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A characterization of a two-weight norm
inequality for maximal operators

by -

ERIC T. SAWYER (Hamilton)

Abstract. It is proved that if w(z) and » (%) are non-negative functions on E®
and 1< p< s o0, p< oo, then

([ 1247 (@)1 (@) do)' 12 < O( [ 1/ (@)}20 () du) >
for all fin L#(v) if and only it

([ LM (rgo=2") ()Jw (2) do ) 10< O f v (2)'~?'dz P < oo
Q Q

for all citbes @, where M denotes the maximal operator

Mfw) = sup |97 [|f(z)]dw.
2eQ cube Q

More generally, it is shown that the analogue of this result holds with M replaced
by the weighted fractional maximal operator

M, .f@) = sup Q171 [|f]dpu
e Q

provided 0< a < n and x is a positive Borel measure on E" satisfying a doubling
condition.

§ 1. Introduction. Throughout this paper, @ will denote a cube in E”
with sides parallel to the co-ordinate plames. For » > 0,7@ will denote
the cube with centre that of @ and diameter r times that of Q. If u is a posi-
tive Borel measure on B, weset [@], = [ du. Weo use I”(u) to denote the

usual Lebesgue space on (K", di) and we denote by M the maximal oper-
ator

Mf(@) = sup |@I™" [|f(»)lds Ifor suitable f.
zeQ Q

Finally, the letter € will be used to denOLM-PDS' a-posgitive constant not necess-
arily the same at each occurrence. s
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In [4] B. Muckenhoupt showed that for 1 < p < oo and w, vnon-
negative functions on RB”, the weak-type inequality

(1.1) w(w)de < 0477 [ |f(@)Po(@)do

{Mf>2}
holds for all £ in L?(v) if and only if

(1017 [w(@)da) (@1 [o(@)
@ Q

for all cubes €. In addition it was shown that if w = o, then (1.2) in fact
implies the strong-type inequality

(1.3) [ [Mf (@) w(2) do

(1.2) -f"dw)”“‘ <0

Gflf )| (x) do

for all f in I?(v). However (1.2) is not in general sufficient for (1.3) ([4];
p- 218).

In [6] B. Muckenhoupt and R. L. Wheeden showed that (1.3) nnpheg

W (0 [ (Mre @ Pul)d) (1017 [o@) ) < ¢
Q

for all cubes @, that in the presence of various additional agsumptions on f
or w and v, (1.4) implies (1.3) and conjectured that (1.4) is sufficient for
(1.3) in general. In § 4 below an example is given to show that this conjec-
ture is false.

One of the main results of this paper is that for 1 < p < oo, (1 3) is
equivalent to the following condition on w and v.

(L.3) [ B (29™) @) Pw(0)d < 0 [ o
Q Q

)P dp < oo

for all cubes @. This is & special case of the result mentioned in the abstract
which in turn is a special case of Theorem B in § 3 below.

In the next section we characterize the two-weight norm inequality for
certain dyadic maximal operators and then use this in § 3 to obtain results
on the usual non-dyadic maximal operators. The final section containg an
example of weights w and v on R that satisty (1.4) with p = 2 but not
(1.3) with p = 2.

§ 2. Weighted nmorm inequalities for dyadic maximal operators.
Let B} = [0, oo)® and Z% = {0,1,2,...}" Throughout this section, @
will denote a seb contained in R of the form H [, 3+ 2%), w2527 for

i=1

some k in Z. Such sets will be referred to as dyadic cubes. If u is a positive
Borel measure on RY and 0 < « < #, we define the dyadic weighted frac-
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tional maximal operator M, ., by

M, f@) = s Q" [ifidu.
2eQ dyadic cube Q
1Qly>0
THEOREM A, Suppose 0 < a<n,l <p<L g 0, p < co. Let u, v, and
o be positive Borel measures on R with u locally finite. Then
(2.1) M, o flzagy < Oliflizop)
for all f in IP(») if and o'n,ly if u <vand

au” |
XM, 0 (%Q'd—; )

|L'7(m)
for all dyadic cubes @ = K% .

Proof. Assume that (2.1) holds. Suppose, in order to derive a contra-
diction, that B < R" is a bounded Borel set satisfying |B|, > 0 = |E|, and
set f = yg in (2.1). N ow M, .f >0 on R} and thus the left side of (2.1) is
positive while the right side is zero. This contradiction shows that g < ».
Suppose now, in order to derive a contradiction, that

d,u”'_l

(2.2). % g

<0

LP(y)

p 1

Q— *f—dv—oo

Then there is f in L?(») such that
6{ I %ﬁ:- dy = oo.

Thus M, ,f = oo and the left side of (2.1) ig infinite while the right side
is finite. This contradiction shows that

for all dyadic cubes @. Finally, if we let

du®
= Zr.;*d-v*

n (2.1) we obtain (2.2). ‘
Conversely assume that u < v and that (2.2) holds. We first establish
(2.1) with M, , replaced by the smaller operator ME,, R >0, where

ME.f@) = sup  1QE" [1fldu.
Q

2eQ dyadic cubo
Q1 >0, diam Q< R

We shadl need the following elementary covering lemma.
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DrrmiTioN. Let 2 be a collection of sets. A set @ in Q is mazimal
(relative to 2)if Q = @', Q' € Qimplies @ = ¢’.

LeMMA 1. Let 2 be a collection of dyadic cubes satisfying supdiamQ < co.
Then every cube in £2 is contained in some mazimal cube aﬁnd the maximal
cubes are mutually disjoint.

We now return to the proof of Theorem A. Let f be in L?(») and for

. each k in Z, let {QF};. 7, be an enumeration of the cubes maximal relative
to the collection
{Q dyadic; [Q], >0, diam@ < B, Q12" [ |flau >z’°}.
; @

From Lemma 1 we obtain

(2.3) {ME, f>2% = U QF for kin Z,

. ek
(2.4) Qfn QF = for ¢ +#4,kin Z,
(2.5) 1Q}m [Ifldu>2* for jed,, kin Z.

k
<

From (2.5) and Holder’s inequality we have

d,
@6 Q< i te
v
o
1/p » 1ip’
<2"‘(f|f|"’dw) (f%‘i dv)
ek ok
i i
1ip
=2 Higs ( [1rra)
o
where we have set
au® dlu:p'—l
do = — = — .
i W dy an

Note that |QF|, is finite by (2.2) and positive since [QF] il > 0.
We now dispose of the case 1< p < ¢ = oo. Since

d
M,,. (XQ}c d”

we obtain from (2.2) with ¢ = oo that 1QF

(2.7 - )>|Q;I"’”“IQJ"IU on  Qf,

QN <

C1QH " whenever
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|QF|, # 0. Using (2.6) we have
Q13 < C1QfI < 2 QR ( [ 1f )™
Q’F

Since ]Q’”[g is positive and finite, we obtain that 2% < (|| flizsy Whenever
|Q¥, 5= 0 and in view of (2.3) this yields (2.1) for ¢ = oo.
We now suppose ¢ < co. From (2.2) and (2.7) we obtain

1010 < 1QFE M QRP-2 < 277 [ IfPas)™
of

(2.8) by (2.6)

and using (2.3) we have

HMZaf> 20 = 190 < (@7 fllog)?
Jedy
by (2.8) since p<g¢. In particular [{MZE.f = co}|, =0 and if Q"

QFN{BIE .f > 2%+1}, then

0 [ ae <20 3208 < MEf < 25,

<2t IQ"I,,,[!Qj = [1f1lde] by (2.3) and (2.5)

k,jedy Q}"‘
d,u” ~1 a d,u,l“-"" L4
Y] k kja/n—1 i k-1 Il
=2 [ [ ] e [ ao]
L of Q¥
1-p’ q
=20 D'y [iQ,I flf!~— do],
k,jedy ok
3
where the non-negative numbers y¥ satisfy
* du® 1 2
(20) — id e [ a]
o
cl,u’" a
</ [Mm(%aﬂz: )] do

§1
Now let 2 = {(%, j); keZ,jedJ,}and let y be the measure on 2 that
assigns mass y§ to (%, j). Define

T: (I'+ I®)(R, do)—~L*(Q, dy)


GUEST


6 E. T. Sawyer

by

Tg= {108 [loldo 00 9 € (L+HI®)(0).
Clearly T is sublinear and of strong-type (oo, oo). We claim that 7' iy of
weak-type (1, ¢/p). Let 4> 0. If {I;}; denotes the cubes maximal relative
to the collection

(2.11) (@5 141 [191d0 > 2}
of
then using Lemma 1 we have
O n _ 1O,
Ty > Bl = O Pk et [lglae>a= 3 34
oF ofcr

i
Y dﬂp’—l q
<3 3 [[ralmg )] e
¢ Q}“CL: é;”

by (2.10) and the fact that @F < I,
d,u #'-1\ 14
< sz [Mu,a (X.ri Fs )] do Dby (2.4)

——1 '
<0 A}J e by (2.2)
aip
< C (2 \Ii|,,) sinee p < ¢

1 alp 1 ap
< it <0|l=
<0 (Z 7 If [gl(lc) C’(;L f{gldo)

since the I; arve in the collection (2.11) and are mutually digjoint by Lemma
1. This establishes that 7' is of weak-type (1, ¢/p).

The Marcinkiewicz interpolation theorem now implies that 7' is of
strong-type (p, ¢) and thus using (2.9) we have

a 1=p% |
()

a

(38 a0 < 27

I\ v i)
|
= Op,a W Lp(a)“‘<- Op.q ”f“%”(u)
since
du® N
da=—dT dv and pQA-—p)+p =0.
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Thus (2.1) has been established for MZ, with a constant independent
of B> 0. Now use the fact that M% f4M, .f as R} oo together with the
monotone convergence theorem to obtain (2.1) for M, ,. This completes the
proof of Theorem A.

Remark 1. If the measure ¢ in the above argument had satistied
the doubling condition |2@|, < €|Q], for all cubes, we could have appealed
to Hormander’s version of Carleson’s theorem ([3]; Theorems 2.3 and
2.4-see also P.L. Duren’s extension to p < ¢ in [2]) to deduce (2.1) directly

from (2.9) and the fact that the v satisty the following “Carleson measure”
condition

&
N i< oQlee,
chza.@g

teZ,sed;

which itself is an inmmediate consequence of (2.2) if o satisties a doubling
condition. The argument used above to obtain (2.1) from (2.9) is an adap-
tation of the techniques used in [3] and [2].

§ 3. Weighted norm inequalities for maximal operators. Throughout
n

this section @ will denote a set contained in R" of the form [ [@;, #;+ k]
=1

for some & in R”, i > 0. Such sets will be called cubes. Suppose u is a posi-
tive Borel measure on K™ satisfying the following doubling condition.

(D) 1201, < C1Q1,

Remark 2. If u is a positive Borel measure satisfying (D), then
0 < |Q], < oo and [2Q], = 0 for all cubes ¢ where @ denotes the boundary
of Q.

Then if 0 < a < n, we define the weighted fractional maximal operator
M, , (not to be confused with the “dyadie” M, , defined in § 2) by

for all cubes Q.

Mo f(@) = sup Q15" [if1ap.
ze g

THEOREM B. Suppose 0<<a<n,l<p< g oo, p < co. Let u, v,
and w be positive Borel measures on R™ and assume that p satisfies the doubling
condition (D). Then

(3.1) 1My o200y < O lzog)

Jor all f in L (») if and only if u < v and

du?*
xOM/A,a (ZQ 71-; )

p-1

(3.2) ‘

<< 00
LB (v)

| Z9w)
Jor all cubes Q = R™.
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Proof. The proof that (3.1) implies both 4 < » and (3.2) is virtually
identical to the proof given in Theorem A that (2.1) implies p <€ v and
(2.2). We do not repeat the details.

Conversely assume that u < » and (3.2) holds, We use an argument
of O. Fefferman and E. M. Stein ([9], p. 112). We say that a cube

3
contained in R” is a closed dyadic cube if it is of the form [] [x;, »,42%],
i=1
@ e 28Z" for some & in Z. For tin R" define 1, , by
M, fl@) = sup QI [ 1f1du.
Q—t closmf' Edymllo cubo ¢
Remark 2 shows that (3.2) implies (2.2) and it now follows easily from
Theorem A. (applied to translations and reflections of the cone I7) that
a1 w22y < Clifllzog
for all f in I?(v) with 2 constant € independent of ¢ in R*., For L > 0, set

MEf@) = suwp QI [ Ifidu,
2eQ, Q<R o

where 1(Q) denotes the side length of the cube . The proof of Theorem B
can be completed by the monotone convergence theorem if we can show
that (3.1) holds with M, , replaced by M%, and with a constant ¢ indepen-

dent of R. That this is so is an immediate consequence of tho following
lemma.

Levma 2. If u satisfies (D) and 0 << a << n, then there is a constant
0 < oo such that
ok t dt
-M,u,af(w) < Y J"/[u,a f(w) W
[—2k+ Z‘ ok+ 2_‘11,
for oll x in R, kin Z, and locally u-integrable f.

Proof of Lemma 2. Fix #in B* and % in Z. Suppose I is a cube satisfy-
ingzel,

L [\ fldp > 3 2, (@)
I

where 297 < U(I)< 2%,j in Z,j<k. Lot Q consist of the ¢ in [ -2+,

2%+27% gueh that there is @, o I with @,—1 a closed dyadic cube and (@)
= 2911,

Fortin 2, @, « 71 and so @, < C|I[, by (D). Thus
afn—1

2

W, 0@ 2 QU [ Il oIt [ ifidu >
Q 1

M2 ().
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It is geometrically evident that the Lebesgue measure of 2 is at least
970+ and so
dt Qeln=—1 i
3
M, o f () GRS 2 gt M LS ().
[—ak+2, okt 2

This completes the proof of Lemma 2 and hence also the proof of Theorem B.

Remark 3. Condition (3.1) has been studied in connection with the
following weakened form of (3.2).

1l du? 1 1/p*
[[Qi;ﬁ(!dw] [!Ql;‘ofﬁ d/«t] <0

for all cubes @, f/g = 1[/p —a/n. Here one agsumes 0 < f<1,0<a< n,
and 1 < p < g < oo. Clearly, (3.1) implies (3.3). In [7] the author has shown
that if

(3.3)

du?-?
do =" g
o= p

v

du  and

are comparable measures in the sense of R.R. Coifman and C. Fefferman
([17; . 248) then (3.3) implies (3.1). In another direction, B. Muckenhoupt
and k. L. Wheeden showed ([5] —see also Welland [87]) that if x is Liebesgue
measure on R, dw = wdy, dv = wP?dy and 1jg =1[p—afn, then
(3.3) again implies (3.1). Of course (3.3) is not in general sufficient for (3.1)
([47; p. 218).

§ 4. A counterexample. Recall the following example due to B. Mu-
ckenhoupt ([4]; p. 218) of a pair of weights (w, v) satisfying (1.2) but not
(1.3). Let

F@) = a7 log @ ™ g0, (@) .
Then JMf(#) ~ o~ loga|™" for @ in (0,%) and if w = (Mf) " e, and
o = f~!, then the pair (w,?) satisfies (1.2) with p =2 while [ (Mf)2w
= co and [ f2v < co. Notie however that (w, v) fails to satisfy (1.4).

Our example of o pair (w, v) satistying (1.4) but not (1.3) is essentially
obtuined by rearranging the above function f and setting w = (Mf)™! and
v = {71 Woenow give the details. Let

Il =[0,1],
Ii = [0, 32]715 = [%z‘y 1],
Ié = [%7 1’]: I?Q = [Z’ iz ’

If = [0, &1, cte.

I% = [0, '115']; Ii = [1“27 i1,
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Set
oy 28\
2
= 3

Then for & >

(1) [1= (Z) H—Z—FIIZI

1; i<k i>k I"cl’"
27 ) 21
) R Y
(12? 7 &
9= -~k 27),
A~ —— = |I¥
= I

From (4.1) we eagily obtain that

4.2 3 1 5 0_2’275
(42) > g N2 S
k=1 T

and setting w = (Mf)~? X and v = F7! we have
1

(4.3) f(Mf)2 - fo 1+Z-o’°4 -k

k=1
o1 2%
ffv ff ___r)l\i-—k<oo

Finally we claim that (w, v) satisties (1.4) with p = 2. We give
details in the case @ = I¥ = [0, 47%], k> 1, and leave the general case to
the interested reader. We first note that (4.2) implies
(4.4) J (@) dw < k2 |1F = k8"

%
i
for & = 1 and thus
(4.5) f (M (a0 () < f w (@) ds -+
I{~
e 1

+ N (47 He f (m)dm-%(fw(m)dm) (475

J=1 0
l '11
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14
< 2(4"“"“)23'8“’ F167F Dby (4.4)

J=1
~ k87F,
Trom (4.1) we obtain f o(@)tde = [ f~ 27%/k and multiplying this
7 1
by inequality (4.3) we obtain
(4.6) (Jarzre)( [o7) <167 = it
i

Inequality (4.6) shows that (1.4) holds with p = 2 for cubes @ = INNE>1
and the verification of (1.4) for general cubes @ follows a similar line of
reasoning. Inequality (4.3) on the other hand shows that (1.3) fails with
p = 2 for the pair (w, v).
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