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STUDIA MATHEMATICA, T. LXXV. (1982)

Spline approximation and Besov spaces
on compact manifolds

by
. Z. CIESIELSKI and T. FIGIEL (Sopot)
Abstract. We construet, for each d and m = 1, 2, ..., spline gystems on the cube

1% which are Schauder bases in the (properly defined) Sobolev and Besov spaces
W’;; (I%) and Bf}}q(ld), where |k} < m, |s] < m, 1< p, ¢< co. These bases satisfy the
analogues of Bernstein’s and Jackson’s inequalities and so do their biorthogonal
systems. This allows us, e.g. to obtain the interpolation formulae Bf, , = (W, WL)o,00
& = (s—k)/(I—k), for the function spaces on a compact d-dimensional ¢ manifold
Miorall —co<h<s<l< ccandl<p,qg< oo.

1. Introduction. This paper consists of two parts. In Sections 1-3
we give a rather complete description of duality and (veal) interpolation

between Sobolev spaces Wi(4) and V%;‘,(A), where — co<k< oo,
1<p< co and A is either the eube I¢ = <0,1)® or a d-dimensional
compact 0* manifold (with or without boundary). This leads to equivalence

of various interpolation definitions of Besov spaces By (4), ﬁj,,q(.ll),
where — co<8< 00,1 p,q< oo,

We use real variables methods only. The most important tool is
2 result on approximation in Sobolev spaces on cubes (Theorem 5.16)
which relies on the spline functions techniques developed in the second
part (Sections 4 and 5). In Section 2 we use only a special case of Theorem
5.16 quoted as Lemmsa 2.1. The full contents of that result (and also
a generalization thercof) are nceded in [9] where we construct Schauder
bases in W:’(‘,(JII ) (M being a compact ¢ manifold) which satisfy Bern-
gtein’s and Jackson’s inequalities and so do their biorthogonal systems.

Let us deseribe our notation. By A we shall denote a compact subsoet
of a d-dimensional 0 manifold (without boundaxy) M. (Other conditions
on 4 will be specified later.) We put

0°(4) = {fl4: fe 0= (M)},
0°(A) = {ge0=(4): supp g < TntA}.

Letters %,7,m,n,r, N will always denote integers and »,q W
satisfy L < p, ¢ < 0. Weset p’ =2/(p—1), ¢ = ¢/(g~1).
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We consider several “Sobolev spaces” on A (the #-spaces concide with
the .#-spaces if and only i 1 < p < o). The scheme of the definition is
as follows.

Having defined a suitable norm |- ||, on €*(4), we let ‘KWZ (A) denote

the completion of (0°(4), || l,). Analogously, ¢WE(A) will be the com-
pletion of (d”(A )y 1 1lz,p) - Finally, we set
AWE(4 (),  ATWEAL) = (€W (4))*.

It will follow that .4 W;; (A) is a linear subspace of 2'(Int4), the space
of distributions on the interior of 4, while

= (EW55(

HTE(A) € 9 (A): = (T e @’ (M): suppT < A}.

‘We shall fix a finite measure x on A. (It will be the Lebescme measure

if M = R%.)One will haveforfe€®(4), g EO"”(A

(1) | [ fodu| < olflhslg e
4

where ¢ = ¢(k, g) < co does not depend on f and g. It follows that the
maps J, J defined by
Jf = fap e @' (Intd), Jg = gdu D' (4)

" can be extended to continuous linear operators

1.2) T: CWEA) > A WEA), 1 €WEA)~HMTE(A).
For suitable A and u, the operators o, J will be isomorphic embeddings
for each %, p.

One has J (€T (4)) = 4WE(A), J (€WE(4)) = AWE(4) it and only
if 1<p<oo. (f pefl, oo}, then the .#-spaces are non-separable.)

If k> 0 and M = R?, then, under mild conditions on 4., WW" (4) can be
identified with the classical space WE(A) il L<p < oo and M W’“(A) can
be identified with Wk(4) if 1 < p < co.

For the deﬁnition and properties of the real interpolation spaces
(*y")s,4 We refer to [3]; some definitions are recalled in Section 2. The
Besov spaces on 4 will be defined as follows. If s is a real number, we pick
l<s<r, write s = (L— 0)14 6r and put

(1.3) B;JQ(A) = (MW;(A), "”W;o (-A))ﬂ,u = ((KW;,(A), %W;(A))o,m
(14) B (A) = (MWL(A), AW (A))og = (EWL(A), EW (A,
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The equality of the ¥-and .#-inferpolation spaces in (1.3) a,nd (14) is

not difficult. The main point is that the spaces Bj ,(4) and B" o(4) are
the same (the respective norms being equivalent) for all choices of l<s<r.
This is essentially equivalent (cf. [3], Section 3.5) to the following inequality
of Ehrling-Nirenberg~Gagliardo type

(1.5) <CIfir

iy < O sy Wy

for fe AW, (A), where I <k <7,k = (1L—0)I+6r and €' < oo does not

depend on f (and the corresponding fact for the ./tﬁg spaces).

The inequality (1.5) was known in the case 1 < p < oo, cf. [3] (and
also if 12> 0, ¢f. [1]) bub the proof using multiplier theorems on R? yielded
constants that approached oo if p—1 or p—oc.

In Section 2 we shall comment on the relation of (1.3) and (1.4) with
the intrinsic definition of B} ,(4) for s > 0.

Let us mention that ﬁ;,q(A) may not be closed in Bj ,(4) for some
§>0. We let B} ,(A) denote the closure of J(C™(4)) in B e o (4) and

€BS ,(4) denote the closure of J(0*(4)) in B ,(4). We shall prove that:

(B3 (A))" = Byt (4), (¢B, (D) = Bty (4),
and % By ,(4) = By ,(4), %ﬁ;,q(ﬁ) = ﬁ;,a(A), unless ¢ = oo.

In the rest of this section we set I = R* and let u be the Lebesgue
measure. We assume that g(4) = u(Intd) > 0.

Let |[hfl, = (f Ih( :v)l”d,u(w))”" be the L, norm of & function » on
A. Let feC*(4) a,nd g EO""(A For &k >
multi-indices,

>0 we set, & = (a, ..., az) being

(1.6) Wlhew = >, 1D21)"
lal<<k

and |glle, = lglp- IE% < 0, then

L) Py = int (37 A1)

lal<—k

where the inf is extended over all the decompositions f = 3 D°f,

lal<=k
with f, e0°(4). The definition of |jglj;, is similar, with f, replaced by
g, €0°(4).

It is easy to check that (1.1) holds with ¢ = 1. A converse estimate
holds if, for instance, 4 is star-shaped in the following sense. There is
2, € Int 4 such that every ray emanating from 2, meets d4 at exactly one
point.
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Levua 1.8, Assume that A = R? is star-shaped. Then J, J in (1.2)
are isometric embeddings, i.e. for f e 0°(4), g e 0*(4) one has

(1.9) Wy = sup{ [ fddu: §e0=(4), 1§10 <1},
A

(1.10) 1911,

= sup{ [gfau: fe0™(4), Iflpy < 1}.
A
This lemma is proved by regularization. We ghall sketeh the argument
at the end of this section.
Observe that, if >0 and 1<p <
regarded as the dual space of the quotient

([ 3o d@)x, I'1,),

* lal<le

o, the space . WE(A) may be

where X = {(g.) e Y‘ Deg, = 0}. Hence .#WE(A) can be identified
W<
with X+ < ( 2 MW} (A)) Tt is easy to check that f = (f,)ep € X+ if

and only if Lhe chstnbutlonal derivatives of f, satisfy f, = (—1)" D= f,. If
1 <p < oo, then #W,(4) = L,(4) and hence X+ can be identified with
the classwal Sobolev space WE(A). If p = 1, then W¥(4) is a subset of
MWE(A) (equal to J(EWF(A4))).

It is easy to see that for & > 0, Jz’W"( ) can be identified with o (clo-
sed) subspace of /W o(4) cons1stmg of elements which vanish in a suitable
sense on 0A4.

Leyma 111 Let U: 0°(A)>FWE(A) be a linear operator. Then U
extends to a continuous map of CW,(A) into ¥WE(A) if and only if the formal
adjoint U* maps %TEV;"(A) into J/ﬁ’;’(A).

Proof. This follows immediatély from Lomma 1.8.

By our previous remarks, if %, I < 0, then ‘KW‘ (4) and also LW (A4)
are subspaces of clagsical Sobolev spaces on A (the case where g = oo may
require a separate treatment), so the boundedness of U* is easier to check
than that of U. For instance, let k<1< 0,p = ¢ and let Uf = &f, where
heC®(4).

Clearly, a similar lemma can be stated for operators from ¢ W,l(zl)
into @W* (4). o

It i 1s casy to characterize the spaces . Wj; (4) and W;j(A) for k< 0
as certain quotient spaces. For instance, identifying (00""(11) y 112 ) With
the subspace

(-1 D)y s Febo} e ( 3 @0y (),

lal<—%&
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we see that T e 9'(Int A) satisties |7 < 1 if and only if one can

k,
write V4
T = D-T,,
lal<~%
where > |T,I7 < 1. An analogous result can be stated for elements

Wi o)
of JIW’“ (4), k< 0
Now we can sketch the proof of Lemma 1.8. To prove (1.9) we use the
following fact.
There is a positive function ¢ (#) so that for each n > 1and 0 < § < g(7)
there is an operator & = R, ;: 2'(Int4)—(0®(4) such that

(1.12) B2'(4)) = ¢*(4),

IB*: AW, (4)=EW(A)I<aln,l,d),

where a(n,1,d)—>1 as 9—1,,1,d being fixed; given fe0>(4d),¢> 0,
7, > 1, kand p, one can find 1 < n < 7, and 0 < 6 < o(y) so that

(L.14) =Ry s fllp <&

Using these properties we find easily that, if fe(°(4) and &> 0,
then choosing sunitable 7y, #, 6 we have a(y, —k,d) < 1-+e and for

T e #W;3F(4) with |[T) <1 we obtain, using (L.14),
I, f> =T, Rf>+<T,f—Rf) < (R*T, f> +e.

Since T can be chosen so that (T, f> = |fll, and by (1.13), g = R*T/(1+
+ &) satisties |lgl|2; » < 1, (1.9) follows immediately.

The proof of (1.10) is similar, the roles of R and R* being reversed, so
we shall only explain how (1.12), (1.13), (1.14) are obtained.

‘Without loss of generality we may assume that xy = 0. Let B
= {w e R%: |z <1}. Since A is star-shaped and , = 0, for any n>1
thereis o(n) > 0 such that A+ o(n)B < nA. Thus, for 0 < 6 < o(%),

(1.15) (1/m)A-+(8/n)B = IntA.

Now fix 2 non-negative even function ¢ € ¢ (R% such that suppy = B
and [ pdu = 1. Write p;(2) = 0% (x/8) for v € R%, 5 > 0. Let

(Vf) (@) =F(a})
for fe0”(4),vend,n >0, and, if TeP'(4),n>1, let T,,eP'(4)
be defined by

Ly > = <T, Vo>
Ifn>1,0<d< o(y), weput for f e 0°(4)
Rn,of = ((Vn]:)*%) \A e0=(4).

2 ~— Studia Math, 75.1
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For T € @' (A) we find that (R, ;)*T = T\, %qs,, so that (1.12) follows
easily from (1.15). To obtain (1.14), note that |-[,, is dominated by
I lly,ees Where m = max {0, k}, [V,f—flno < %¢ if % is close to 1 and
NVof = (Vo) % @50l < ke if 8 > 0is small enough. Finally, (1.13) is obtained
by straightforward computation. (One applies R* to a representation of

T e #WL(A) as an element of a quotient space, if I < 0, or of a subspace

of ( 3@ .4WY),,#1>0.)

lal<l

In Section 5 we shall use some nonisotropic Sobolev spaces on the
cube I%. If m = (my, ..., my) is a multi-index and 1< p < oo, we lot
Wit (I% denoto the completion of 0% (1% in the norm

I = > e,

I<astm

and let W;," (I%) denote the closure of 0> (I%) in W I%).

In Section 4 and 5 we do not need .#W: spaces and we write wr
nstead of FWE.

2. Sobolev and Besov spaces on the cube I¢. In this section d is a fixed
integer > 1, M = R® and A is the standard eube I? = ¢0, 1>% equipped
with the Lebesgue measure. Hence we shall often use shorter notation, e.g.
€W} will mean ¥Wr (1% (cf. also Theorem 3.5 below).

The following lemma is a weaker version ¢f Corollary 5.19 below.

LEMMA 2.1. Given m = 0, there ewists a conslant 0 = 0(m, d) < oo
and a sequence of linear projections (P, in the space L,(I%) with the
Sfollowing properties.

n;

(1) Bach P, is of the form Pf 2 (f5 9,0, where g, C%W’" Om(Id)

and f; e ¥W2 = ¢™(I% for j =1,
(ii) One has, for eachi=1,2,.. <pLoomd 0<ELE+ISMm
2.2) 1P, ?W’“—%KW’““’ < 021, '
(2.3) 1B —P;: ¢WhH @ Wh || < 0277,
(2.4) IB;: €WE €W | < 02,
(2.5) B —Py: €WEH @ WE | < 27,

g

Here P g = 2 9,1)9; is the Hilbert space adjoint of P; and B: CWE

—>¥WE, B %‘W;;""—e-%”Wl’j are the natural inclusion maps.
Proof. This follows from Corollary 5.19, if one “sets P, = Qg'{-‘) (and
P = Q("”) ), and recalls the definition of the Q% g,

icm

Spline approzimation and Besov spaces 19

It is clear from (i) that the formulae for P; and P; define correspording
operators (which we denote by the same letter)

Pi: MWEMW, P MW MW,

for all —m<k,r<m,1<p< oo. Also the embeddings E: .4Witl—

MWE, E: ./(W;,T’ —>./le’; are well defined if 7> 0

COROLLARY 2.6. The operators (P;), (_f’i) of Lemma 2.1 satisfy estimates
(2.2)~(2.5) (with a larger 0 < ) for all —m < k < k1< m. This statement
remains true if one replaces € by A in all those formulae.

Proof. This is a standard exercise so we mention only few steps.

Looking at the norms of the operators adjoint to those in (2.2)—(2.5),
we see that the statement is true if € is replaced by 4 and —m < k< k-1
< 0. Restricting those adjoint operators to the closure of smooth functions
in their domains we obtain (2.2)—(2.5) for —m <k < %+1< 0 (here we use

Lemma 1.11 and the form of the P,’s and Io’i’s deseribed in Lemma 2.1).
Taking the adjoints of the latter operators we are again in the case 0
< k< k+1<m but now with .# replacing ¥. Finally, the case where
—m<Lk<0<k+I<m is an easy consequence. For instance, since
P,0oP; =P,, we obtain easily

I1P;: €WE—EWEN || < [Pz SWESEW,| 1Pz €Wyp—EW |

< 02—-(Zc,021(k+l) e 022‘lt.

Remark 2.7. Comparing pairs of formulae (e.g. {(2.2), (2:4)}, {(2.3),
(2.5)}) and reading subsequent proofs, one can guess that each result of

this section has a counterpart in which W is replaced by ﬁV, W by W and so’
on. This is the case and hence we shall state explicitly only one result or
formula of such a pair, often without even mentioning the other one.
Let us agree that (2.n°) will refer to the formula obtained from (2.n) by
this procedure. E.g., (2.5) = (2.3°) and (2.3) =(2.5°).. This convention
will also be used in Section 3.
CorOLLARY 2.8. Ifl< k,1<p <

to the embedding B: % 7?7;.’—%‘ 7 ;,k

o0, then the adjoint B: A WE—> MW,

18 @ compact one-to-one operator and

B(AWE) < W), (= J(EW))

Proof. It is obvious that ¥ is one-to-one because F has a dense

range. i :
In order to prove the inclusion we wuse Corollary 2.6 with
> max {|k|, [I}. Note that, if f e .#WE, then P;f e (™ < ¥W,, and, by

Corolhry 2.6, formula (2.3) shows that P,f—Bf in the norm of M WZ
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Hence BEf eJ (¢ W), by Lemma 1.8. Also E is compact, because |B —2,| -0
and the P;’s have finite rank.

Given two normed spaces 4,, A, with 4, = 4, (continuous embedding),
set for fe 4y, >0

K(t, f; Aoy Ay) = InE{If —fillgy +tlfilla, : fre4s}

If A, is another subspace of 4,, we say that the K-functionals of the
pairs (4, 4;), (4o, 4.) are eguivalent if there is ¢ > 0 so that, if fe A,
f 0, then for £ > 0

e E(t, f; Aoy Ag)[E (8 5 Aoy As) < 1o

COROLLARY 2.9. If 1<k, 1<p < oo, then the K-functionals of the
pairs (BWY,, AMWE) and (8W,, W) are equivalent.
Proof. Since the embedding J: ¥Wi—4WE is continuous, there

is 0'< oo 50 that for f e ¥W,,
(i, f; 'KWJZ,, MW;) < CK(t,f; %W;,%W;ﬁ).

To prove a converse estimate it suffices to check that each element f, e 4 W;;

is the limit in W}, of a sequence (g;) = %WZ such that ”.‘h“m,,,h < Clifqll
»

i
»
This we have done in the proof of Corollary 2.8.
CoroLLARY 2.10. There ewists € = C, 4 << co such that, if —m <1
<k<r<m,k =(L—0)+0r, 1< p < oo, then for f e #WE one has

E(t, f; AW, # W) < Cmin{°, 1} 5]

awE
Proof. We use again Corollary 2.6. One has
E(t, f; MWy, MWy <0 {If~Pifl 1 +HIBSI,,, }
and the right-hand side can be estimated using (2.2) and (2.3).
In the language of interpolation spaces Corollaries 2.8, 2.9, 2.10 can

be expressed by the following formulae which are explained below. (We
agsume again that I <k <7,k = (1~ 0)l+0r,1<p, ¢< o0.)

(2.11) (MW, MW)oq = (EWy HWE)y = (€W, €WT)

0,07
(2.12) (MW, MWy)y = (EW, MW )5y = (EWgy CWh)o g
(2.13) MW (MW ) AW o0
(2.14) CWE = (EW, EW,)s
(2.15) CWe 2 (MW, MWD, .

Recall that the interpolation space (4, Ay)p,qy Where A, < 4,,0<0
< 1,1 < ¢g< co consists of those f € 4, such that

oo

W= ( f (t—GK(t!ﬂ AO,AI))” t_ldt)]/q< o,
o

icm°®
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By (44, A4)p, We denote the closure of 4, in the space (dy, 41)g,. (By
Theorem 3.4.2 (b) in [3], if ¢ < oo, then 4, is dense in (4, 4;)s,-)

Now, the first equalities in (2.11) and (2.12) follow from Corollary 2.8
and the easy Theorem 3.4.2 (d) in [3]. The other equalities in (2.11) and
(2.12) follow from Corollary 2.9 and the definitions.

Corollary 2.10 yields (2.13) immediately. Since, by (2.13) and (2.11),

CWy = MW = (W, €Wy =T

and €W?, contains ¢ (I?%) which is dense in EWE, the closure of W7 in B
must contain ¥WY. This proves (2.14).
In order to prove (2.15), note that (2.14°) yields

EW < (WL, W) —b,00-

Passing to the dual spaces and using the remark after Theorem 3.7.1in [3],
we obtain
MWE 2 (MW, MWy = F.

Since a dense subset of F (namely .4 Wj,) is, by Corollary 2.8, contained in
the closed subspace %WZ of A4 W; , 80 is F'. This proves (2.15).

Now we can prove some properties of Besov spaces on the cube I%
announced in Section 1.

THEOREM 2.16. Let s be a real number and 1 < p, ¢ << co. The spaces
ij,,g(l‘z),ﬁ;,q(ld),’fB;,q(Id) ,%103;’[1(1") defined in Section 1 do not depend
on the choice of 1< s and v > s (different choices lead to equivaleni norms).
Moreover, one has

(2.17) (¥B7%y)* = B} 45
(2.18) €B; . = €Wy, €Wy)og)

wheres = (L—0)1+ 6r, 0 < 6 < 1. In particular,€B} , = By, ,if 1 < g < oo,
Proof. Observe that (2.11) and (2.11°) prove the claim made after

(1.4). In order to prove the independence of ! and s it suffices to check

that, if k<1 and #» >r and s = (1—1)k-+-wn, then

(2.19) (MWE, MW, = (MW, HW)s .

(2.19) follows from the reiteration theorem (cf. Theorem 3.5.3 in [3]).
The assumptions of that theorem, i.e.

(MWE, MWD, = MW, < (MWy MW, s
where j = (1—o0)k+on and j =1, r, are satisfied by formulae (2.15) and
(2.13).
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By (1.3) and the definition of (W}, ¥W,)s,, the latter space is
the closure of ¢W’, in BS,. Since ¢=(I) is dense in ¥W), the closure
coincides with @B ;. This proves (2.18). ' .

The last assertion is true because, by Theorem 3.4.2 (b) in [3], €W, is

dense in (FWE, EWh), it 1< g < oo, .

Finally, using (2.18°) and Theorem 3.7.1 in [3] we get

@B ) = (W5, CWh 00" = (A Wy W)y = BY .

This completes the proof of Theorem 2.16.

COROLLARY 2.20. For each &k and p there are natural inclusion maps

; y
BS, S 6WisBs., WSS B..

Moreover, these maps are one-lo-one.

Proof. The inclusions follow directly from (2.15), (2.14), (2.18) and
(2.13). To see that they are one-to-one note that the embeddings B: ¢W,*

o

° ° ° 3 .
->%ByY,, B: €B,",—~%W," have a dense range, and consider the adjoint
operators.

Remark. The space Bj ,(4), for s >0 and A < R?, is often defined
intrinsically, e.g. in terms of ,(t, f) (Where » > ), the # th order modulus of
smoothness in L, (cf. [4], §21). The fact that the latter space coincides
with (€W5,(4), ¥Wy (A))yr.q Tor suitable A = R?, follows easily from the
result of H. Johnen and K. Scherer [12].

They prove that, if 4 = R?is a compact set with Lipschitz boundary,
then for f e¥W"(4),r>1 and t > 0 one has

0,4, f) S K (I, f; €Wy (A), 8W,(4) < ¢ (8, f),
where ¢> 0 depends only on r and 4. Here K(s,f; ', *) is a modified
K-functional which yields the same interpolation spaces as K(s,f; -, *).

3. Sobolev and Besov spaces on a compact manifold. In this section M
is a d-dimensional 0= manifold without boundary. We are mostly interested
in two cases: either M is compact and 4 = M, or 4 « M is & compact
subget with smooth boundary, d4. If € c A, we shall distinguish Int(
{the interior relative to M) and Int ,C (the interior relative to 4).

A subset @ = M is said to be a d-cube if there exists a diffeomorphisin
$: U-R®, where U =IntU > @, such that 4(Q) == I*. The norms

Il lg,» 00 C°(@) and || ll%. OB (;"""(Q) (cf. Section 1) can he introduced as fol-
lows. We fix & ¢: @—I%as in the definition and let for f € ¢°(Q), g € 0°(Q),
11k = 1706 i

”U“I:,]) = |]gO ‘/’—lumg,k(ld)"
»
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These norms depend on the choice of 4. Choosing another admissible
diffeomorphism ¢ of @ onto 1%, we would obtain norms equivalent to those
we defined above. This is easy to check directly if %> 0; in the case k < 0
one can use Lemma 1.11 and the subsequent comment. Consequently,

the spaces FWE(Q), CWE(Q), #WE(Q), #WE(Q) are defined upam-
bigunously, their norms being determined up to equivalence.

For each #eA4 there is a d-cube, say @,, such that @, = 4 and
2 €Int4Q,. Hence we can find a finite family 2 = (Q,);Y., of d-cubes so
that

N
4 = Int,Q,.
i=1

It is casy to construct ¢y, ..., oy € 0°(M) so that > ¢, = 1 and
i<V

Ansuppe; = Int,Q;,

fori =1,..., N. We shall fix such a sequence ¢, ..., ¢y.
Now we set for f e C®(4), g € 0% (4),
~
gy = Wlhoo = _; 1|f1@iugwﬁ(%)wj
N
100y, = Dol = 0 { 2 leclol AT

where the inf is extended over all the sequences gy, ..., gy € 6°'°° (4) such
that suppg; = Int@; and g = 3 g¢;. (Such sequences exist, e.g. take
95 = 97i.) =

This definition of the norms |-l , and ]l-ll,j,p on 4 depends on the
<choice of 2. At the end of this section we shall sketech a proof that, choosing
another family 2’ of d-cubes, one obtains equivalent norms, and hence the
Sobolev spaces on A are again defined nnambiguously.

In order to define suitable embeddings J and J° we ghall fix a smooth
measure g on A. (This means that, if ¢: U— R? is any chart of M and v is
the measure on UNA transported from the Lebesgue measure on R? by
means of ¢, then dp = bdv where b is (locally) a positive ¢* function.)

Let us check that (1.1) holds. On the cube Q;, 1< i< N, we have
du = b,de, where b; e C°(Q,),b; >0, and dw is transported from the
Lebesgue meagure on I¢ by means of a suitable ¢ = ¢,. Observe that, if

fel®(4), 9 eco""’(;:l), g = D g; a3 above, then for any %,p we have,
<N
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by Lemma 1.8,

N
[feau =D [ fo, u—fombdw
A s i=1Q;
N
<Z I1o:f 'Qi”(mf]";(egf) ”g"]‘?’i”mff;,"(czi)

I
b

1

N '
< ¢ ( ‘%‘ Hf]Qr, Z;*n k(O ))1/1’ (1:‘217 Hﬂ;](g iz’”"’(() ))l/l) ,

where the constant ¢ depends on & and by, ..., by. Inequality (1.1) follows
eagily from this estimate and our definitions.

The embeddings J and J are defined as in Section 1.

Lemwma 3.1, J is an isomorphic embedding of ¥WE(A) into MWE(A),
whose range does not depend on the choice of the smooth w casure w. .T/l(’ same
can be said about the map J in (1.2).

Proof. Choosing another smooth measure on 4, say », we would
have dv = bdu, where b € 0*(4),b > 0, hence J,f = bJ,f for fe WE(A4).
It is now clear that J, and J, have the same range.

The fact that J is an isomorphic embedding follows easily from (1.9),
because multiplication by 1/b, is a contmuom linear operation in f(’W Q)
for 1<ig N,

The asseltmns about J are proved similarly. In order to estimate

lglle » bY HJg]l L it suffices to find, for ¢ =1, ..., N, functions f; € 0*(Q,)

80 that ”flu—-k:p <2and

[ fiigbidn> lipglloy,

o

and then let f = Y‘% 7 € 0°(A). Indeed,

J o = )j fmb Ygdu > ann (7

T=l @y qz)
and it is not diffieult to check that [Ifl_, . < €, where ¢ docs not depend
on g.
Let us show how the questions about Sobolev and Besov gpacos on 4
can be reduced to similar problems for d-cubes.
First we define the maps

(3.2) A)»Z@Om Q)30 (4),

i=1
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(3.3) 0°°(A)->Zea =(@,) —>G (4),

=1

setting

N
i = ey B = D ek,

i=1
AT
89 = (pglo)ias (90 = X s-
=1

It is easy to check that, for each %, p, if the spaces in (3.2) are given
the ‘[, norms (the direct sum being in the sense of 1,), then j is an
isometry into, § is continuous and S§j is the identity on 0°(4), so that
j8 is a projection onto the range of j. Similarly in (3.3), j° is a quotient
map, 8° is continuous and j°8° is the identity on G°°° (4). These properties
are preserved if we pass to the completions. They are replaced by dual
ones when we pass to the dual spaces. (Note that the operators j,j°
(resp. 8, 8°) are formally adjoint to each other with respect to the
measure u.)

We can summarize these remarks in the following proposition.

ProposiTioN 3.4. For each k, p the operator j is an isomorphism of
FWE(A) onto a subspace of ;‘ DFWE(Q,) which is the range of the (con-

1L
tinuous) projection jS. The same is true, if € is replaced by #. Moreover, these
embeddings and projections commute with the embedding J of (1.2).

There is an analogous statement about the embedding S§° of %Vng(A}
into Y &% TOV;“;(Q,-), the projection 8°j° and the map J.

1<N

THEOREM 3.5 AUl the results of Section 2, after Corollary 2.6, are valid
if 1% is replaced by a compact d-dimensional 0°° manifold A (with or without
boundary).

Proof. Recall first that, if the manifold 4 has 64 # @, then 4 can be
embedded as a submanifold of a d-dimensional ¢ manifold, M, without
boundary (e.g., the double of A4).

Theorem 3.5 can be deduced easily using Proposition 3.4 and the
results of Section 2. Alternatively, the proofs in Section 2 can be used
verbatim, if instead of Lemma 1.8 one applies Lemma 3.1 and also a sub-
stitute is found for Corollary 2.6.

The operators Ty, T, ..., which take the place of P,,P,, ... can be
defined by the formula

T, = 8o (PP OPP D ... PM)oj,
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where P denotes the operator on the cube §, obtained from the operator P;
on the cube I¢ by means of the diffeomorphism &, i.e. for f e 0*(4) we have

N
Iif = o (P9 ((Flo) 77) 2 )-

g=1

The 7% are no longer projections but this property was used only in
order to deduce Corollary 2.6 from Lemma 2.1. All nccessary ostinmt;ocs
for operators T'; and 1071 follow from the corresponding facts for P; and ;.
This is sufficient to complete the proof of Theorem 3.5.

It remains to check that the Sobolev spaces on 4 defined above do not
«depend on our choice of 2. Suppose we are given another family of d-cubus,
say 2' = (@), such that (Int,Q;)7., is a covering of A. Let s, ..., p, bo
2 subordinate partition of unity. Let ||«[|; » and ||-||g '» denotie the norms on
0=(4) and €*(4), respectively, defined using 2’ instead of 2.

Assume first that & > 0. Recall the well known fact that, for 1 e 0™(4)
such that & 5 0, supph < @; N @}, one has

{3.6) ¢ < 1A i <lfe,

oie) | ewlia)

where ¢ > 0 does not depend on k. Now, if f € (°(4), then it follows from
the triangle inequality and the continuity of the multiplication by & smooth
function that

1l Z 2 W7yt oy

=1 j=1

5’ Z 1090y,

zlj

11k, ~

By (3.6), the right-hand sides are equivalent quantities, hence so are the
left-hand sides. Since % > 0, the equivalence of ||-|, and ||-|ff, is now
atrivial consequence.

The case where & < 0 follows now easily with the aid of Lemmau 3.1.
Indeed, the norm |- [, , on 0% (4) is equivalent to the novm dual to [+,
and, also by Lemma 3.1, |- |}, , is equivalent to the norm dual to || i;h o

This completes the proof that the Sobolev spaces on 4. do not depend
on the initial choice of 2, their norms being determinoed up to equivalence.

4. Spline bases on the interval. The first aim of this seetion is to prove
Jackson type inequalities for the spline systems diseussed in detail in
[6], [7], [8] We start with some definitions. For each integer # 3= 1 the
dyadic partition =, = {3, ;; j =0, £1,...} is defined as follows. For
J<0 weputs,; =0andforj>n let 84,5 = 1. Moreover, for n = 2“4 F,
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#=20,1<E<2" k, u being integers, let

L {j/2u+1
A (0TS

The B-splines of order r (i.e. of degree »—1), r > 1, corresponding to the
Ppartition =, are defined by the formula

for j=1,...,2k,
for j=2k+1,...,n.

N0

%)

0y,

where the square bracket is the divided difference of (s—1)7" of order »
taken in the variable s at the points s, ;, ... For later use let

= (Sn,j-H - Sn,j) [Sn,j: cooy Sngjtrs (s—

? sn,j-i-r .

T4 R

n,J

().
8 -3 s
n,j+r n,J

TFor the properties of the B-splines we refer e.g. to [5]. We mention
here only some of them. Namely, N(); > 0 and supp NG = <8, ;, 8y j4r>-
‘The non-trivial N’ f{’] functions are linearly independent over any fixed

interval and

DN =1, fﬂzfzz,()dt=1.

J —o

The space of splines of order r on the interval I = <0, 1> corresponding
to the partition 7, is denoted as S}, and we know that
8" = span[N™" = —r+1,...,n—1].

0,5 H
Moreover, it is convenient to put

8, =Py for a=2-r,..,0,

where 2, is the space of real polynomials of order % (of degree k—1). It
then follows that dim8} = n+r—1 for n>2—r, and §), = 8,,,. Using
the scalar product (f, g) of L, = L,(I) we define the spline orthonormal
system (fi",j=2—7) as follows; fﬂ, =1,f%) €& ,1,fl,, is orthogonal
to 8} and ||f, W =1, le(strJL q,u_ ) >0 whenever j+1 =2¢+T, 1<k
< 2", Notice that the functions f{7,, ..., fi? are simply the first  ortho-
norma.l Legendre polynomials on I. In connection with the investigation
of these spline systems in the spaces of differentiable functions it is necess-
ary to consider along with ( f7) the associated biorthogonal systems. To

define them let
1 2
=[5, @ =[5 Dniw =170,
t ]
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Now define for j > 2—r+Ikl, [k| <r, b being an integer, f{* =f{" and

D for O0<k<r,
i ":f") for —r<k<0.
K
It then follows that for |k] < r we have
(4.1) (8, f50) = 8y, 4,§=2—r+]kl.

Thus the operator, defined if k| < 7,

n
2
j=2=r (k|
is a projection in I, and P® = P&Y is an orthogonal projection in L.
Defining, for |k| < r,
8ok = span[ff?; § =2—r-+|k], .
we find that for 0< b <r Sy =8, " and for —r <k <0
A% = {(fe &R DIf(0) = DIf(1) = 0,j = 0,..., —k—1}.
Using the B-splines we find in general, k| <7,
(4.3) Sk = span[NiF; j = —r+Ll+k,, ..

where %, = max(=%,0). It is important that the operators P§™:
L,(I)~ L, (I) are uniformly bounded in % and p (cf. [6]), i.e. for some
constant €, we have

(4.2) POWf = (F,

]

yn—=1-k_],

(4.4) IPEO, <Cpy Bl <ryn>22—r+[k,l<p<
LevMA 4.5. Let —r<lk<r—1,nz=2—r-4\k-+1]. Then
(4.6) P(r,lc)f — P(r,k-l—l)Df
holds for f e Wi(I)if k> 0 and for f € W]l I)ifk<O0.
LuvmA 4.7. Lt N2 k>0 and V'a,j = 0. Then
F=0
Fe~-1 4\_’1 Je1 11
b+ Yafv = 3 (D ar) (0=
F=0 ik j=0 =0

The easy proofs of these lemmas are omitted.
Lemua 4.8 (Tackson type inequality). Let —r <k <r—1,L<p < oo.
Then there is a constant C, such that

1
(4.9) If =Py < Op — ID(f= PPl =1,
holds for f e Wi(I) of k=0 and for J‘EW1 (I)if k< 0.
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Proof. In case & = 0 (4.9) is proved in [7] (cf. Lemma 4.1). Let now
% > 0. Since P{Mis a projection onto 8., it follows by (4.4) that uni-
formly in p and #,1<p<< 0,021

If =P Bl ~ If =P,
Moreover, according to Lemma 4.5 we have
ID(f =P, = IDf—Py*+D Dy,

~ |Df =P~ Dfll, ~ ID(f— P& 1),

Thus, by the quoted result we obtain (4.9) for 0 << % < #~1. In the case
% < 0 the proof is based on the same idea of Freud and Popov as in the
case of & = 0 (ef. [11], [7]), and it is presented below.

The order of approximation of |[f—PSPfll, is equivalent to the best
approximation of f by elements from 87 ", whence with some constant C,

n
{(4.10) If =P fll, < Cullf —hll,
holds for ke 8%, Our aim is to choose a proper h to get the right-hand
side of (4.9). To this end let
g = D(f—PLPf), o f 9 I, b = MGFD,
Tl ]

= {8n,j1 S j+10s

and let
n4-k-1 n—1

(&11) W=PeOfa[ 3 abd( 3 )b,
=0 i=n+k

it follows that

fg—Za =0.

=0

Since & < 0 and f e Wi(I)

Thus Lemma 4.7 can be applied to get the formula

ntk-1  §

h=PEOfH6] D (Y a) 3—b0)]-

j=0 =0

However, for j =0,...,n+k—1,
G (0 =byp) = GAUF — M54V = GDNTFH = Nf7»

and therefore

n+tk—1 J

=PI 3 ( 3)a) NG,
j=0 =0


GUEST


30 7. Ciesielski and T. Figiel

whence by (4.3) we infer that h e 8;%. Thus we know that (4.10) holds.

Since by assumptions f—PEHf e Wi(I), it follows that Gg = f—Pyhf,
and by definition (4.11) we obtain

npk—1 n—1
(412)  FO—h() =G — aij,(t)~(‘ }; @) 6D, (1)

= fg(It—
I

where I, is the characteristic function of €0, ) and
Gy (1) for sel,; j=0,...,0--k~1,
HI(S) N Gbn+k(t) for S € (Sn,nol-k7 1>‘

Now, 0<Gb(1)<1 and therefore [f(f)—h(1)| < llgl< llgll,, whence
by (4. 10 we infer inequality (4.9) for 1 < n < r—2k. Since now on it is
assumed thatn > r—2k. Let

[ 1f=h? = T +da+Js

I

be the decomposition ecorresponding to
I = <07 sn,r—-k> U<Sn,r—klsn,n+lc> u <3n,n+m1>'
Using (4.12) we obtain for the first integral

ﬂhaﬁ fg ds—Zaij(t)l

7.=0 Ip,i 1=0

Thl

r—k—1

; nf‘Z 1(1 G, (1 fﬂ(s I(i,an,>(3)“~ij ds’\ at
r—lk—1 8,1

<> faf [ i) (aw__”g”p)_
=0 Ipg 0

Similaxly, for the second integral we have
'n+k+1 Gt Je 1 7

fdt‘Za—f— fg(e )ds — Z 4 — Z aij](t)lpdt

i=r—k Ing F=0 Jmi—ri-lit+2

n+k-1 En i+l
2

<—Z( [ lg(s)lds)’k(i’

n
t=r—k  Spng—rik+2

©

icm

Spline approwimation and Besov spaces 31

Finally, for the third integral we have
n—1 -1
=3[ 3 an-o
t=ntk I,  j=i—r+k
1

- ( f (s)ds) @, (1)

Sp,ntk

fﬂ (8) (L s, gt (8) — G (1)) ds —

Iﬂ, i
» (O P
o< (5 o) >
and this completes the proof.
Now we are ready to define suitable for our purpose spline systems.
DrrinNmrioN 4.13. For given integer m > 0 we define for n = —m

2 7; n 1
dt< ( ) 2

i=n+tk Sn,n+2k—r

o
B — g, B =g,

where m = 7 —2. Notice that F{™ e 0" () and £ < ¢® (). According to
(4.1) we have

(4.14) (T, B™) = 8,5, iy§> —m.
Defining

(m)f — 2 (7 F('m))_‘[l(m)

J=—m
O( 7 ( o
QM = D (f, F™)Fm,
j=—m

we find by Lemma 4.5 the following formulae, 0 <k M, n > Fk—m,
DEQUVf = PEorRDrf,  fe Wi(I),

DHf = PErB D, f e WH(T).
It should be clear now (cf. (4.4)) that for each %, 0 < % < m, the systems.

(DT, j > k—m) and (D*F{™, j > k—m) are bases in WS and WY(I),
1< p < oo, respectively.

TNEOREM 4.16. Let 0 <1<k < 7, 1< p < co. Then there is a constant
C,, such that Bernstein’s afnd Jaoksafn s inequalities, i.e.
(4.17) 1D Q™ fll, < O DQIMS,,
(4.18) ID’(f QNN < O™ *| DE(F — Q1))
hold Jor fe W’” = 1. Both these inequalities hold irue if we replace Q
by § and assume that f € W’”( ).

Proof. Xor the proof of (4.17) see e.g. [6], [10].' The combination
of (4.15) and of Lemma 4.8 gives (4.18). :

(4.15)


GUEST


32 Z. Ciesielski and T. Figiel

5. Bases and projections in function spaces on the cube. Let us start

with some notation: d is a fixed positive integer, = (t;, ..., tg),
(5.1) (:® ... ®I)(E) = ga(ts) - galta), te RY,
{(5.2) POY = PUh) @ ... @PYEHD, Iy <1y

Definition (5.2) means that P is linear and, if ¢ is as in (5.1), we have
P{Mg = (P g)® .. @ (P2 g,).

Moreover, define

(5.3) gt

i.e.’8™" ig the linear span of those g given as in (5.1) with ¢, e §"%. It now

follows that P%" is a projection onto S%". Inequality (4.4) implies now that

there is a constant €, (ct. [2]) such that for the norm of Py*: LP (I%) —L? (19,

1< p< oo, we have

(5.4) ”1:":;”L <06, m=2—rt+lkl, i=1,...,d.

Actually €, = 0, ... C,,. For later convenience we denote by P{’P the

linear operator

(5.5) PO =B, ... 0F,_,@P{PQH . ... 8 By,

where the B, s are copies of the identity operator. Now,

.k 7 q, ke,
= Q... 8L,

Il

(5.6) PR = PUrld o ... o PYaid,

and clearly

(5.7) PSP, <0,y Bl <r.

Denote by 83% the range of the projeetion Py in L, (I%). It then follows by
(5.6) that

(5.8) 8 = é 8ot

LmviA 5.9, Let 1<p< Then there s

a constant C, such that for f e L,

o0, [kl <rpyfj=1,...,4d.
(I% we have

O If =P, < Zuf Pl < O, Il — P,

j=1
Jor a2 2 —ri k1,5 =1,..., 4.
Proof. Since P¢M and P§™ are projections, we have for f e L,(I%
uniformly inp, 1 < p < oo,
1= PEPfl, ~inf{If —gl,y: g € SEPY,
If =Pl ~inf {If —gl,: g € 83}
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Thus the right-hand side inequality in Lemma 5.9 follows by (5.8). The
left-hand side inequality we obtain using (5.6) by a telescoping argument.

Indeed,
a

= Y Piivo...
J=1
and therefore an application of (5.7) completes the proof.
In analogy to Lemma 4.5 we have the following formulae. If 0 < k+
+a <, a being » multi-index and f € Wg(I%, then

y (r, 5 s yaka_ s s
E— p&®) oP,ﬁ[j;_;)]?‘_l V(B __P;T]q:)lm;)) ,

(5.10) DePERf = pikta pog,
Moreover, for each ¢ == 1, ..., d, we have
(5.11) D"Pf[ii’v}w)f = Pffim‘;j!ﬂi-%ﬂi) Df.

Formulae (5.10) and (5.11
us now define

) hold true i —r < k+a < 0 and f € WO(I%, Let

oM =@M ... M,

o =¢re... o4,
where # > —m, m = 0, and the number of factors is d.

LoovmA 512, Let 0 <I<h<m, L < p << oo, Then there is a constant
C, 4 such that for n > 1 and f € W" 1’1)

2 Do (f— L), < G, i > pt(f-

la|=1 18l=k

(5.13) ) -
Inequality (5.13) remains true after veplacing Q by f) and assuming thot
FeWETY).

Proof. Letr = (r,...,7), m = (n,..., %
ing to (5.10) and Lemma 5.9 we have

), la] =1, m =r—2. Accord-

ID*(f— QUIf), = D — PG+ Dofll, <

Now, by Lemma 4.8, (5.11) and Fubini’s theorem
[]D"f—« 1’53,7’“ uy) I)af”“ < 0,,47,1"kH.D“'I'(k“l)eif——P},ﬁ’%""‘a”k"nD“ﬂk_l)c“'f”p

< O™ 31 |DAf— PR D,
181=F

and once more by Lemma 5.9 and by (5.10) for fixed g with |f] = &k we get

a
Ora ) ID*f = P 0 D fl,.
q=1

1
DDsf— PEnr ) DAY, < O, | Df — PG+ ADA,
gl
= 0, [D*(f — PE""f)ll, = O, ID(f — O f)l, -

3 — Studia Math, 75.1
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The combination of all these inequalities gives (5.13). For fe W’ (I% the
proof of (5.13) with Q replaced by Q ig similar and it is omitted.

Using Fubini’s theorem and (4.17) we establish easily the Bernstein’s
inequality
(5.14) D@1, < €y qn™ M ID'QI 1
which holds for /n >1,0<Ig<k < (m,...,m), 1< p < oo. Clearly Q can
be replaced by Q in (5.14). Before we state the main result let us introduce,
for n = (%4, ..., 1), N = —m, the functions

P - ... @F®, FM=FYe.. ohm.

Now, if n = —m,m = (B, ..., n), m = (m,..., m), we let

orf = D, BMFP,

—mjE<n
o al o
OWf = ) (f, FEP.
—m jen

Clearly Q™ and QGEL"” are projections in L,(I% and are adjoint to each
other.
As a consequence of (5.7), (5.10), (5.11) and Lemma 5.9 we get
ProrosItioN 5.15. There ewists O =, 5 such that, for 0 < k< m,
1<p< oo and nz —m,
IO Wi (IH-»WiIY| < C
and, for fe WE(IY, If —QMfl, ,—~0. In fact the system (F3V), suitably
ordered (e.g., as in [6]),1s @ Schauder basis in WE(I%) fm 0<ksm, 1<pKoo.
Analogous facts are true for (F™) (Q(m) and WE T I9.
THEOREM 5.16. Let 0 <h<k+Ig<m, 1<p< oo. Then there is
0 =0, 4 80 that Bernstein’s and Jackson’s inequalities
(5.17) 195 12,0 < O 1QE 1l )
(5.18) 1~ Q0 fllp < O U = O fllst
hold for n 3= 1 and f e Wi(I%) (resp. f e WEH(I%).
. Inequalities (5.17) and (5.18) remain valid after replacing Q™ by
O™, provided that f & WE(I%) (resp. § € WEH(IY).
Proof. Inequality (5.17) follows casily from (5.14)

19 fln<( Y + Y ) 1Dy,

la|<t I<lal k41

SO fl,+0t DT IDIQMSI, < Ont QU fll, -

0<| =k
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The proof of inequality (5.18) is similar. Using Lemma 5.12 we obtain

k
=0l < X X 1D (F =0l

1=0 laj=i

k
<o 3 3 IDP(F—QMf)l, < On T If — Q5 fllsp-

=0 |pl=i+1

The proof of (5.17) and (5.18) for Q‘”‘ analogous.

COROLLARY 5.19. Let 0<Ek<k+I<m,1p<< . Then, for some
C = C,, 5, we have for n>> 1

1957 : Wi{I%)—-WiH (1% < On',
IB—Q4: Wit (I)—>Wi(I%) < On”,

where we set Bf = f e WE(I?) for f € WEHH(I9).
Moreover, |f— Q(m)f”k,p = o(n7) for f e WytH(1%).

Analogous estimates hold true for the operators Q(”‘) nz=1l and
fe W;,""(Id).

Proof. Since the Qs are idempotents, the corollary follows readily
from Theorem 5.16 and Proposition 5.15.
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A criterion for subharmeonicity of
a function of the spectrum

by
ZBIGNIEW SLODKOWSKI (Warszawa)

Abstract. The following is a special case of the general result proven in the paper.

Let y: Fo(C)—~[— oo, + oo0), where F, (C) denotes the collection of all non-empty
compact subsets of the complex plane C. Assume that x(K)< (L), if K < L, and
2(NE,) = limy(Ky,), whenever K,.; < Ky forn =1,2,.... Then conditions (a) and
(b) are equivalent: (a) for every analytic function a from @ < Cinto a Banach algebra 4
the funetion A—)x(n(a(}.))) is subharmonic; (b) the same for 4 commutative.

An application to uniform algebras is given.

1. Introduction. Consider a typical situation: we are given a Banach
algebra A (the case A = the algebra of all bounded operators on & Banach
space X being the most interesting) and an analytic function a: G—4,
where ¢ = C is open; suppose that we are interested in studying the
behaviour of the set-valued function K (i) = o{a(4)) (= the spectrum).
One way of doing it is to consider some characteristics y of compact sets,
and to analyse the functions A->x(E (4)). In many instances x(X (1)) was
found to be subharmonic (e.g. for x(K) = logmax {|2|: 2z € K}, ¢f. Vesen-
tini [14], and g(K) = logdiam(K), cf. Aupetit [1], and x(K) = nth
diameter of K or the logarithmic capacity of K, cf. Stodkowski [10]).

In the realm of uniform algebras J. Wermer [16] began to study the
multifunction K (1) = §(F'(4)), where f,ge 4, a uniform algebra on
a compact space X, and 4 € o(f)\ f(X). Here, too, x(K(A)) is subharmonic
for the same characteristies y as above, cf. [3], [5], [8], [10], [17], [18].

Since this approach has resulted already in many interesting appli-
cations to uniform algebras and operator theory (see [1], [2], [3], [8], [12],
[16], [18]), it seems worthwhile to find out some general and easily appli-
cable conditions on y, that would guarantee subharmonicity of 2 (K (4)
for K (1) = o(a(d) or g(f(2))- (CL. [1], Oh. 3, § 1, Remarque.)

Incidentally, each concrete y mentioned above fulfils trivially the
following condition. (This observation was made by B. Aupetit.)

(*) T a: G4 is analytic, and A is & commutative Banach algebra
then A->y(o(a(4))) is subharmonic.
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