

A characterization of a two-weight norm inequality for maximal operators

by .

ERIC T. SAWYER (Hamilton)

Abstract. It is proved that if w(x) and v(x) are non-negative functions on \mathbb{R}^n and 1 , then

$$\left(\int [Mf(x)]^q w(x) dx\right)^{1/q} \leqslant C\left(\int |f(x)|^p v(x) dx\right)^{1/p}$$

for all f in $L^p(v)$ if and only if

$$\Big(\int\limits_{O} \big[M\left(\chi_{Q}v^{1-p'}\right)(x)\big]^{q}w\left(x\right)dx\Big)^{1/q} \leqslant C\Big(\int\limits_{Q} v\left(x\right)^{1-p'}dx\Big)^{1/p} < \infty$$

for all cubes Q, where M denotes the maximal operator

$$Mf(x) = \sup_{x \in Q \text{ cube}} |Q|^{-1} \int_{Q} |f(x)| dx.$$

More generally, it is shown that the analogue of this result holds with M replaced by the weighted fractional maximal operator

$$M_{\mu,a}f(x) = \sup_{x \in Q} |Q|_{\mu}^{\alpha/n-1} \int_{Q} |f| d\mu$$

provided $0 \leqslant a < n$ and μ is a positive Borel measure on \mathbb{R}^n satisfying a doubling condition.

§ 1. Introduction. Throughout this paper, Q will denote a cube in \mathbb{R}^n with sides parallel to the co-ordinate planes. For r>0, rQ will denote the cube with centre that of Q and diameter r times that of Q. If μ is a positive Borel measure on \mathbb{R}^n , we set $|Q|_{\mu} = \int\limits_{Q} d\mu$. We use $L^p(\mu)$ to denote the usual Lebesgue space on $(\mathbb{R}^n, d\mu)$ and we denote by M the maximal operator

$$Mf(x) = \sup_{x \in Q} |Q|^{-1} \int_{Q} |f(x)| dx$$
 for suitable f .

Finally, the letter O will be used to denote a positive constant not necessarily the same at each occurrence.

In [4] B. Muckenhoupt showed that for 1 and <math>w, v nonnegative functions on \mathbb{R}^n , the weak-type inequality

$$(1.1) \qquad \int\limits_{\{Mf>\lambda\}} w(x) dx \leqslant C \lambda^{-p} \int |f(x)|^p v(x) dx$$

holds for all f in $L^p(v)$ if and only if

$$\left(|Q|^{-1} \int\limits_{Q} w\left(x\right) dx \right) \left(|Q|^{-1} \int\limits_{Q} v\left(x\right)^{1-p'} dx \right)^{p-1} \leqslant C$$

for all cubes Q. In addition it was shown that if w = v, then (1.2) in fact implies the strong-type inequality

(1.3)
$$\int [\mathbf{M}f(x)]^p w(x) dx \leqslant C \int |f(x)|^p v(x) dx$$

for all f in $L^p(v)$. However (1.2) is not in general sufficient for (1.3) ([4]; p. 218).

In [6] B. Muckenhoupt and R. L. Wheeden showed that (1.3) implies

$$(1.4) \qquad \left(|Q|^{-1} \int [M\chi_{Q}(x)]^{p} w(x) dx\right) \left(|Q|^{-1} \int_{Q} v(x)^{1-p'} dx\right)^{p-1} \leqslant C$$

for all cubes Q, that in the presence of various additional assumptions on f or w and v, (1.4) implies (1.3) and conjectured that (1.4) is sufficient for (1.3) in general. In § 4 below an example is given to show that this conjecture is false.

One of the main results of this paper is that for 1 , (1.3) is equivalent to the following condition on <math>w and v.

(1.5)
$$\int\limits_{Q} \left[M(\chi_{Q} v^{1-p'})(x) \right]^{p} w(x) \, dx \leqslant C \int\limits_{Q} v(x)^{1-p'} \, dx < \infty$$

for all cubes Q. This is a special case of the result mentioned in the abstract which in turn is a special case of Theorem B in § 3 below.

In the next section we characterize the two-weight norm inequality for certain dyadic maximal operators and then use this in § 3 to obtain results on the usual non-dyadic maximal operators. The final section contains an example of weights w and v on R that satisfy (1.4) with p=2 but not (1.3) with p=2.

§ 2. Weighted norm inequalities for dyadic maximal operators. Let $R_+^n = [0, \infty)^n$ and $Z_+^n = \{0, 1, 2, \ldots\}^n$. Throughout this section, Q will denote a set contained in R_+^n of the form $\prod_{i=1}^n [x_i, x_i + 2^k), x \in 2^k Z_+^n$ for some k in Z. Such sets will be referred to as dyadic cubes. If μ is a positive Borel measure on R_+^n and $0 \le \alpha < n$, we define the dyadic weighted frac-

tional maximal operator $M_{\mu,a}$ by

$$M_{\mu,a}f(x) = \sup_{oldsymbol{x} \in Q ext{ dyadic cube} \atop |Q|_{\mu} > 0} |Q|_{\mu}^{a/n-1} \int\limits_{Q} |f| \, d\mu.$$

THEOREM A. Suppose $0 \le a < n, 1 < p \le q \le \infty, p < \infty$. Let μ, ν , and ω be positive Borel measures on R_+^n with μ locally finite. Then

for all f in $L^p(v)$ if and only if $\mu \ll v$ and

$$(2.2) \qquad \left\| \chi_{Q} M_{\mu,a} \left(\chi_{Q} \frac{d\mu^{p'-1}}{d\nu} \right) \right\|_{L^{q}(\omega)} \leqslant C \left\| \chi_{Q} \frac{d\mu^{p'-1}}{d\nu} \right\|_{L^{p}(\nu)} < \infty$$

for all dyadic cubes $Q \subset \mathbb{R}^n_{\perp}$.

Proof. Assume that (2.1) holds. Suppose, in order to derive a contradiction, that $E\subset R_+^n$ is a bounded Borel set satisfying $|E|_\mu>0=|E|$, and set $f=\chi_E$ in (2.1). Now $M_{\mu,\alpha}f>0$ on R_+^n and thus the left side of (2.1) is positive while the right side is zero. This contradiction shows that $\mu\leqslant\nu$. Suppose now, in order to derive a contradiction, that

$$\int\limits_{Q} \frac{d\mu}{d\nu}^{\nu'-1} d\mu = \int\limits_{Q} \frac{d\mu}{d\nu}^{\nu'} d\nu = \infty.$$

Then there is f in $L^p(\nu)$ such that

$$\int\limits_{\Omega} f \frac{d\mu}{d\nu} d\nu = \infty.$$

Thus $M_{\mu,a}f\equiv\infty$ and the left side of (2.1) is infinite while the right side is finite. This contradiction shows that

$$\int\limits_{\Omega}\frac{d\mu}{d\nu}^{p'-1}d\mu<\infty$$

for all dyadic cubes Q. Finally, if we let

$$f = \chi_Q \frac{d\mu}{d\nu}^{p'-1}$$

in (2.1) we obtain (2.2).

Conversely assume that $\mu \ll \nu$ and that (2.2) holds. We first establish (2.1) with $M_{\mu,a}$ replaced by the smaller operator $M_{\mu,a}^R R > 0$, where

$$M^R_{\mu,a}f(x) = \sup_{\substack{x \in Q \text{ dyadic cube} \\ |Q|_{\mu} > 0, \text{ diam } Q \leqslant R}} |Q|_{\mu}^{a/n-1} \int\limits_{Q} |f| \, d\mu.$$

We shall need the following elementary covering lemma.

DEFINITION. Let Ω be a collection of sets. A set Q in Ω is maximal (relative to Ω) if $Q \subset Q'$, $Q' \in \Omega$ implies Q = Q'.

LEMMA 1. Let Ω be a collection of dyadic cubes satisfying $\sup_{Q\in\Omega} \operatorname{diam} Q < \infty$.

Then every cube in Ω is contained in some maximal cube and the maximal cubes are mutually disjoint.

We now return to the proof of Theorem A. Let f be in $L^p(v)$ and for each k in Z, let $\{Q_j^k\}_{j\in J_k}$ be an enumeration of the cubes maximal relative to the collection

$$\label{eq:quadic} \left\{ Q \ \text{dyadic}; \ |Q|_{\mu} > 0 \,, \ \text{diam} \, Q \leqslant R \,, \, |Q|_{\mu}^{a/n-1} \int\limits_{Q} |f| \, d\mu > 2^k \right\}.$$

From Lemma 1 we obtain

$$\{M^{R}_{\mu,a} \, f > 2^{k}\} = \bigcup_{j \in J_{k}} \, Q^{k}_{j} \quad \text{ for } \quad k \, \text{ in } \, Z,$$

$$(2.4) Q_i^k \cap Q_i^k = \emptyset \text{for} i \neq j, k \text{ in } Z,$$

$$(2.5) \qquad |Q_{j}^{k}|_{\mu}^{a/n-1} \int\limits_{Q_{j}^{k}} |f| \, d\mu > 2^{k} \quad \text{ for } \quad j \in J_{k}, \, k \text{ in } Z.$$

From (2.5) and Hölder's inequality we have

$$(2.6) |Q_{j}^{k}|_{\mu}^{1-a/n} \leqslant 2^{-k} \int_{Q_{j}^{k}} |f| \frac{d\mu}{d\nu} d\nu$$

$$\leqslant 2^{-k} \left(\int_{Q_{j}^{k}} |f|^{p} d\nu \right)^{1/p} \left(\int_{Q_{j}^{k}} \frac{d\mu}{d\nu} d\nu \right)^{1/p'}$$

$$= 2^{-k} |Q_{j}^{k}|_{\sigma}^{1/p'} \left(\int_{Q_{j}^{k}} |f|^{p} d\nu \right)^{1/p},$$

where we have set

$$d\sigma = \frac{d\mu^{x'}}{d\nu} d\nu = \frac{d\mu^{x'-1}}{d\nu} d\mu.$$

Note that $|Q_j^k|_{\sigma}$ is finite by (2.2) and positive since $|Q_j^k|_{\mu} > 0$. We now dispose of the case 1 . Since

$$(2.7) M_{\mu,\alpha}\left(\chi_{Q_j^k}\frac{d\mu^{p'-1}}{d\nu}\right) \geqslant |Q_j^k|_{\mu}^{\alpha/n-1}|Q_j^k|_{\sigma} \quad \text{on} \quad Q_j^k,$$

we obtain from (2.2) with $q = \infty$ that $|Q_j^k|_{\mu}^{a/n-1}|Q_j^k|_{\sigma} \leqslant C|Q_j^k|_{\sigma}^{1/p}$ whenever

 $|Q_i^k|_{\omega}
eq 0$. Using (2.6) we have

$$|Q_j^k|_{\sigma}^{1/p'} \leqslant C\,|Q_j^k|_{\mu}^{1-a/n} \leqslant C 2^{-k}\,|Q_j^k|_{\sigma}^{1/p'} \left(\int\limits_{Q_j^k} |f|^p\,d\nu\right)^{\!1/p}.$$

Since $|Q_j^k|_{\sigma}$ is positive and finite, we obtain that $2^k \leqslant C ||f||_{L^p(r)}$ whenever $|Q_j^k|_{\omega} \neq 0$ and in view of (2.3) this yields (2.1) for $q = \infty$.

We now suppose $q < \infty$. From (2.2) and (2.7) we obtain

(2.8)
$$|Q_j^k|_{\omega} \le |Q_j^k|_{\mu}^{q-qa/n}|Q_j^k|_{\sigma}^{q/p-q} \le 2^{-kq} \left(\int\limits_{Q_i^k} |f|^p d\nu\right)^{q/p}$$
 by (2.6)

and using (2.3) we have

$$|\{M_{\mu,a}^R f > 2^k\}|_{\omega} = \sum_{j \in J_k} |Q_j^k|_{\omega} \leqslant (2^{-k} ||f||_{L^{p(\nu)}})^q$$

by (2.8) since $p\leqslant q$. In particular $|\{M_{\mu,a}^Rf=\infty\}|_\omega=0$ and if $Q_j^k=Q_j^k\backslash\{M_{\mu,a}^Rf>2^{k+1}\}$, then

$$\begin{split} (2.9) \quad & \int \big[M_{\mu,a}^R f \big]^q d\omega \leqslant 2^q \sum_{k \in \mathbb{Z}} 2^{kq} \big| \big\{ 2^k < M_{\mu,a}^R f \leqslant 2^{k+1} \big\} \big|_{\omega} \\ & \leqslant 2^q \sum_{k,j \in J_k} | \mathring{Q}_j^k |_{\omega} \Big[|Q_j^k|_{\mu}^{a/n-1} \int\limits_{Q_j^k} |f| \, d\mu \Big]^q \quad \text{by} \quad (2.3) \text{ and } (2.5) \\ & = 2^q \sum_{k,j \in J_k} | \mathring{Q}_j^k |_{\omega} \Big[|Q_j^k|_{\mu}^{a/n-1} \int\limits_{Q_j^k} \frac{d\mu^{\nu'-1}}{d\nu} \, d\mu \Big]^q \Big[|Q_j^k|_{\sigma}^{-1} \int\limits_{Q_j^k} |f| \, \frac{d\mu^{1-\nu'}}{d\nu} \, d\sigma \Big]^q \\ & = 2^q \sum_{k,j \in J_k} \gamma_j^k \Big[|Q_j^k|_{\sigma}^{-1} \int\limits_{Q_j^k} |f| \, \frac{d\mu^{1-\nu'}}{d\nu} \, d\sigma \Big]^q, \end{split}$$

where the non-negative numbers γ_i^k satisfy

Now let $\Omega = \{(k,j); \ k \in \mathbb{Z}, j \in J_k\}$ and let γ be the measure on Ω that assigns mass γ_j^k to (k,j). Define

$$T: (L^1 + L^{\infty})(R^n, d\sigma) \rightarrow L^{\infty}(\Omega, d\gamma)$$

by

$$Tg = \left\{|Q_j^k|_\sigma^{-1}\int\limits_{Q_i^k}|g|\,d\sigma\right\}_{(k,j)\in\varOmega}, \qquad g\in (L^1+L^\infty)(\sigma)\,.$$

Clearly T is sublinear and of strong-type (∞, ∞) . We claim that T is of weak-type (1, q/p). Let $\lambda > 0$. If $\{I_i\}_i$ denotes the cubes maximal relative to the collection

$$\left\{Q_j^k; |Q_j^k|_{\sigma}^{-1} \int_{Q_j^k} |g| d\sigma > \lambda\right\}$$

then using Lemma 1 we have

$$\begin{split} |\{Tg>\lambda\}|_{\gamma} &= \sum \left\{\gamma_{j}^{k}; \ |Q_{j}^{k}|_{\sigma}^{-1} \int\limits_{Q_{j}^{k}} |g| \, d\sigma > \lambda\right\} = \sum_{i} \sum_{Q_{j}^{k} \subset I_{i}} \gamma_{j}^{k} \\ &\leqslant \sum_{i} \sum_{Q_{i}^{k} \subset I_{i}} \int\limits_{Q_{i}^{k}}^{\epsilon} \left[M_{\mu,a} \left(\chi_{I_{i}} \frac{d\mu}{d\nu}^{p'-1}\right) \right]^{q} \, d\omega \end{split}$$

by (2.10) and the fact that $Q_i^k \subset I_i$

$$\leq \sum_{i} \int_{I_{i}} \left[M_{\mu,a} \left(\chi_{I_{i}} \frac{d\mu^{p'-1}}{d\nu} \right) \right]^{q} d\omega \quad \text{by (2.4)}$$

$$\leq C \sum_{i} |I_{i}|_{\sigma}^{q/p} \quad \text{by (2.2)}$$

$$\leq C \left(\sum_{i} |I_{i}|_{\sigma} \right)^{q/p} \quad \text{since } p \leq q$$

$$\leq C \left(\sum_{i} \frac{1}{\lambda} \int |g| d\sigma \right)^{q/p} \leq C \left(\frac{1}{\lambda} \int |g| d\sigma \right)^{q/p}$$

since the I_i are in the collection (2.11) and are mutually disjoint by Lemma 1. This establishes that T is of weak-type (1, q/p).

The Marcinkiewicz interpolation theorem now implies that T is of strong-type (p,q) and thus using (2.9) we have

$$\begin{split} \int [M_{\mu,a}^R f]^q d\omega &\leqslant 2^q \left\| T \left(f \frac{d\mu}{d\nu}^{1-p'} \right) \right\|_{L^q(\nu)}^q \\ &\leqslant C_{p,a} \left\| f \frac{d\mu}{d\nu}^{1-p'} \right\|_{L^p(\omega)}^q \leqslant C_{p,a} \|f\|_{L^p(\nu)}^q \end{split}$$

since

$$d\sigma = \frac{d\mu^{p'}}{d\nu}d\nu$$
 and $p(1-p')+p'=0$.

Remark 1. If the measure σ in the above argument had satisfied the doubling condition $|2Q|_{\sigma} \leqslant C |Q|_{\sigma}$ for all cubes, we could have appealed to Hormander's version of Carleson's theorem ([3]; Theorems 2.3 and 2.4–see also P.L. Duren's extension to p < q in [2]) to deduce (2.1) directly from (2.9) and the fact that the γ_j^k satisfy the following "Carleson measure" condition

$$\sum_{Q_s^k \subset 4Q_s^t} \gamma_j^k \leqslant C |Q_s^t|_\sigma^{q/p}, \quad t \in Z, \, s \in J_t$$

which itself is an immediate consequence of (2.2) if σ satisfies a doubling condition. The argument used above to obtain (2.1) from (2.9) is an adaptation of the techniques used in [3] and [2].

§ 3. Weighted norm inequalities for maximal operators. Throughout this section Q will denote a set contained in R^n of the form $\prod_{i=1}^n [x_i, x_i + h]$ for some x in R^n , h > 0. Such sets will be called cubes. Suppose μ is a positive Borel measure on R^n satisfying the following doubling condition.

(D)
$$|2Q|_{\mu} \leq C|Q|_{\mu}$$
 for all cubes Q .

Remark 2. If μ is a positive Borel measure satisfying (D), then $0<|Q|_{\mu}<\infty$ and $|\partial Q|_{\mu}=0$ for all cubes Q where ∂Q denotes the boundary of Q.

Then if $0 \le \alpha < n$, we define the weighted fractional maximal operator $M_{\mu,a}$ (not to be confused with the "dyadic" $M_{\mu,a}$ defined in § 2) by

$$M_{\mu,a}f(x) = \sup_{x \in Q} |Q|_{\mu}^{a/n-1} \int_{Q} |f| d\mu$$
.

THEOREM B. Suppose $0 \le a < n, 1 < p \le q \le \infty, p < \infty$. Let μ, ν , and ω be positive Borel measures on \mathbb{R}^n and assume that μ satisfies the doubling condition (D). Then

$$||M_{\mu,\alpha}f||_{L^{q}(\omega)} \leqslant C ||f||_{L^{p}(\nu)}$$

for all f in $L^p(v)$ if and only if $\mu \ll v$ and

(3.2)
$$\left\| \chi_{Q} M_{\mu,a} \left(\chi_{Q} \frac{d\mu^{p'-1}}{d\nu} \right) \right\|_{L^{q}(\omega)} \leqslant C \left\| \chi_{Q} \frac{d\mu^{p'-1}}{d\nu} \right\|_{L^{p}(\nu)} < \infty$$

for all cubes $Q \subset \mathbb{R}^n$.

Proof. The proof that (3.1) implies both $\mu \leqslant \nu$ and (3.2) is virtually identical to the proof given in Theorem A that (2.1) implies $\mu \leqslant \nu$ and (2.2). We do not repeat the details.

Conversely assume that $\mu \ll \nu$ and (3.2) holds. We use an argument of C. Fefferman and E. M. Stein ([9], p. 112). We say that a cube contained in \mathbb{R}^n is a closed dyadic cube if it is of the form $\prod_{i=1}^n [x_i, x_i + 2^k]$, $x \in 2^k \mathbb{Z}^n$ for some k in \mathbb{Z} . For t in \mathbb{R}^n define $t^l M_{u,a}$ by

$${}^tM_{\mu,a}f(x) = \sup_{\substack{x \in Q \ Q-t ext{ closed dyadic cube}}} |Q|_{\mu}^{a/n-1} \int\limits_{Q} |f| \, d\mu \, .$$

Remark 2 shows that (3.2) implies (2.2) and it now follows easily from Theorem A (applied to translations and reflections of the cone R_{+}^{n}) that

$$||^t M_{\mu,\alpha} f||_{L^{q}(\omega)} \le C ||f||_{L^{p}(\nu)}$$

for all f in $L^p(\nu)$ with a constant C independent of t in \mathbb{R}^n . For $\mathbb{R}>0$, set

$$M_{\mu,a}^R f(x) = \sup_{x \in Q, \, l(Q) \leqslant R} |Q|_{\mu}^{a/n-1} \int_Q |f| \, d\mu,$$

where l(Q) denotes the side length of the cube Q. The proof of Theorem B can be completed by the monotone convergence theorem if we can show that (3.1) holds with $M_{\mu,a}$ replaced by $M_{\mu,a}^R$ and with a constant C independent of R. That this is so is an immediate consequence of the following lemma.

LEMMA 2. If μ satisfies (D) and $0 \leqslant \alpha < n$, then there is a constant $C < \infty$ such that

$$M_{\mu,a}^{2^k}f(x) \leqslant C \int_{t-2k+2}^{t} M_{\mu,a}f(x) \frac{dt}{2^{n(k+3)}}$$

for all x in \mathbb{R}^n , k in Z, and locally μ -integrable f.

Proof of Lemma 2. Fix x in \mathbb{R}^n and k in \mathbb{Z} . Suppose I is a cube satisfying $x \in I$,

$$|I|_{\mu}^{a/n-1} \int\limits_{T} |f| \, d\mu > rac{1}{2} \, M_{\mu,a}^{2^k} f(x)$$

where $2^{j-1} < l(I) \le 2^j, j$ in $Z, j \le k$. Let Ω consist of the t in $[-2^{k+2}, 2^{k+2}]^n$ such that there is $Q_t \supset I$ with $Q_t - t$ a closed dyadic cube and $l(Q_t) = 2^{j+1}$.

For t in Ω , $Q_t \subset 7I$ and so $|Q_t|_{\mu} \leqslant C|I|_{\mu}$ by (D). Thus

$${}^t M_{\mu,a} f(x) \geqslant |Q_l|_{\mu}^{a/n-1} \int\limits_{Q_t} |f| \, d\mu \geqslant C^{a/n-1} |I|_{\mu}^{a/n-1} \int\limits_{I} |f| \, d\mu > \frac{C^{a/n-1}}{2} \, M_{\mu,a}^{2k} f(x) \, .$$

 $\int\limits_{[-2k+2,\,2k+2\,1^n}{}^t M_{\mu,a}f(x)\,\frac{dt}{2^{n(k+3)}}\geqslant \frac{C^{a/n-1}}{2^{2n+1}}\,M_{\mu,a}^{2k}f(x)\,.$

This completes the proof of Lemma 2 and hence also the proof of Theorem B.

Remark 3. Condition (3.1) has been studied in connection with the following weakened form of (3.2).

(3.3)
$$\left[|Q|_{\mu}^{-\beta} \int_{Q} d\omega \right]^{1/q} \left[|Q|_{\mu}^{-1} \int_{Q} \frac{d\mu}{d\nu}^{\nu'-1} d\mu \right]^{1/p'} \leqslant C$$

for all cubes Q, $\beta/q = 1/p - \alpha/n$. Here one assumes $0 < \beta \le 1$, $0 \le \alpha < n$, and 1 . Clearly, (3.1) implies (3.3). In [7] the author has shown that if

$$d\mu$$
 and $d\sigma = \frac{d\mu}{d\nu}^{p'-1} d\mu$

are comparable measures in the sense of R.R. Coifman and C. Fefferman ([1]; p. 248) then (3.3) implies (3.1). In another direction, B. Muckenhoupt and R. L. Wheeden showed ([5]—see also Welland [8]) that if μ is Lebesgue measure on R^n , $d\omega = w d\mu$, $dv = w^{p/q} d\mu$ and 1/q = 1/p - a/n, then (3.3) again implies (3.1). Of course (3.3) is not in general sufficient for (3.1) ([4]; p. 218).

§ 4. A counterexample. Recall the following example due to B. Muckenhoupt ([4]; p. 218) of a pair of weights (w, v) satisfying (1.2) but not (1.3). Let

$$f(x) = x^{-1} |\log x|^{-2} \chi_{(0,\frac{1}{2})}(x)$$
.

Then $Mf(x) \approx x^{-1} |\log x|^{-1}$ for x in $(0, \frac{1}{2})$ and if $w = (Mf)^{-1} \chi_{(0,\frac{1}{2})}$ and $v = f^{-1}$, then the pair (w, v) satisfies (1.2) with p = 2 while $\int (Mf)^2 w = \infty$ and $\int f^2 v < \infty$. Note however that (w, v) fails to satisfy (1.4).

Our example of a pair (w, v) satisfying (1.4) but not (1.3) is essentially obtained by rearranging the above function f and setting $w = (Mf)^{-1}$ and $v = f^{-1}$. We now give the details. Let

$$I_1^0 = [0,1],$$

$$I_1^1 = [0,\frac{1}{4}], I_2^1 = [\frac{3}{4},1],$$

$$I_1^2 = [0,\frac{1}{16}], \quad I_2^2 = [\frac{3}{16},\frac{1}{4}], \quad I_3^2 = [\frac{3}{4},\frac{13}{16}], \quad I_4^2 = [\frac{15}{16},1],$$

$$I_1^3 = [0,\frac{1}{64}], \text{ etc.}$$

Set

$$f = \chi_{I_1^0} + \sum_{k=1}^{\infty} \frac{2^k}{k^2} \sum_{i} \chi_{I_i^k}.$$

Then for $k \geqslant 1$

(4.1)
$$\int_{I_{i}^{k}} f = \left(\sum_{j \leq k} \frac{2^{j}}{j^{2}} \right) |I_{i}^{k}| + \sum_{j > k} \frac{2^{j}}{j^{2}} \sum_{I_{s}^{j} \in I_{i}^{k}} |I_{s}^{j}|$$

$$= \left(\sum_{j \leq k} \frac{2^{j}}{j^{2}} \right) |I_{i}^{k}| + \sum_{j > k} \frac{2^{j}}{j^{2}} 2^{j-k} 4^{-j}$$

$$\approx \frac{2^{-k}}{k} = |I_{i}^{k}| \frac{2^{k}}{k}.$$

From (4.1) we easily obtain that

$$Mf \geqslant M\chi_{I_1^0} + \sum_{k=1}^{\infty} \frac{2^k}{k} \sum_i \chi_{I_i^k}$$

and setting $w = (Mf)^{-1}\chi_{r_0}$ and $v = f^{-1}$ we have

(4.3)
$$\int (Mf)^2 w = \int_0^1 Mf \geqslant 1 + \sum_{k=1}^\infty \frac{2^k}{k} 2^k 4^{-k} = \infty,$$
$$\int f^2 v = \int_0^1 f = 1 + \sum_{k=1}^\infty \frac{2^k}{k^2} 2^k 4^{-k} < \infty.$$

Finally we claim that (w, v) satisfies (1.4) with p = 2. We give details in the case $Q = I_1^k = [0, 4^{-k}], k \ge 1$, and leave the general case to the interested reader. We first note that (4.2) implies

(4.4)
$$\int_{I_i^k} w(x) dx \leqslant k 2^{-k} |I_i^k| = k 8^{-k}$$

for $k \ge 1$ and thus

(4.5)
$$\int (M\chi_{I_1^k}(x))^2 w(x) dx \le \int_{I_1^k} w(x) dx +$$

$$+ \sum_{j=1}^{k-1} (4^{j-k+1})^2 \int_{I_1^j} w(x) dx + \left(\int_{I_1^0} w(x) dx \right) (4^{-k})^2$$

$$\lesssim \sum_{j=1}^{k} (4^{j-k+1})^2 j 8^{-j} + 16^{-k}$$
 by (4.4) $\approx k 8^{-k}$.

From (4.1) we obtain $\int\limits_{I_{i}^{k}}v(x)^{-1}dx=\int\limits_{I_{i}^{k}}f\approx 2^{-k}/k$ and multiplying this

by inequality (4.5) we obtain

(4.6)
$$\left(\int (M\chi_{I_1^k})^2 w \right) \left(\int v^{-1} \right) \leqslant 16^{-k} = |I_1^k|^2.$$

Inequality (4.6) shows that (1.4) holds with p=2 for cubes $Q=I_1^k, k \geqslant 1$ and the verification of (1.4) for general cubes Q follows a similar line of reasoning. Inequality (4.3) on the other hand shows that (1.3) fails with p = 2 for the pair (w, v).

References

- 11 R. R. Coifman and C. Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51 (1974), 241-250.
- [2] P. L. Duren, Extension of a theorem of Carleson, Bull. Amer. Math. Soc. 75 (1969), 143-146.
- [3] L. Hormander, Lp estimates for (pluri-) subharmonic functions, Math. Scand. 20 (1967), 65-78.
- §47 B. Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207-227.
- §5] B. Muckenhoupt and R. L. Wheeden, Weighted norm inequalities for fractional integrals, Trans. Amer. Math. Soc. 192 (1974), 261-275.
- 161 ,- Two weight function norm inequalities for the Hardy-Littlewood maximal function and the Hilbert transform, Studia Math. 60 (1976), 279-294.
- [7] E. Sawyer, Weighted norm inequalities for fractional maximal operators, Proc. C.M.S. 1 (1981), 283-309.
- [8] G. V. Welland, Weighted norm inequalities for fractional integrals, Proc. Amer. Math. Soc. 51 (1975), 143-148.
- 19] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115,