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Properties of the I function

by
JAN GUSTAVSSON apd JAAK PEETRE (Lund)

Abstract. We study the function L (f) = inf (=P + 1(1 — 2)2) and related functions,
which arise in the theory of interpolation sp;:ez;l

0. Introduction. In the theory of interpolation spaces, more precisely
in connection with the L method (cf. e.g. [5], [3], [2]) one is interested
in the infimum of the expression #”+ iy? under the condition x4y =1,
x> 0, y > 0, where p, g, ¢ are given numbers > 0. Keeping p and ¢ fixed
let us denote this infimum by L(t). Most results in the literature use the
crude approximations L(t) ~ min(l,#) (cf. however Sparr [7], notably
Lemma 3.4, pp. 237 —238). We are here interested in ewact results. (fn
particular, in all of our discussion we take p >1,q> 1) In particular,

'wo are concerned in evaluating integrals of the form y(z f L(zt) dk (1),

where & is a given positive measure on (0, co), the most 1mporta,nt case
dat .

being dk(t) =t“”—t—— y 0 <7< 1. (Such functions often arise as “inter-

polation functions”.) In fact our central result around which most of the
discussion revolves is the formula

R
f e S = = B =@ =141, 1) +1),
where B(a, b) ‘denotes the Buler beta function. (In this simple case it
suffices to comsider the ecase z =1, since y(2) = (1)#" by a change of
variables.) Actually the most straightforward approach to (1) is via Sparr’s
formula [7]. We also show that L(?) has an analytic continuation to the
sector |arg?] < wmin(p —1, ¢ —1). It follows that the function w(z) ean
be continued to the same sector, too. Such a result is of interest also because
in the special case p = q = 2 we have essentially the Stieltjes transform. We
also congider, in particular, the generalization to several variables, that is

n
the infimum of the expression } t,27¢. Here some new rather unexpected
=0
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complications arise. For instance Sparr’s formula [7] does not seem to he
applicable any more.

‘We remark that the theory of interpolation spaces will not be touched
upon from now on; it just served as a general motivation.

The paper is organized as follows.

After a preparatory Sec. 1 in See. 2 we give several useful represen-
tations for the function L(¢). Then we turn (See. 3) to the probleni of eva-
Iuation of integrals. In Sec. 4 we consider the generalization, where the
functions #” and y? are replaced by more general functions F () and G(y).
Sec. 5 is concerned with the analyticity of L (t). Finally, Sec. 6 is devoted
to an extension to the case of several variables.

1. Simplest properties. Let us thus set for 0 < ¢ < o

) L(t) = inf (aP419),

T Y=1
2>0,¥>0 .

where we always assume that p,g>1. (If p <1, ¢<1 it is casy to
see —and well known —that L(¢) = min(1,t). We have not at all investi-
gated the cases p <1, ¢>1and p >1, ¢<1.) From (1) follows at once
that L is a concave function. From the concavity again follows (draw
o picture!) at once that we must have L(i) 3> L(1)min(, ¢). On the other
hand, taking @ or y in (1) close to 0 we see that L (1) < min(1, #). Thus we
have the inequality )
2) c;min(l, ¥) < L(f) < ¢,min (1, #)
with ¢; = L(1), 6, = 1. It is clear that ¢, = L(1) is the best constant (for
we have equality if ¢ = 1). Tt is also easy to see (Sec. 5) that ¢, = 1 is best
possible, too.

If p = ¢ one can show (the case of equality of Holder’s inequality
in two variables) that

1
L = T
and, in particular, if p = 2
14
L{t) = —.
M) = =

Returning to the general case we see thus that the inequality «”--1y?
= L(t), as well as its extension to several variables (see Sec. 6) may be
conceived as a generalization of Holder’s inequality.

Algo for some other values of p and ¢ (see Sce. 2) rather explicit
expressions for L(#) are available.

To get more symmetric formulas one can put also
1 L(s,t) = inf (sz®+139)

2+y=1
2>0,U>0

icm®
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with 0 < s < oo, too. Clearly L(s, t) is concave and, in addition, homo-
geneous of degree 1. The two L’s are related by the formula L(s, 2) = sL(t/s).

2. Some representation for L(¢). If the minimum in Seec. 1, (1) is
attained for some set of values z, ¥y then by differentiation of #?4-1(1 —x)?
with respect to 2 we see that we must have pa?™! = {g(1L—x)? or

pa®”! (_ pz*}
ql—az) gyt
It is easy to see that this equation has a unique solution « for each t and
that the solution really corresponds to a minimum.

Formally we could also have proceeded by Lagrange’s method. In
the symmetric formulation (see Sec. 1, (1)) this leads to the relations

spaP~t = 1,
tgy' ™ =2

1) t=

@

which of course reduce to (1) if s = 1. It turns out to be advantageous to
express everything in terms of the Lagrange parameter 1. If we eliminate 4
between the two equations (2) we get

1 \Me-D 2 \Me-1
3 —_— — =1.
o R
For A fixed we may conceive this as a kind of “generalized hyperbola” in

the s, t-plane. (If p = g = 2 it is a hyperbola.) Using (2) we further get
the formula

(4) L(s,1) =z(%w+%y)

where thus z and y are determined by (2), 4 by (3). (Notice that if p = ¢
then L(s,t) = A/p. Notice likewise that 42 is homogeneous of degree 1
in s and ¢ while # and ¥ are homogeneous of degree 0.) By elimination of =
and y we can write (4) also as

1 2 1/(p~1) 1/ A 1(g—1)
4 Iis, 1) = A= +—(—-) )
*) (& 1) (p(sz’) g \1g

which reiterates the fact that L is entirely determined by A.
Later on (Sec. 5) it will be advantageous to make a change of variables
writing w = 1/p, 2 = (p[ig)"9"V . Then (3) with s = 1 takes the form

(89 ustau® =1,

where we have further put a = 1/(p —1), b = 1/(q—1). In particular, if
(g~1)/(p—1) = 2 or a = 2b we have a quadratic equation for w’. In this
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case we thus find
» 1
W = ————
i ]/ 142
2 + 4

which gives

¢, _ ?
= » 1/g—1 '/"'_'—i)—x—/q—:x-q—x
= 1 =
b))
((g—L)f(p —1) = 2,8 =1).

By duality we can similarly find an explicit expression for 2 (and L) if
(p—-1)(g—-1) =2.

Another useful representation of L is obtained by noticing that
L being a coneave function is the Legendre transform of a convex curve in
the positive quadrant. Let the curve be given in Cartesian coordinates
a, B by the equation a = ¢(B), where ¢ thus is a decreasing positive
convex function. Then one has the defining relations

(6) L) =B +18, t= —¢'(B)-

Geometrically this means that a+18 = L(t) is the equation of the tangent
of the curve a = p(f) at the particular point (p(B), B) a8 pictured by the
figure below (Fig. 1).

X

atifiz(t)

Fig. 1

(6) means further that the expression ¢(f)--18 is minimized for the particu-
lar value of § such that ¢ = —¢'(8). Therefore we must have o? = ¢(f),
9% = B. In other words, ¢(8) = (1 —gY9)? and our curve has the equation
P gl — g, .

icm®
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If we differentiate relation (6) we get
L' ()t = ¢'(B)dp +atp+1ap = ¢ (B)ap+dsp —g' (B)dp = pat.
Therefore we end up with the important relation
(7 B =L
complementing relation (6).

3. Evaluation of some integrals. Let us begin by the simplest case,
viz. the integral.

- a ‘
I= ft””L(t)—t—, 0<n<1.
[
Integrating by parts and using See. 2, (7), we find
_r f L () d = —l-f yeds.
n L] n 0

(It is easy to convince oneself that the end-point terms vanish.) Integrating
by parts once more and using Sec. 2, (1), we obtain

0 1 )
1 1 PP\ :
I=———— | #"qy%ldy = f( ) =g
n{1—7n) _{ Y= a— qo w] Y
o f 2D (1 )@= gy,
7(1—n) § .

If we finally invoke the definition of Euler’s beta function we see that we
have proved the formula (1)

a at 1= g
f PRT ) e s
; t -

Alternatively, by the available functional equations for the beta function (?),

1) B((p—1)(L—n)+1, (¢—1)5+1).

. 1
* () Recall' that B(a, b) = [a%1(1— 2>~ dw.
[}

@) Viz. B(a+'1,b):=z—:_—b-3(a,'b), Bla,b+1) = »a—j_—b—B(a,b), which is

I'a)I'(b)

TaiD) where again f'(a)

an ecasy consequence of the formula B(a,d) =

(=]
= [ 2% le~%dw.

o
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we can write this as

f t—nL(t)wdi =
[

with P = p(L—7)-+q3-
We could here also have used Sparr’s formula ([7], Lemma 3.4, pp.
237 —238) to the effect that

1 1 -
L(t) = fmm (~—(—p—f—~

P (p—1)(¢—1)

PE_) B(p —1)(L—n), (g—1L)n)

1)

@ )q(l gyl

g(L—a)yt’
Formula (2) again is based on the observation that any coneave function L
can be obtained as the superposition of functions min (v, t). More precisely,
if I(t) = o[max (L, 3)) as t->0 or oo then we have

(3) = [ min(z, t)di(),

0

in fact with dl = —L"(f)dt. Tf we use (3) in conjunetion with Sec. 2, (1)
and (7), we readily get (2). Again (1) follows at once from (2) just inter-
changing the order of integration. We see thus that the two partial integra-

tion sin our first attack on (1) are hidden in formula (2).
We can now easily cxtend the previous result, viz. formula (1) to

the case of the general integral [ L(t)dk(t), where & is a given positive
0

measure on (0, oo) such that [ min (1, 1)dk(t) < oo. If we associate with &
the concave function 0

K@) = fm min (v, t) dk(t)

we see that at the heart of the matter is the formula

(4) j L(t)dk(t) f E@dl(x

This is a kind of duality for concave functions. In particular, if dk = 77— dt
we have K (1) = % 80 (4) gives back (1). In the general case we can
write the result

(5) f L{t)dk(t f K (q(1 —2)*, pa*~Y)du,
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where K(s,?) =sK(t/s), the function of two variables corresponding
to K(t).

We conclude this section by indicating a quite different approach.
It is the method that will be used later (Sec. 6) in the case of several variables.
The idea is to write our integral as

L(s, t) ds dt
) / 8—t( “ﬁ?)-
¢
Since the integrand in (6) is a closed (3) differential form, we have by Stokes’
theorem a great freedom in the choice of the “contour of integration” C.
Thus taking s =1, the integral (6) reduces to the one in formula (1).
The natural choice, however, is to take C to be the curve A = 1 (with the
proper orientation) which by Sec. 2, (3) is the generalized hyperbola
1 \Y@-1 1 \Ma-1

(—;5) + (E) = 1. (That the infinity does not give any contribu-
tion requires a proof but we omit the details.) By taking logarithmie
derivatives in Sec. 2, (2), we get

dt

ds dw

—Hp-D— =0, — (- 1)——
so that

ds dt dw dy

-——S—~+'t———( -*1)—50"‘(9'“1)'—‘ i 1=1

Using also Sec. 2, (4), and (2) once more, we arrive at the integral
dz dy
1-1 qf Z=n@=D v(q*l)(i_l_l)(( 12 -1 _)
P Yy > T \@ )1 p
which again can be expressed as the sum of four beta integrals. The result

(3) Indeed if (s, t) is any homogeneous of degree 0 function one has

ds dt ax ax ds dt)
d SN —+— ) = = ds+ = dt)| ——+ —
(Z(B )( 8+l)) (65 s+ ot )( x—l t
ay z’ix) ds dt
= =t =0,
(8 a8 k s t
where we have utilized Euler’s theorem. (Alternatively one can use polar coordinates
8 == gcoB O, = psin 6 which gives

2

ds dt . ao
afx(8>t)(—-7+7)=f %(cos 0,8in 0) ————.)

; cos fgsin 0
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therefore comes in the form (with § =1 —7)
—1 -1
2904”{—?—5—3((17—1)9+1,.(2~1)n+1) -F%*B((?—l)ﬂ-h?,
-1 —1 )
(@11 + L= Bl =16, (= 19+2) + = Blip—1)0+1,

(¢=1)n+1)}.
The two inner terms we here transform as

(p—1)6+1

B((p—1)0 —1)n 4
oy B0+, @10+

and .
(g—1)n+1
(p—-1)0
respectively. Hence we get the common beta factor B( (p—1)0+1,
(g—1)n+1) with the coefficient

p—1, (p-N0+1 (g=Dufl g1 1 1 1
» ] g0 q n 0 70
since 6+7 = 1, and we end up with the same result, viz. formula (1).
In a similar way we can treat the case of a general measure k. Assuine

B((p_1)0+17 (2—*1)77-6-1)7

that % is absolutely contmuous, dk = K (1)

at
—, one then has to consider
the line integral ¢ ‘

r L(S t) ds di
6 Bt SR A T
® K(s,?) ( $ + t ),
?vhere E(s,t) = sK(i/s). (The integrand in (6') is closed since L(s, t}
is homogeneous of degree 0.) We won’t enter into the details. K{(s, 1)

4. A more general case. We now quickly outline the extension of
the results of See. 1-3 —as far as this is possible ~to the more general
case where we have more general convex functions F(x) and G (y) in place
of o and y?. Thus in this section we put

(1) L(t) = inf
LY==l
0<z<lo<y<l
aa'zd use L(s,1) in a similar fashion (cf. Sec. 1, (1) and (1')). Wc do not

discuss the precise assumptions of. '.and & needed. o
Now the values of # and y at which the minimum is attained are deter-

(7 (=) —l~tG(y))
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mined by the formulas (cf. Sec. 2, (2))
sf(w) = 4,
if(y) =2,

where we have put f = F', g = G, Here 1 for given s and ¢ can be found by
the formula (cf. Sec. 2, (3)) :

(2)

(3) FHAs) +g7 Aty =1
We have thus (cf. Sec. 2, (4) and (4))
F@) . G(y)) . S e .
=1 th = Al8), ¥y = Aft).
@ B0 =a(7 4 T8 v o =,y = gm0

Finally L (t) is the Legendre transform of the curve in the positive a, f-quad-
rant with equation F(a)+@G(f) =1, the above minimizing values of 2
and y being determined by # = F(a), ¥y = G(f). Also to the Sparr formula
(Sec. 3, {2)) there corresponds the more general formula

(5) L) = f nun(%;((—y)7 t)g(y)dm

1
All our methods for evaluating the integral f 177L(1)— (Sec. 3) are

by .
now available. The quickest is perhaps after all the use of (5) and we get

- at 1 :
(6) of L) = gy of (fl@) (g1 —a))"de.

(It is readily checked that (6) gives back Sec. 2, (1) if F(z) = a”, G(y)
= 4%.) Tn the same way we can treat the case if a general measure k and we
find

(0 ‘ fL(t ) k(1) fK (1 —a), f(&)) dw

with K (s, t) as in Sec. 3, (8).
More interesting is the application of the line integral of Sec. 3, (6).
Using (2) and (4) we get the integral (with, as.in Sec. 3, § =1 —n)

J(F@ 6w\ (F@ @)
J ot () o=~ )

which we have to confront with the previous integral

= [(f@)°(g(¥))" dw.
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But the latter we can integrate by parts in two different ways: on one hand
we geb

J =[P gaw = —(0—1) [FfF7f g+ [Ty
=n([Bf2f g+ [EF g7
and on the other hand, by a similar calculation,
J = 0([6r g + [af'gig).

(We have omitted to indicate the variables and the range of integration.)
If we multiply the first expression by 6, the second by » and form the sum,
the previous result (6) follows.

In the same way we can derive (7) but again we abstain from entering
into the details of the calculation.

5. Analyticity. We return to the funetion L(t) of See. 1, (1). In view of
Bec. 2, (2) —(4) it is clear that L(t) is analytic in ¢. We wish to say something
more precise about the region of analyticity.

First we investigate, however, the behavior near t = 0 or + = co. It
is sufficient to consider the function w = A/p of the variable z = (p [tg)"/*—"
defined by Sec. 2, (3'). It is clear (by the implicit function theorem) that
there is locally a unique analytic solution which takes the value 1 at
? = 0. We wish to determine the coefficients of the Taylor development

(1) w =146zt cy2? -+ ...
By Cauchy’s formula we have

1 w
=g ) e (n=01,..),
where we integrate (in the positive sense) around a small circle with center
1—u®
w*

at the origin, Making a change of variables 7 =

dz = —aw o4
+(a—b)wP=*" we get

1 w
= WIW(—aW“““‘~|-(a—b)w°”““)dw

,wa

(=1 [ w
R f(wbﬁl)n“ (@+ (b —a)u’}dw.
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Setting again w® = o we get
(=" 1
o= 2mib ) @1yt

(aw(cm+l)/b—l + (b _ a)w(an+l)lb) dw.

If we here apply the residue theorem we find
PrOPOSITION 1. The Taylor coefficients in (1) are for n =1 given by

1) 1
@) e = wlb) ('m:l —1)('"":1 —2) ...('m;‘ ——('n—l))

(n factors)
or equivalently

F(an—[«l)
O e b .
( ) n T n'b F((u—bl)}'n"‘l‘l +1)

Again from (2’) and Stirling’s formula we see that the radius of con-
vergence of series (1) is
t b afb—1
1——

if a=b,

a

(3) R =l
1 f a=5b.

Remark (historical). According to Hardy [4], pp. 194 —195, the
formula (2) was found by Ramanujan using one of his general integral
formulas ([4], p. 185, formula (A)). Hardy says however: “I do not know
whether this formula is new, and I have not attempted to find conditions
under which the analysis is justified”. We have then filled in this small
gap (1) in our knowledge, at least in so far that we do have a proof of (2).
(Our proof is of course subsumed in the Lagrange —Biirmann formula.)
Note that if @ and b are integers then Sec. 2, (3') is an algebraic equation,
known as the frinomial equation. It has been much studied in the past.
Hardy ([2], p- 210) quotes Birkeland [1] referring also to additional ref-
erences stated there.

Returning to L(t) we see (use Sec. 2, (4')) that this function near
t = 0 hag an expansion which begins with

‘ _ i_ g)l/(ﬂ‘l) i .“)
“ Lo ~t(H (p q)(p 4

the dots of course representing higher order terms in z = gi/p. (Here the
first few terms could also have been recaptured using directly Sec. 2, (3)
or (3'). If ¢ is near 0 we must have 1 ~ fg in the first approximation; 8o
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setting 4 = tg(1-+¢) we get from See. 2, (3) (with ¢ = 1) the equation
( tg(1+e) )W-‘)
? qt 1(p~1)
which readily gives the second approximation 1 ~ tq( —(g— 1)( ) ) )

S (LeaD o

in accordance with (4).) In the same way we have near t = oo

Hg—1)
s =1+ (2 )2

(8)
£\ M@=
where now the dots indicate higher terms in ~q~ .

Incidentally using (4) and (5) we can now fill in the gap in Sec. 1
regarding the inequality .I(t) < min(1, t), because (4) and (5) imply
L)

lim—— =1"
-0

and © limL(?) =1,

too0
respectively.

To proceed further we introduce a uniforming parameter s defined
by w® = ¢° and we also put ¢ = b/a. Then the equation Sec. 2, (3') can be
“written as

2t =1
or, solving out for 2,

(6) 2 =e%(1—6")..

This is essentially a periodic equation; if we teplace s by s--2ni then 2
changes only by a phase factor. This means that we can fix attention to
the strip —n<Ims<w. Let us write in polar coordinates ¢ = r¢’. If
Ims = 4 then we have § = tmnc. We wish to determine for which ¢ in
the interval [ —mg, we] we can golve (6) for any given value of » in (0, cc)

de .
== 0 gives

locate the critical poihts. PR

To this end we firsy

—07% — (L —¢) g+ =0ore = —E—E—l— (ife % 1). Disregarding the trivial

case ¢ =1 we have thus to distinguish the two cases ¢ > 1 and ¢ < 1.
Case 1. ¢>1. Then we have one ‘¢ritical point only, situated on
the positive real axis. We look at the curves 6 = const. contained in tho
open strip —w<Ims< 7. If such a curve, starting far out to the left
(Res negative), where it is approximately a straight line paxallel to the
real axis, does not pass through the eritical point, it can either go to the
point 0 or far out to the right (Res positive), for r must be a decreasing
function along the curve. These two categories are by -continuity reasons

Properties of the L function 17

iom®
separated by the two curves 6 = 4-= through the critical point (see Fig. 2
below). We conclude that equation (6), where z — ré*®, has a umique
solution for amy r if |0} < m.

f= ¢

Fig. 2

Case 2. ¢ < 1. Now there are two critical points symmetrically situated
on the bordering lines Ims = +4=. By a similar argument as in Case 1 we
see that now any line 6 = const. in the open stnp —n < Ims << ® must
hit the point 0 (see Fig. 3).

Fig. 3

Altogether we have now established

PropPOSITION 2. If |arge] << wmin(l,c) equation (6) has a unique
solution s with Ims| < 7. m

For our function L () this means that it can be analytically continued
to the sector |arg?| < mmin(p—1, ¢ —1), a8 a simple calculations reveals.
(We congider of course such a sector as a Riemann surface, 8o that the same
point may cover several points of the complex plane.)

Notice that from this and Sec. 2, (3') —which is of course valid in
the complex, too —follows that we have the inequality |L(f)| < Cmin(1, [¢[)
in any sector 1argtl<7cmin(p l, ¢—1)—¢& (¢>0). This again implies

regarding the fumnction (¢ f L(zt)dk(t) k< positive measure - on
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(0, oo) with. fmin(l, 1)dk(t) < oo that the function in question is analytic
0
in |argt] < mmin(p—1, ¢ —1).

6. Several variables. As is customary in interpolation theory we let
the number of variables be »-1, denoting the later by %, ..., #, each of
the t, ranging in the interval (0, c0). As a generalization of L(s, ¢) (Seec. 1,
(1)) we now consider the function
(1) L(ty, .-y t,) = inf Mt

Say=1
0<g;<1
where the p, are given numbers > 1. Imposing the restriction ?, == 1 we
get the corresponding non-homogeneous version L%, ..., %) analogous
to L(t) (See. 1, (1)). (In this section the symbol 3 is used to denote
summation over the range 0, ..., n, 3" over the range 1, ..., n.) Again we
15 t,
have L(ty, oouyly ) = toL(—i. O
_ % to

As an obvious generalization of Sec. 2, (2), (3) and (4), we now have

(2) tip{m?rl =2 ("' = 071: "'7”)7
2 )ll(.’prl)
3 =1
18) _ Z(tip-i ‘ ’
Y %
(4) Lllgy vyt ) =AZ-E.

Also L(ty, ..., t,) can be realized as the Legendre transform of a convex
hypersurface with the equation in non-homogeneous parametric form
@y =@(ay, ..., a,) = (L— 3 a}f’i)P0 or in homogeneous form 3 a?i = 1.
Corresponding to Sec. 2, (6) and (7) we have the formulae

’ ’ op
(8) L(tyy eenyty) =(P(a1,""? an)+2 toy, 1l = "_“5“:'
(€ =1,...,m)
and
oL .

(6) o (6 =1,...,n).

As for regularity it follows readily from (2)—(4) that L(tg,...,1,)
can be continued analytically to eomplex values of ¥y, ..., 7, but we have

not even an idea of the size of the region of analyticity.

We can however say something on the behaviour of L(%,,
near 2 “boundary point”. For example, consider the case (%), ..., %,) close
to the point (0,1, ..., 1), where we assume that ¥ %0 (i =1, ..., n).
Then from (3) we see that in the first approximation we must have

ceey boY

icm
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A = 1,p,. Put therefore 1 = t,p,u. Then (3) takes the form

~ ! — ¢
o 37 (o (L
10,
From this equation and the implicit function theorem we see that u is an
analytic function in the 2n arguments /% and ¢, (¢ =1, ..., n). In parti-
cular we then have a development

Ly, ooy ty) = ty+ ZICit(ll+1/(pi—1)+ Zvcikt‘1)+1/(pi-1)+1/(pk—1)+'__‘=

where the coefficients ¢;, ¢y, ... thus are analytic functions of (%, ..., 1,)
near (13, ..., t). We have made no attempts to determine the coefficients.
(Perhaps the reference [1]would be of interest here.) The case of a boundary
point such as (0,0,%,...,%4) with # £ 0 (¢ =2,...,n) is much more
complicated since we as a first approximation have to use the L function
in two (homogeneous) variables.

Finally we consider the problem of evaluating integrals. The methods
of Sec. 3 based on the Legendre transform in one form or other does not
seem to generalize to higher dimensions. In particular, we know of no
workable analogue of Sparr’s formula Sec. 3, (2). (This formula expresses.
also the circumstance that the positive concave functions form a cone
and that the extremal functions of that cone are essentially the functions
min(7, ¥). In higher dimensions we still have a cone but we do not know
what are the exiremal functions.) But the approach based on the line infegral
of Sec. 3, (6) does generalize!

The higher dimensional analogue of that integral is

L(tyy eevy ty) ;
@ f zg: oo tln 2(_1)
H (3

where H is a suitable hypersurface in the positive (n 4+ 1)-tant, the 6, being
parameters subject to the conditions > 6, =1,6,>0 (1 =0,1,...,%).
(Integrals of this type are considered in Sparr [6] in the context of interpo-
lation of several spaces.) Since the integrand in (7) is a closed n-form, we can
choose H as we want. Thus taking ¢, = 1 we get the integral (analogous to
the one of Sec. 3, (1))

)ll(m—l)

dt,

t b4
kat  F

fL(tU“-:tn) diy _dzn_
Wt ot T,

(8)

n

But the mnatural choice is again the hypersurface 1 = 1. Using (2)-(4)
we then get the integral

[[#: ] ][ 12 I,%w]- Z( ~yr+E [ ] (pi~1)%-

i#k
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+which is again —apart from a commeon factor —the sum of (n--1) integrals

of the type
1 f " de;
JE —— @y (3 0, —_—
2;(Px—1) H Lk] &

We here readily recognize a beta function in n -1 argnments; at the ith
position there sits (p; —1)0;+ 8+ - Using the available functional
equations we can write this beta function as *
(p; —1) 0;(py—1) 01+ 852 (5 —1) B
(2 (p:—1) 6;+1) 3 (p;~1)6;

Thus collecting everything and writing P = 3 0;p; we got the end result

((Po=—1)Byy +vry (D —1)6y).

) fL(tu---’tn) aty, at,

Wt ot T,

_ eIei=1) 5

P(P——l) 170“‘1)007"'y (pn"l)ou'

We see that (9) reduces to Sec. 3, (1') if » = 1. By contrast there does not
seem to be any direct analogue of Sec. 3, (1). This again seems to reflect
+the circumstance that the approaches based on the Legendre transform do
not generalize, at least not that easily.

In the same way we can bundle the obvious generalizations of (7)
or (8), for instance the case when a¥% in definition (1) is replaced by a more
general convex function F(w;). But since we have not obtained any parti-
cularly nice end formula we refrain from entering into the details.
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