olasses 4, and A arve equivalent.,

6. The exchange formulae. Theorems 7 and 8 allow to formulate
the first parts of Theorems 4 and 5 on the exchange formulae in the follow-
ing way:

Tumormm 9. Let f, g € &', If the B5,-convolution [f1x[g] ewists in
&', then the A-product [F(f)1-[F(g)] exists in &' amd (22) holds.

TororEM 10. Let f, g € &'. If the TE-comvolution [flxg emisis in &,
then the A*-product [F(f)1-F(g) ewists in &' and (23) holds.

In [4] and [1B8] it has been proved that it f, g e ¥’ and &’-convol-
ution f+g (in the sense of C. Chevalley [2] and Y. Hirata—H. Ogata [4])
oxists, then the A-product [#(f)1-F(g9) =F ()-[F(9)] = [F (f)] [F (9)]
oxigty in @' ([4] and [15]) and the d-product [#(f)]-[#(g)] exists in
&' ([18]) and the respective formula holds. Since the definition of the
convolution fvg is equivadent to the H*-convolutions [f]xg =fx*[g]
== [f1x[g] in & (¢f. Thoorem. 2 and Remark 3), we seo that Theorems 9
and 10 are generalizations of the above result. i

These gencralizations are ossential ag the Delow example shows.
The example shows, too, that 2,-convolutions (5)—~(8) are essentially more
general than J-convolutions (5)~(8) (in 2’ and in &) and that the second
parts of Theorems 3, 4 and B are not true, in general. In particular, this
gives tho noegative answor for one of the two problems posed by M. Itano
in [57] (p. 65). The second one remains opem.
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<1/2
o) =1 for lal<12 Ry
0 for |z|>1/2
It is easy to see that the A°-products [0-0], [6][d], [0]-, 0-[d] exist
in & and
[6-6] = [6]-[0] =[0]-6 = 6:[5] = §.
Note that
F(8) =1, F(0)=h,

where h(#) = sinna/nx (v € R).

TIn [8] it is noticed that the distribution & is not integrable, i.e. the
convolution 1x[h] does not exist in 2’ (with respect to the class ). We
shall show that even the convolution [1xh] does not exist in 2’ (with
respect to E). Let p, (n =1,2,...) be integers such that

1 1

(82) il Tonts T

o ~—~}———— - 00

2p,+1

For any set A = R, we denote by A_, (¢ > 0) the set
A_, ={w: w+yed for every y, |y| < ¢},

Let A" = B"v C", where

" = {r: |®| < 2n-—1}
and

Pn

= |J {@: 2i < o] < 20+1}.

i=n
Let ¢ be fixed positive number less than 1/16. Note that
(33) [ h@)dz>0.

B%
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In fact, this is obvious that for n = 1 and for » > 2 we have

2(n—1) 2n—3
f h(w)d
—8-!

Uf smrcw =_Z( k(f’ym?kJ iy >

Take an arbitrary non-negative smooth and even function ¢ such
that

1 for |p<e,

w)=
ol 0 for |z >2¢

icm®
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and define a soquence of functions 6,(») as follows:

1 for
0  otherwise.

n
0,,(50) == i EA_M,
Putting
T = Upkp,

we seo that {»,} 18 a special unit-sequence. Moreover,

N (@) = (r@)(®) =1 for wedr,,

fn, (m) = (Wn*‘)’) (#) =0 for @ ¢.A"

and

@) =0,  (xp)@) =0 for wed™\AZ,.
Since h(w) = 0 for w € C" and h(z) > 0 for z e A"\ 4",
we have

Cppae(nph)y @ = Chy (%) 10>

> [roan? ST e s,

[
A-—Ba

in view of (33). Hence

D,
25in8e 1
i (nph), @) = 3 g %L

i.e.
X (ph), @p—>00,

according to (82). Consequently, the convolution [Lxh] does not exist
in @' with respect to the class [, which was announced.

7. Problems. Finally, we would like to present a list of some of
unsolved problems.

Propruw 1. Lot f, g ¢ & and let the 4-product (or, equivalently,
4,,-product) [f1-g exists in &’. Doos exish then in &' the A-product (or,
equivalently, 4,,-product) [f1-[4]1?

Prowrum 2. Let

a) f, g &9 and the H,-convolution [f]+g exist in 2,

(b) f, ge ¥’ and the Bf-convolution [f]xg exist in &

Doos exist then

(a) the H,-convolution [f]«[g] in 2,

(b) the JHg-convolution [f]x[g] in &'?
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ProBLEM 3. Letb

(a) f, g € 2’ and the A,,-product [f-g] exist in 2,

(b) f, g €%’ and the 4,-product [f-g] exist in &,

Does exist then

(a) the A-product [f-¢] in 2,

(b) the A°-product (or A-product, or A8 -product) [f-g] in 97?2

ProBrEM 4. Let f, g €% and let the Hj-convolution [fxg] exist
in 9. Does exist then the A*-product (or d-product) [#(f)-F(g)] in
& or in 2'%
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Nou-removable ideals in commutative Banach algebras
by
V. MULLER (Praha)

Abstract, Weo show that an ideal I in a commutative Banach algebra with unit
in now-vemovable if and only if it consists of joint topological divisors of zero. This
gives the positive answoer to tho conjecture of Avens and Zelazko. From this it follows
also that any finibe family of removable ideals is removable.

Introduction. All algebras considered in this paper are assumed to
be commubative complex Banach algebras with unit, However, some
of these propertios (complexity and completeness) are not essential.

Wo say that an ideal I in a commutative Banach algebra A4 ig re-
movable if thore oxists o superalgebra B > A (i.e. B is a commubative
Banach algebra and there is an isometric isomorphism f: A—B preserving
the wnit) such that I is not contained in a proper ideal in B. A family
{1}/ OF ideals in A is called removable if there is & superalgebra B o A
such that, for each j e J, I is not contained. in a proper ideal in B. An
ideal which iy not removable is said to be non-removable.

These notions were introduced by Arens in [1] where the following
question was also prosentod: Is overy (every finite) family of removable
ideals removable?

Removability of ideals was further studied by Arens [2], Zelazko [8],
[9], [10] and. Bollobas [3]. Bollobés exhibitied an example of a non-count-
able family of removable ideals which is mot removable.

W, Zolazko introduced the following definition: Wo say that an

n
idoal T e A consiste of joint topological divisors of zero if inﬁ 12 |8;0] = 0
2. wal,
] s,
for overy finite family 4y, ...,8, € L. Wo denote this shortly I ed(4).

Tt in onsy to soo that it [ e ¥(4) then it is non-removable. Zielazko [7],
[9] conjectured that tho converse statement is also true, ie. that Iis
non-removable it and only it I ef(4). However, the same quesbion was
Pregontod (in an equivalent formulation) in the original paper of Arens [1].

The answor has heen known in some special cages. In the case of
principal ideals the conjecture turns into the theorem of Arens: An element
(in & commutative Banach algebra) is permanently singular if and only
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