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ProBLEM 3. Letb

(a) f, g € 2’ and the A,,-product [f-g] exist in 2,

(b) f, g €%’ and the 4,-product [f-g] exist in &,

Does exist then

(a) the A-product [f-¢] in 2,

(b) the A°-product (or A-product, or A8 -product) [f-g] in 97?2

ProBrEM 4. Let f, g €% and let the Hj-convolution [fxg] exist
in 9. Does exist then the A*-product (or d-product) [#(f)-F(g)] in
& or in 2'%
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Nou-removable ideals in commutative Banach algebras
by
V. MULLER (Praha)

Abstract, Weo show that an ideal I in a commutative Banach algebra with unit
in now-vemovable if and only if it consists of joint topological divisors of zero. This
gives the positive answoer to tho conjecture of Avens and Zelazko. From this it follows
also that any finibe family of removable ideals is removable.

Introduction. All algebras considered in this paper are assumed to
be commubative complex Banach algebras with unit, However, some
of these propertios (complexity and completeness) are not essential.

Wo say that an ideal I in a commutative Banach algebra A4 ig re-
movable if thore oxists o superalgebra B > A (i.e. B is a commubative
Banach algebra and there is an isometric isomorphism f: A—B preserving
the wnit) such that I is not contained in a proper ideal in B. A family
{1}/ OF ideals in A is called removable if there is & superalgebra B o A
such that, for each j e J, I is not contained. in a proper ideal in B. An
ideal which iy not removable is said to be non-removable.

These notions were introduced by Arens in [1] where the following
question was also prosentod: Is overy (every finite) family of removable
ideals removable?

Removability of ideals was further studied by Arens [2], Zelazko [8],
[9], [10] and. Bollobas [3]. Bollobés exhibitied an example of a non-count-
able family of removable ideals which is mot removable.

W, Zolazko introduced the following definition: Wo say that an

n
idoal T e A consiste of joint topological divisors of zero if inﬁ 12 |8;0] = 0
2. wal,
] s,
for overy finite family 4y, ...,8, € L. Wo denote this shortly I ed(4).

Tt in onsy to soo that it [ e ¥(4) then it is non-removable. Zielazko [7],
[9] conjectured that tho converse statement is also true, ie. that Iis
non-removable it and only it I ef(4). However, the same quesbion was
Pregontod (in an equivalent formulation) in the original paper of Arens [1].

The answor has heen known in some special cages. In the case of
principal ideals the conjecture turns into the theorem of Arens: An element
(in & commutative Banach algebra) is permanently singular if and only
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98 V. Miiller

if it is a topological divisor of zero. In [10] it wus proved that I ed(4)
implies that I can be removed in some locally convex extension of 4.

We intend to improve these results and to give a positive answer
to the Arens—Zelazko conjecture in general. As easy consequences this
yields that every finite family of removable ideals is 1'01110\&1,1)10 and it
also gives positive answers to several other questions of Zelazko [9] and
Arens [2].

The paper is divided into three sections. Tn the first section some
combinatorial identitics and estimates needed later avo proved. In Seetion
IT the main theorem—an equivalent formulation of the Arens—Zoelazko
conjecture—is proved. Some consequences of it are given in Section IIT,

I. Denote by N fhe set of non-negative integers. Lot u = 1 and
LjeNS U=~y ..ol §=1{Ju; s Jn) We shall use tho notation (I

n
=31 and 1<jif {,<j, for overy ¢ =1,...,m
i=1
For m>1 and I = (ly,...,1,) € N* (n>=1), defino tho numbers
|l|+m~1) !
Q, B . ———,
mt ( m=1 [71.. !

Notice that

1| -+ m—1
Ot == (’ m—1 ) tly -

We shall prove several lemmas concerning these numbers which
will be used in the following section.

LEMMA 1. o, = ". a; for e N* |l =

|j|=|t| 1
Proof. Denofe

y o, = T T
L bt (=1
PET L
Then L!...L!E = (-1t 3 1, = [I! = a4 ... 1,1, hence e«
1<rn !
L0
= R.
LeMvA 2. Y oy =n° for s € N.
lENn

=g
Proof. The proof follows from the identity (@, -...-+o,)
= %’"a,_lw{ .. @ by putting @, = ... =w, = 1.

k
LevmA 3. 3 ) <
m=1 leN"
<k

88n® for ke N.
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Proof. We havo

e
1 u 1 (| f-m—1
\ W1 2_, 2(| I/nt,_l )'al,l‘ﬁ Zall Zzlllhm !

mes] [ /. w1 |k 4 m=1
ke
PV IR N 7
2% 31 By m o ) n® < 48 (k-HL)nk < 8k,
e ) [ ,,,.,o

LEMMA 4o oy q =0 3 @y oy for mi2, e N,
J-t

Proof. a;, i the number of ways how to ordor % cloments @y, ..., s,
into a sequence of length |1 in which every clement »; oceurs exactly I,
timoxn (permudations with repetition). a,, iy the number of ways how
to divide theso sequences into m (possibly empty) subsequences (com-
binations with repetition), i.e. in how many ways it is possible to form m
SOQUOLCON 8y, ..., &, Drom elements »,, ..., », such that »; occurs in them
altogether I; times (4,, 8y and sy, 8; are counted two times).

The right hand side of the congidered equality is the same number
obtained in the other way: for j <, «, . ;; d;,; is the number of ways
how to form those m subsequences in such a way that »; occurs in the
initinl m—1 wubsequences exactly j, times (for ecach 4).

I, Let A4 be o commutative Banach algebra with unit, » > 1,
Uy Uyy oeny Uy, €4, As in [11] wo say that o is dominated by wy, ..., w, and
write v < %y, ..., %, if there ecxists & constant K >0 such that |ox|
Ui
L K- Y |luyw| for cach w e A,
™
Toworuy 1. Let A be a commutative Boanach algebra with unit 1, n =1,
Uy ooy Uiy @A, |Uy] o= o0 = U] w2 Loand L < Uy, ooy %,. Then there exisis
L3
o commatative Banach algebra B > A and by, ..., b, € B suchthat 1= 3 ub,.
=1
Proof. Wo may assume o3z 2 as for n = 1 Theorem 1 is the rosult
of Avens [L]. ("Tho proot of Theorem 1 is mueh simpler in the case n = 2
than in gonmad; in this ease Section I s reduced to the well-known
propertion of hinomial coofficients.)
Puti B o 128 £ 'rb““‘""'", where I is the constant from the definition

of domination (o] =3 K+ 3 Ju,l).
l

Lot O bo the I aylgobm over A and adjoined elements by, ..., l,L such

i
thati |by| == ... = [B,] = B, i.o. clements of ¢ are of the form @ == 1(1:46
1 ieN™

such that o] - 3 |a Bl << co (whero a; € A; b' stands for bit... 5.
vl
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Multiplication in 4 is defined by
ab’)( Y o) = a;a;) b".
Z g - ST
Lot I be the closed ideal in € generated by z =1 — 3 u,b,. Denote
n = . _ t=1
B = (|I. Obviously we have 1 = > %;b,in B (where & = oI for € ().
f=1
It is sufficient to prove that 4 is a subalgebra of B, i.e. |a|= |d|p for
every « € A.
Let ¢ e A. Then
—_ . . ul 4
|G|y = 1nf|a+zw[a = m'E|a+z Z by,
ied ieN?
So we are to prove la-+2z 3 ab'l; = |al, for every choice of a; e 4 (T N™

aj EA.

such that > ab’ e 0. Obviously it is sufficient to prove the last inequality

ieN™
in the case that only finite number of a;s are mon-zero. For such a;'s,

we have
la—l—zZab' ! ( Zb,ut) a‘b }
N
~‘=}a+“o+ 2 bfi‘a = |@ - to| +- ZRM 1l
HES M1
> |a| —lagl+ > B |y
lif=1
where
fo=aq 4, Z Oy dptdy e (181 21).
I<r<n
G0
So it is sufficient to show |ael < 3 BM|f;l. Wo may assume |ay =

[§1>1
Suppose on the contrary that there éxist elements a,e A, i e N*

only finite number of them being non-zero, |ag = 1 and V R 5l < 1.
Then. |f;] < B~

We shall need the following lemma:

LeMMA 5. Let te N\ 4, e N, |i| 44, = k= 1. Then

e
3,5, 2" < Zak,zi“z Liyrin+il T 22 Oy B

I<i m=1 b
(where o, are the numbers defined in the previous seetion).
Proof. In order to simplify the notation we write w = (1%, ..., %,_;)
and, for je N*Y, j<4, j,<4,+% and |j|+j, =1,

—_ g ,,2%+7,—1,
B, = g, WU 00,

Gy = Ly, W nIn,
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Then
1) Gity = G5, — 2 -

< in
{2} I m==|1l+1n—1
The following relation holds
Y . .

@) = D (=DM et 3 (=DM g

i<j I<j
Indeed, substituto (1) into the right side. Then, for » < j, the coefficient
ab @,z 41 OQuals to zero ovidently; the coofficient ab Bs gy 18
equal to

— (=L gy — (=1 2 Uy e = (—L)" [alﬂ_“ 2 al,,‘,].
e i »<r
jrf=lr|—1 | =r{41

However, the lagt term is equal to 0 for » 50 by Lemma 1 and to 1
for » = 0.
From (2) we geb

(3) g5, < D) @raldyoggpamanl + D, oy B,
=Zj iZj
Now we shall prove

-
(4) bz, < 2' 11815, 4 e 2 2 —(k+a')
< <i

i<t
for m=12,..., k.

For m =1, the statement follows from (3). Suppose (4) holds for some
m < k, and prove it for m-+1. By (3) we have

. A — (k-1
[di-l,1’n+|l|»+ml < 2 al,l’idu’—l—l’,in-)-[ll+|l’|+m+1| + 2 R )
"

Uil Usgi~1
for each 1<t

By substitution into the induction asswmption (4) we get

ldi:’n Zﬂm*‘l 'Jd’ =Lydpy b |2 14 ml + 2 2/ m' lR (k') +2ﬂm +1, IR (mt1)

el ISt

where

- Q
ﬁm-l—l,l == 2_, O, v Q1 110 = 1,1
r<l

by Lemma 4. This completes the induction step and proves relation (4).
Relation (4) for m = & implios easily the statement of Lemma 5.
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Proof of Theorem 1. Denote (for k =1,2,...)
s, = max{|a}, i N", {{| =k},
sp = max{|aw|, ¢, j € N* [i| =%, |j| =20k}

where % == (Ug, ..., Uy)-
Let i e N [i| = k. Using the domination property |#| < K lu,tm\
l

(weA) we can prove easily by induction |a, !\ij Y g ,|a,m’[,h0nce

Li[wlnlc
(5) 8, < Kznk,nzulnsl'a.

Lemma 5 implies

13
— (k- - Qk k
]LI: ”Jﬂ < 2 alc,l'g:!k+ 2 E a’uL,lIﬁ tort2) & 81 (ln’ '1) 821c+

Tenn—1 m=11leN"—1
<k <k

+ 875(% _l)lcR—-(lc»}<1) < Sk’ilrké’% + 81‘:%7.:1‘,—(7«4-1).

As the situation is symmetric in the indices, the same estimate holds also
for |a; u,’”|, = 1, 2,...,n Let j € N*, |j| = 2nk. Then j, = 2k for some i
and |o,u’] < 8*n s~,+8"n"R @+ henee s, < 8Fnley, - 8 ntR-E), To-
gether with (5) this gives

5, < 20k gankglks, | Rrukp2nlghpkR-0ct) = Rkg, 4 RER-(E+D
where R, = K*"u*"8n. For &k = 1, we have
< RyR™24Rysy < By R+ R, R R™ + R s, << ...
< ZRir‘“IIﬁ“gr"l‘l.1—13‘“;"”1‘32;”
=]

As s,» = 0 for » large enough (only finite nuniber of a,’s are non-zero)
and R = 2R}

2

SléRflR—l Z(RzR )ﬂ =1 < R 1p~1 \'T (R R4y

=1 ,,g.u

78

=R{'R™' })27% = 2RT'R

p=b
Hence
1= KZ o] < KZ |“o’“t”‘“o.,.1..,n| |‘|“u o)
t=1 i=1 l 1 t 1

< KnBR™'4+Kns, < 1,

a contradiction.
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I, Tamorem 2. Let A be a commutative Bamach algebra with wunit,
I c A an ideal. Then I is non-removable if and only if I consists of joint
topological divisors of zevo.

Proof. <: Suppose there exists a snpemlgebm Bo A, neNand

Diy.eeyby €8, dyy.cnyiyel wuch that 1 = Y‘bj@j Then |o| = |2wb ]
% f=

< max || 2 |#iy| for every me A and so the ideal I does not conslsb
1<i<n
of joint topologlcal divisors of zero.

<: Lot I ¢3(4), i.e. there exist 4., ..., i,el such tlmt |m,[ e ||
for some & > 0 and for every 2 € 4. By Theorem 1 there ex1st 2 superal-

n
gebra B o A and by, ..., b, € B such that ) b4, = 1, henee the ideal I
ig removable. i=1

The set of all maximal ideals of a commutative Banach algebra A
which are non-removable is called a cortex of A (it corresponds to the seb
of all multiplicative functionals on 4 which can be extended to any super-
algebra B o 4).

COROLLARY. A mawimal ideal I in a commuiative Banach algebra A
with unit belongs to the cortew of A if and only if it consists of joint topologi-
cal divisors of zero.

TurorREM 3. Every non-removable ideal is contained in some element
of cortew (see [8], Problem 1).

Proof. The proof follows from the theorem of Slodkowski ([6]):
every ideal I el(4) is contained in some maximal ideal J e#(4).

TuroreM 4. A finite family of removable ideals is removable.

Proof. Let Iy, ..., I; be a set of removable ideals. Then in I,
(j =1,..., k) there exist elements a,,,..., LI such that 1< a;,,...
O g Let

k
N ={s,,,te{1, v XL, ey mar X XL, e, b =T 8 =naj,t]_}.
J=1

It is easy to prove by induction on % that 1< §8. By Theorem 1 there
exist a wuperalgebra B o A and by, teT such that 1 = Zb,st This
means that I; > § is removed in B for j =1, ..., &

Remark 1. Arens [2] calls a finite set @y, ...,®, € A subregular if
n

there are a superalgebra B » A and by, ..., b, € B such that 1L = 3'b,m;.
i=1

He also asks whether the product of two subregular systems is again
subregular. The proof of Theorem 4 gives the positive answer to this
question.

Remark 2. For n = 2 Theorem 1 says that if u,, u, € 4, [u;] = |u,]
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=1 and |o| < |u,2|-+ |uyz| then the superalgebra B and by, byeB can
be chosen so that [by, byl < 2. A natural question arises what are the
least norms of by, b, in general. The construction giving [b,], [bs] < 2% can
be easily improved (we do not use the best estimates in the proof of
Theorem 1). On the other hand, it is not possible to find B, b,, b, e B
in general such that |by| = |b,| =1 as was shown by Bollobas [4].
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