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On the extension of
continuous linear maps in function spaces
and the splitness of Dolbeaut complexes of

holomorphic Banach bundles

by
NGUYEN VAN KHUE (Warszawa)

Absteact. Tho papor investigatos the extension of continuous linear maps with
values in the spaces of sections of coherent analytic sheaves over analytic spaces.
Tt is shown that the space H®(X, &), where & is a coherent analytic sheaf over & para-
compact analytic space X has tho extension property with respect to the class of
s-nucloar spaces if and only if it is isomorphic to €4 for some set 4. We also investigate
the oxistenco of continwous linesxr projections of the space OP(R(X)) onto 0x(X), where
B(X) is tho regular part of X and & is & holomorphic Banach bundle over X. The
gplitness of Dolbeaut complexes of holomorphic Banach bundles over complex manifolds
is considered. We prove that on complex manifolds which are increasing unions of open
Stein gots those complexcs split only at positive dimensions.

Introduction. In the present paper we consider extensions of con-
tinuous linear maps with values in some function spaces of complex
analysis and the splitness of Dolbeaut complexes of holomorphic Banach.
bundles over complex manifolds. These problems have been investigated
by several authors ([6], [8]). The paper contains three sections.

In § 1 wo prove that the space H(X, &) has the extension property
with respect to the class of s-nuclear spaces if and only if it is isomorphic to
C“ for some get A.

Soction §9 iy devoted to the study of the existence of continuous
linear projections of 0F (R(X)) onto 0,(X). It is shown that when X is
Stoin such & projection exists if and only if X is discrete.

In § 3 we investigato the splitness of Dolbeaut complexes of holomor-
phic Banach bundles over complex manifolds. We prove that on complex
manifolds which aro inereasing unions of open Stein sets these complexes
split only at positive dimensions. Let us note that the splitness of Dolbeaut
comploxes of holomorphic vector bundles over Stein manifolds has been
established by Palamodov ([8]).
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§ 1. The extension of continuous linear maps with values in II°(Y, &).
Let B be a locally convex space. By % (E) we denote the set of all balanced
convex neighbourhoods of zero in H. For each U e % (H) let g denoto
the Minkowski functional on E of U.and let E(U) be the completion of
Eloy = Blo7' (0).equipped with the norm gy . The canonical map from I
into B(U) is denoted by =(U) ancl from B(V), where V e%(H), V = U,
into E(U) by w(V, U). Fmally by E' we denote the ﬁtrongly dual space of 12,

The space H is called’s-nuclear ([9]) if for each U &% (H) thore exists
a V e % (B) such that V = U and the map o(V, U)is s-nuelear, i.o. o (V, U)
can be reprosented in the form

(1.1) o(V, U)u = }f yRACTN
A o B
where - ‘ | g
N h>h> >0,
s | 22”<oo for  p>0,
- : =1 ‘
Cupe BVY, o, e B(T),  sup{lugll, o} < co.

; Let X be a paracompact analytic space and let & be a coherent analytic
sheaf over X. It is known ([4]) that H*(W, #) has a unique locally convex
space structure, where W is an open set in X, such that the restiction maps
are continuous. In this section we prove the following )
TeroREM 1.1. Let X be o paracompact amalytic spaée and let & be
@ coherent analytic sheaf over X. Then the following conditions are equivalent:
(i) HY(X, ¥) 2= C* for some set A.
(i} Boery continuous linear map from every subspace of every locally
conven space into H'(X, S) cam be cxtended to a continuous Uinear map.
“(iii) The statement (ii) holds for all subspaces of all s-nuclear spaces.
Proof. (i) =(ii) follows from the Habn-Banach theorem.
(if) = (iii) is trivial.
(iil) =(ii) is an immediate consequence of Propositions 1.2 and L.3.
ProrostTION 1.2 ([6]). Let X be a pamaomgoaot analytic space and let &
be aicoherent analytic sheaf over X. Then H°(X, &) is s-nuclear.

PrOPOSITION 1.3. Lot B be an s-nuclear subspace of o Tooally convew space
. Then there ewist an s-nuclear space B and continuous limear maps I;
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B -0 and hi B - B such that RENI

b= T and T8 en embedding.

][em i denotos the canonical embeddmg OI E into F.

‘V.,“ Wo néoed the following

LomMA 1.4 ([67). Bvery 8- -nudlear magp from @ subspaoe of @ chaah
space into o Banach space can be elended to an s- -nuclear map.

TamMMA 15 ([61), For every s-nucloar map T from o Bamach space A
into « Banach space B there ewist s-nuclear maps Pr. A—>{ and @ : OB such
that T == QP. ‘ . o

LmMA 1.6 ([6]). et a: A-+B and f: B—0 be continuous linear
maps belwoen Banach spaces such that io is .9-fnucloar for some embcddmg )
and f i quasi-nuclear. Then pa is s-nuclear. -

Proof of Proposition 1.3. Let U,V e#(H). We write: U< v if
UsV = VB, where V e %(F) and w(V, U) is s-nuclear. Let U, V e%(B)
and U < V. By Lenunas 1.4 and 1.5 there exist sequences {P;(V, U)} and
{Q,(V, U)} of s-nuclear maps such that

&(V, U) = Qy(V, U)Py (V Uy,

..........

(1.2)

....................

where & (V, U)s (V) ->B(U) is an s-nuclear extension of «(V, U).
Tix W e % (F). Lot # (W) denote the set of all finite sequences

@ == {(VJ: (]1 g e V’M Un )5 Fay oees T}y
whoro
Vj, ﬁjedk(lﬁ), WC’V/C ﬁj, UysﬁjﬁE<Vj‘—;VjﬂE
and ke{l,2,.}hi=1..,%
For ay = (Py Ty +vey (Phyy T4, 4y o0y T} € F(W),§ = 1,2 we waite
@y << g i
{(vi, U, V},l }C (s, oh, .. (Ve Uiz)}
and  maxk} < minkj.

Tor ench @ e # (W) by B(W,a) we denote tho space T (W)e, equipped

with the noru
‘ 0 - :
oal) = 3 1Py (V3 Vo (W, P)ul.
Jl

Obviously, if a, < ag, then the indentity map id: F (W) - I (W) mdueeg
a continuous linear map &(W,ds a): B(W; w)~ B(W; @) an

(L.3)
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B(W, g, a) = &(W, as, as) B(W, aq, a,) for a; > a,. Thug we can put
@(W) = 1im{-E'(Wy a), &)(Wi @, b)}
ra

From the eonstruction of (W) it follows that it Wy, W, e % (I"), W, < W,

then the map o(W,, W,) induces a continuous linear map &(W,, W,):
E(Ws)—E(W,) such that

h(W,)w(Wz, -er) = tZ’(W!’ .ﬁ'l)h(.WIL

where h(W;): F(W,)—E(W,) denotes the canonical map. Thus putting

wo get a locally convex space B and continuous linoar maps ©: B--E and
h: F—F such that he = 7. Hence to finigh the proof it remains to establish
the following:

(a) 7 is an embedding.

(b) B is s-nuclear.

Proof of (a). Let i(w,) =0 and let U, V e % (#) be such that U< V.
Applying (1.3) to a = (V, U, 1), we havo
Hm oy (e,) = Hm|&(V, Un(V)u,
=1m|[Q,(V, U)Py(V, U)n(V)w,| == 0.
Hence %, —0 and therefore 7is an embedding.

Proof of (b). It suffices to show that (W) is s-nuclear for W e % (I').
Let W e%(F) and let ay, ay € #(W), a; < a,. Consider the maps

0,: B(W,ay) =ImP (], U@ ... @ImP, (V}, U,
1 LY

0,2 B(W, ay) =TIl (V], U@ ... @ImP, (Vy,,, U,
n

} ny? “1)
given by the formulas
6,(3) = (Pa(V, Uo(W, Phu, .., Py (Vi Un)o(W, T,)u)
‘Ml

where € F(W), % = umod o _,(0),
“
0u(3) == (@1 (V}, UND, (V, U)o(W, Mu, ...
ey nl~|1

@ (Vi TA)E,
n 1

where « € P(W), @ = umodp _,(0).

(Vi Ub) o, 74)u),

Ic“‘l-}-l..

_ By (L.2) wehave 6, = 6, &(W, az, a;) and by (1.3) 0, is an embedding.
Since @,(V, U) is s-nuclear for U < V and for § > 1, it follows that 0, is
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s-nuclear. Tonee, by Lemma 1.6, &(W, ay, a,) iy s-nuclear for a, > ag.
This complotes the proof of (b).

(i) =(i) results from the following

Lmmya 1.7. Let @ bg a Montel space and let 6 denote the canonical
embedding of @ nto J == [[{Q(U): U e %(Q)}. Assume that there exists a con-
tinuwous Unear projection T of J onto Im0. Then @ = C* for some set A.

Proof. Since J == ImT@Im(id —7T), it follows that T is open. For
each finite sot @ < #%(Q) pub

mwunmmxﬂmm,
J fa

Uiu

where 8(U) denotes the unit open ball in @(U). Since 7' is open, 7' induces.
a continuous linear opon map

T(a): J/oge = HQ(U)“"ImG/QTG(a)-
Uea

Since @ is Montel, we infor that T'(a) is compact. Hence dimIm6/opg, < oo-
On the other hand, since {TG(a)/m} forms a basis of neighbourhoods of
zero in Tm6 and Tm0 o @, we have dimQ(U) < co for U e %(Q).

Let {ug,: a 4} o a veetor basis of @', Define & continuous linear map
y: Q- G4 by p¥ = (ug (). Since op(u) = sup{|u'(w): «' € U}, where
U° is the polar of U and since U°® is contained in a finite dimensional
subspace of @7, it follows that ¢ is an embedding. Combining this with the
relation Tmy == €, we infer that y is an isomorphism.

The lemma is proved.

§ 2. The existence of con:inuous linear projections of Cf° (R(X)) onto
0,(X). Let X Do a paracompact analytic space and let £ be a holomorphic
Banuch bundle over X. By 0,(X) we denote the space of holomorphic
gections of & on X equipped with the compact-open topology and by
O (R(X )) tho spaco of (*-sections of & on R(X) equipped with the topology
of uniform convergence of all derivatives on compact sets in X. Since the
rostriction map O(X)~>0(R(X)) is an embedding ([5]), it follows that
0,(X) is contuinod in OF (R(X)) as & subspace.

Wo prove thoe following

Tumonin 2.1. Let X be a looally irreducible Stein space and let & be
o holomorphic veclor bundle over X, Let & be & coherent analytic subsheaf of t7v:3-
sheaf 0, of germs of holomorphic sections of & on X. Then H'(X,9) is
complemented in OF (B (X)) if and only if X is disorete.

Sinco X iy Stoin and & is coherent by ([1], Lemma 3.4, p. 38), it
suffices to prove thoe following
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.o - ImmMa 2.2, Let X be alocally irreducible analytic space and let & wnd &
be as in Theorem 2.1. Then H* (X, &) is complemented in OF (R(X ) if and
only if H(X, &) == C* for some set A.

Proof. Let P: 07 (R(X))-H"(X, &) be a contmuouq linear projoc-
tion.

(a) Let ;la; o€ /1 be components of X. Since X is locally connected,
X, are closed-open in X and hence R (X,) are cloged-open in R (X) and 12 (X)
= |J R(X,). Thus we have

aeAd
” H Xa,fr"

HY(X, ¥
For each a let i, denote the canonical embedding of 0,5 (li(X )} into
' ]] 0 (R(X,)). Then the formula ‘

Pyo = (Pi,0)|X,

anit 0P (B(X)) =

for o e0F(R(X,)

defines o cortinuous linear projection of CF (R(X,)) onto H'(X,, %)
(b) By (a) we can agsume X is connected. Hence by the local irreduc-
ibility of X it is easy to see that H(X, &) hag a continuous norm g,
Congider the map =, P: OF (R(X))—~H"(X, #)[e, where m,: H(X, &)
—~H"(X, &)/o is the canonical map. Since OF (R(X)) = Um {0F(#): ¢ iy
open in R(X)}, it follows that there exists a relatively compact opoen set
G in'R(X) and & linear map @: ImR(X, @) H" (X, &)/o such that
(2.1) xP =QR(X,d),
where R(X, @): 0f (R(X)) ~0¢ (@) is the restriction map. Let G bo « rela-
tively compact neighbourhood of & in R(X) and let ¢ € 0% (R(X)), ¢|tf = 1,
supp < G. Define a continuous linear map §: o2& )~+C‘e (R(X)) by multi-
plication by ¢. Note that
(2.2) R(X,®)p = R(G, ).
Let 0 € H*(X, &). Then by (2.1) and (2.2) we have
7 PoR(X, H)o = QR(X, HpR(X, §)o = QR(G, @)
= QE(X, ()0 = n,Po =m0,
Bince 77, is injective, we havo
(2.8) PHR(X, G)o
Let W be a relatively compact neighbourhood of @ in B(X) and let gjp be

a continuous norm on H“(X &) detined by W. Then the canonical map
q: HY(X, &)|oip->02(@) is continuous, By (2.3) we have

(2.4)

R(X, G e

= ¢ for

ceH' (X, %).
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Honce the identity map of H°(X, &) is factorized through a Banach space.
Thus by the nuclearity of H*(X, &) we infer that diraH°(X, &) < oco.

TrroreM 2.3. Let X be o Stein space and. let £ be a 7z,olomorphw Banach
bundle over X. Then 0p(X) is complemented in Ge (BR(X)) zf. and_only if X
is discrote. "

Proof. Lot P: (7‘”([13 (X)| - 0,(X) bo a continuous linear projection
and let W bo an irreducible branch of X. It suffices to show that W = vt
Hinee W iy irreducible, 6,(W) has a continuous norm. Applying the proof
vof Bemma 2.2 0 the map KP: 0P (R(X))—»0,(X), wo get a relatively
seompaet opon st @ in B (X) and » continuous hneom map Q: C’e (&) »ms W)
such that

QR(X,0 o =Ro forall ¢ e(De(X)

where Lt 0p(X) -»0g (W) is the restriction map. Notethat R is surjective
([13], Theorom 3. 9 Tt @ be » relatively compact neighbourhood of & in

R(X ) mud loti q: me(X )/ e -»0¢ (@) bo the restriction map. Then
(‘) B) o e 0:(X).

‘Whence, by the surjectivity of B it follows that Qg: (0,( )eg —>GE(W)
surjoctive, Ionce by the open mapping theorem 113 follows that W = {g} if
£ iy finite-dimoensional.

Aspume now that & iy infinite-dimensional, By ([13], Theorem 3.13)
thore existy a o € 0(X) such that o(2) 5% 0 for every 2z € X. Considering
a 1-dimensional subbundle n of & generated by ¢(X). By ([13], Theorem
3.11) thore exists a projection m of & onto %. It is easy to see that the
formula

Qqmogo = Ro  for

(Po)z = n(Pa(e)) for oe 02 (R(X))

defines & continuous linear projection of €5 (B(X)) onto 0,(X). This implies
that X is discrete. ; ‘

The thoorem is proved.

Remark 2.4. When X iz an open Stein sot in C* and £ is trivial,
Theorem 2,3 has been. proved by Poly [10].

§ 3. The splitness of Dolbeant complexes of holomorphic Banach
bundles. Lot X bo o paracompact complex manifold and let & be a holo-
morphic Bunach bundle over . Tor each ¢ = 0 by £f we denote the sheaf
of germs of ¢®-forms of bidoegree (0, ¢) on X with values in £ We write
2% Q% whore C g a trivial bundle over X with fibre C. By the Dolbeaut
lemma and by the nuclearity of spaces 24(U), where U are open sets in X,
it follows that the sequence

[s '0 5t
(3.1) Oﬁagﬁﬁgﬁr !)}—?—f»
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ig exact. The complex of global sections of (3.1)

29
(3.2) D(8): 0-0,(X)— 24(X) =

is called the Dolbeaut complex of £ on X.

We say that the complex D (£) splits at p if there exists a continuous
linear map y,: Im@”»ﬂ”(l) such that Qy,, == id.

‘We prove the following

THEOREM 3.1. Let & be a holomorphic Banach bundle over a complex
manifold X which is an increasing union of open Stein sels. Lhen D (&) splits
at p if and only if p > 0.

The proof of Theorem 3.1 is based on the following

Lz 3.2 (Corollary 5.1 [71). Let

(X) ----- Foean

0—1{@,, p2 Und, {r,, o ol {B,, -0

be a complex of projective systems of Fréchet spaces and lot Kerf, = 0, Imf,
= Kerg,, Img, = B, end Imwy,, =T, for nz1. Then the Sollowing
conditions are equivalent:
(i) limg, is surjective.
<

(il) For each n, there exists an n(ng) 3= n, such that

(3.3) Imp, is dense in Tonfob,,  for oz n(n).
(iii) For each n, there ewists an n(ng) 3> ng such that
(3.4)  The canonioal map B, : hm{Gn, B} Gy, has a dense dmage in

Tm )0 for every n = n(ng).
We need the following.
Let L be a quasi-complete locally convex space. Consider the soquence

(3.5) 0 >0, 8L —~ 8L - Q8L — ...,

which is obtained by e-tensoring the sequence (3.1) with L. By the associ-
ation of e-product and by ([6], Lemma 1.7) the sequence (3.5) iy oxach.
Since the sheaf Q4L is fine for every ¢ = 0, wo got

(3.6)

for every ¢ >1.

LeMMA 3.3. Let X and & be as in Theorem 3.1 and let I be o quasi-
complete locally convex space. Then

HYX, 0;cL) = Kor 6" 81,/Tn (2 ""eld)

(8.7) HYUX,0cL) =0 for every qz2.

icm

(3.9)

On the extension of comtinuous linear maps 71

Proof. Let {X,} be an increasing exhaustion sequence of X consisting
of open Stein sets in X, We write X = 0 W,, where W, is a relatively
M=l

compact open sot in X, such that

W, = W, = 0(X,)hull(W,) for every n>1.

Sineo every holomorphic Banach bundle over a Stein space is complemented
in some trivinl Banach hundle and since

HYW,, 0cL) = 0

([2], Theorem B) similaxly to [6] we get relation (8.7).

Proof of Theorom 3.1, We can assume that X is connected.

(1) ALO1J p >0, {\.]),plying; Lemma 3.3 and the relation (3.6) to L
o= [Tm 887], = [Ker P '], we have

for every ¢ > 2 and for every n>1

(3.8) Im (& eid) = Im &Pe.

Sinee I dé‘ i3 B‘réchot it fol]ows that [(Im a")c]a = Im 6” and hence the

indentity map id: Im o£’->~Im 8” belongs to Im 3" eL. Hence by (3.8) we in-
for that D (&) splits at p.

(ii) Assamo now that D (&) splits at 0. Then @E(X ) is complemented in
X)) and Im r)e is closed. Note that 6" —-lunf)e » Where &, = £.X,.
Since the map & L
denge in ther ‘Je

24X, -»Ker é)é is surgeetwe, we infer that Ima° i
Hence the map 11md° lim 0% (X,,)—lim Ker 91” is
-

surjective. 'I‘hm by Lemma 3.2 it follows that the restriction maps E,:
0y (X)~> 0y (X)) and B2 : 04 (X ,)—0,(X,) satisty condition (3.4). Let P: Qf(X)
~>0:(X) bo a continuous linear projection. Since 0,(X) has a continuous
norm, a8 in tho proof of Lemma 2.2 the projection P is written in the form

P o= QR(X, Xn)

whero Q1 Q8(X,)~>0(X) I8 & continuous linear map. Let g:=# be such
that

{3.1.0)
Tut

for some n,

T = T,

X« \J{W; W is a component of X, Wn X, # 0}.
Note that X is a closod-open Stein subset of X, and
(3.11) Ker(R20(X)) = 0.
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Consider theé continuous linear map E(X,X DR, X,): QUEX)->0,(%).

Let ¢ € 0,(X). By (3.10) and since X ig closed-open in Xa, it follows JShat
there exists a sequence {o;} c 0s(X) such that hmluﬂcr,c = R(¥, Xn)a

Hence by (3.9) we have
(R(X, X)QR(X, X,)0)|X,, = (ngﬁn_R(x, X)QR, o)1 X,
= (lim (X, X)P o)X,
= (lim B(X, X)op)1 X, = olX,.

Hence by (3.11) we have R(X, X YOR(X, X,)o = ¢ for o e@e(X). Thus
0.(X) is complemented in Q"( ). This contmdws Theorem 2.3. Hence
D (&) does not split at 0. o ‘ ;
The theorem is proved. ‘
Remark 3.4. When X is Stein and £ is finite-dimensional, 'llhoomm
3.1 has been established by Palamodov (Proposition 5.1 [8]).

Let X be a paracompact analytic space and let & be a holomorphie

Banach bundle over X. The groups HY(X, 0,) = limH*(%, 0;) are endowed
—

with the inductive topology (where % is an open cover of X and H% (%, 0;)
= Ker 6¢/Tm 04" i 8f = 0¢(%): O, 0;) > C* (%, 0;) are tho cobound-

ary maps and the spaces C4(%, @,) are equipped with the compact-open:

topology. In ([11]) Silva has proved that if the space X is an increasing
union of open Stein sets and if H'(X, 0) is Hausdorif, then X is Stein.
The following theorem is an extension of this result:

THEEOREM 3.5. Let X be an analytic space which is an increasing unton

of open Stein sets. Let H* (X, 0;) be Hausdorff for some non-zero holomm phw

Banach bundle & over X. Then X is Stein.

- Proof. By theresult of Silva we have to show that H* (X, 0) =0, Lm, X

= U X, where {X, n} ig an increasing sequence of open Stein. sets. Con-
n=l

sider the cover # = {X,}>,. Since H?(X,, 0) = 0foryp, n> 1, wehave

(3.12) HY (X, 0) = Ker §*/Im &° ,
and ’
(3.13) Ker 8" (%,) = Im 8"(%,,) for n =1,

where %, = {X,,..., X,}. Note that &°(%) == hm & (a,). Thus by (3.11).

and (3.12) and by Lemma 3.2 it suffices to chock let the restrietion maps
R 0(X,)—>0(X,) s satisfy condition (3.3).

Since HI(X 0;:) is Haugdorff and since % is a Leray cover.for @, it .

follows that the canonical map H*(%, ) )—>H*(X, 0,) is bijective. Hence
H'(#, 0;) is Hausdortf. Thus Im 6%(#%) is closed. Combining this with the '

e ®
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gurjectivity of the maps 5" :

OU(%:%)*Kerai , where &, = £X,, we
infor that the map 1|m b” n?

]mn(] (,, @e)»thel 6’; is surjective. Hence
thoe restriction nmpﬁ Iﬂg’q @e(X )»»@E(X ) s.mfy condmon (3.3).

(a) Wo first assune that ¢ is 'infinite-dimensional. Given #i,. Take
q(ng) 7ty wuch thati (3.3) holds for g2 = RZ. Let ¢ > q(m,). By [13] we
find an o ¢ 0,(X,) such that o(e) == 0 for 2 eX Let 5 be a subbundle
of &Y, spanned by o (X)) and lot 8: C-»y be a canonlc(ml isomorphigm,

0(2) w= do(e) for (s 1) X, %C.

By (3.3) and sineo n is complomented in E[Xq it follows that for each o &
(9(\,,“, ) Hmm oxinté @ soquenco {o,} = 0,(X,) such that o, [X7)D.+0a|;\
Heoneo 0 | Xy >0l &, and thus the case where &y mflmte cllmensmnal
in proved,

(1) Assumo now that 5 ig finite-dimensional. Congider. the mflmto—
dimensional holomorphic Banach bundle é4B, Where B i3 some infinite-
dimemsional Banach gpace, Note that

Kov (8,410 0° (% Oggp) 0" (U, O5:5)) = Ker 836B.
Hoence Dy the nuclearity of the space 0%(%, 0,) it follows that H* (%, Ogspy
= 0. Combining this with (a), we infer that X is Stein.

The theorem is proved.

Roemark 3.6, Fornaess has constructed a complex manifold which is
an inercasing union of open Stein sets such that AimO(F) = 1 ([3]). From
Theorems 3.1 and 3.6 wo obtain an. extra property of I

Provogrrron 3.7, Let & be a non-zero holomorphic Banach bundle over F.
Then

(1) D(&) splits only at p > 0.

(i) HYX, 0) s uncountable-dimensional and is not Hausdorff.

Proof. (i) follows from Theorem 3.1. Theorem 3.6 implies that
HY X, 0,) is not Ilwusdorft. The non-countability follows from (Theorem
1.4, [127).

Remark 8.8. Tho necessity of the condition of Theorem 3.1 follows
also froni Thoorems 2.3 and 8,5,
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On functions with bounded mixed variance
by
UMBERTO NERI (College Park, Md.)

Abstrack, The concept of bounded mixed variance (BMV), which extends the
notion of bounded mean oscillation (BMO), is discussed. The main result is that spaces
of functions with bounded mixed variance are duals of certain “atomic H* spaces”.

Introduction. In this note, we discuss a measure-theoretic concept
which extends the notion of bounded mean oscillation described by John
and Nirenberg in [11]. This concept, which we call bounded mized variance
generalizes the #7* spaces of G. Stampacchia (see [1] and [13]), the
BMO (g) space of [10], and the duals of weighted Hardy spaces H® in [14],
[18], [9], [12] and [8]. To emphasize the wide applicability of our remarks,
we shall place them in the setting of & space X of homogeneous type,
[3] and [4]. However, our main motivation and emphasis comes from the
cage X = oD, where D is a simply-connected bounded domain in R" which
is a Lipschitz or 0" domain (see Remark 1.7 below).

I thank Professors B. Fabes and O. Kenig for their encouragement and
interest in this subject.

§ 1. Atomic spaces and preliminaries. Let X = (X, d) be a space
of homogeneous type (ef. [4], § 2) equipped with a pair of regular Borel
meagures u and », mutually absolutely continuous and satisfying the doub-
ling condition. That is, if B = B,(@) = {yeX: d(», y) <r} and B*
= B, (), then u(B*) < Au(B) and »(B*)< 4»(B) for some constant 4
independent of the ball B.

DepiNrrioNn 1.0. Let L < ¢ < co. A function a(®) is a (1, q) atom of
type (4, ») it its support is contained in some ball B and

o (B [lals 4" < w(B)”,
B

(i) fa dv == 0.

Naturally, (i) is intended for the smallest ball B containing the support
of a(w) and the left-side of (i) equals the norm of @ in I*(X, du) if ¢ = oo.
When u(X) < oo, the constant »(X)™ is also considered to be an atom.

¢ — Studla Math, 78.1
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