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On functions with bounded mixed variance
by
UMBERTO NERI (College Park, Md.)

Abstrack, The concept of bounded mixed variance (BMV), which extends the
notion of bounded mean oscillation (BMO), is discussed. The main result is that spaces
of functions with bounded mixed variance are duals of certain “atomic H* spaces”.

Introduction. In this note, we discuss a measure-theoretic concept
which extends the notion of bounded mean oscillation described by John
and Nirenberg in [11]. This concept, which we call bounded mized variance
generalizes the #7* spaces of G. Stampacchia (see [1] and [13]), the
BMO (g) space of [10], and the duals of weighted Hardy spaces H® in [14],
[18], [9], [12] and [8]. To emphasize the wide applicability of our remarks,
we shall place them in the setting of & space X of homogeneous type,
[3] and [4]. However, our main motivation and emphasis comes from the
cage X = oD, where D is a simply-connected bounded domain in R" which
is a Lipschitz or 0" domain (see Remark 1.7 below).

I thank Professors B. Fabes and O. Kenig for their encouragement and
interest in this subject.

§ 1. Atomic spaces and preliminaries. Let X = (X, d) be a space
of homogeneous type (ef. [4], § 2) equipped with a pair of regular Borel
meagures u and », mutually absolutely continuous and satisfying the doub-
ling condition. That is, if B = B,(@) = {yeX: d(», y) <r} and B*
= B, (), then u(B*) < Au(B) and »(B*)< 4»(B) for some constant 4
independent of the ball B.

DepiNrrioNn 1.0. Let L < ¢ < co. A function a(®) is a (1, q) atom of
type (4, ») it its support is contained in some ball B and

o (B [lals 4" < w(B)”,
B

(i) fa dv == 0.

Naturally, (i) is intended for the smallest ball B containing the support
of a(w) and the left-side of (i) equals the norm of @ in I*(X, du) if ¢ = oo.
When u(X) < oo, the constant »(X)™ is also considered to be an atom.

¢ — Studla Math, 78.1
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More generally, if 0 < p < ¢ and 1< ¢ < oo, replacing the right-side
of (i) by u(B)™"#, we have the definition of (p, g) atoms of type (u, »).
In the case » = u, we obtain the ordinary (p, ¢) atoms of Coifan—Weiss.

DEPINITION 1.1. Tf 1 < < oo, we denote be hy%(dv) the Banach
space of bounded linear funetionals f on Lip(a) having an atomic decompo-
sition
(1.1) f=D ke with D iyl < oo,

j=0

where the g, are (1, g} atoms of type (4, »). Bach f has norm

Iflhg = int { 3131}

with infimum taken over all representations of the form (1.1).
Since x and » are assumed to be mutually absolutely continuous, the
density

(1.2) Wjdp = o(x), 0< (@) < oo (a.e.)
satisfies
(1.2") wel'(dy) and o™ el(d).

In general, denoting by ° the Borel measures given by
(1.3) do’® = w(®)*du, ¢ real,

we have »° = p and o' = ». Recall that for any 1< p < oo, a pogitive
density h belongs to A,(du)—respectively, h e B,(dv)—if there exist
positive constants 4, and B, (both > 1) such that

(4,) {p@ [ bauf{p@ [@mena™ < 4,
B B
—respectively,
(B,) p@ [Wwal? <B,y(B) [hay
B B

—uniformly in B. As p increases, the classes B,(d») decrease while the
classes 4, (du) increase. With @ = dv/dpy, it is easy to see that

(L.4) wedy(du) if and only if o™ eB,(dv), 1/p-+1fg = 1.

For convenience, we shall use the abbreviations

(1.5) Kyg = {F(B)*l Bf h'd.“}”f’ bz = g

icm°®
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and. the notations
, 'A‘oo E=] U 'A'Z” "A‘-k == m A‘Il

(1.6) #>1 2>1
‘ By =) B,, B.=()B;
a1 o1

It iy known that 4, = B, (see [2], where a direct characterization of A,
is also given). A simplo relationship between 4, and B, is ag follows.

LivimA 1.2, Let b @A.‘g(d/,t)‘ Then,
(L7 b e Ay(du)  if amd only if e By (du).

Proof, Noto that, by (1.B), h & 4,4(du) if and only if

1< by by < A,
that i8 to say,
P}y ~ by, uniformly in B.

Lot 1< p < 2and » = 1/(p~1). Then, 1" ¢ 4,(dp) if and only if

ol -
R W < A< iy < By sy

sincoe b & Aq(du); that is, it and only if h e B, (du).

CororLAry 1.3, For @ == dv|du, the following are equivalent;

(1) o e Ap(du)NBy(du),

(i) 0~ & Ay (dy) NBy(dv),

(i) 0™ & Au(dp)NBa(du).

The proof follows directly from (1.4) and (1.7). Another useful result
ig ag follows.

TmMMA 1.4, If dvfdy = o € Ady(dp) N\By(dy) and 1 < p < oo, then

(1.8) by ~ by for each h e Ay(dw),
(1.9} Ay () = A, (du),

and

(1.9') By () = By ().

Proof. It heA,(du), then b eB,(du) for some 1 <7< oo, gince
Ay = By, With ¢ = #/(r—1), Holder's inequality yields
(heo) umy < ) Wy S Oy iy
since h & B,(du) and o e B,(du). Hence, dividing by o,z = v(B)/u(B),
we s0o that
(i) Py << Oy -
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Applying the same argument to the function g = A=~ which is
in A, (@), we obtain the estimate g,z < Og,m)- Raising it to the (p —1)*
power and combining it with (i) it follows that A, (du) = A, (dy).

Conversely, if € A, (dv) then h € B,(dv) for somer & (1, o). Therefore,
using also the assumption that w € A« (du), we obtain

bz, = w(B)™" [ R 0™ ap
B

N

(e [ ol ue)? [ ajerta™
B

= [»(B) /(BT hizy [(Lfoo) iy T
<O (B) (B hyzy [0um] ™" = Ohyy.
In other words, h,gm < Chyp uniformly in B. Hence, by (i) above, formula

(1.8) follows. The rest of the proof of (1.9) is also clear. Finally, (1.8) and
(1.9) yield (1.9') since
b e By(du)<hlp ~ b,y oniformly in B.

OOROLLARY 1.5. Let o = dv/du € AxnBy. Then, for every positive
density h and any real s, hwa(m ~h uniformly in B; henoe
(1.10) Ay (d0®) = A,(do")
for every 1 <p < oo.

The conclugion comes from iterating Lemma 1.4.

ProPOSITION 1.6. If o = dv/du € AxN\By then o multiplies A, that
is, for every real s,

(1.11) hed,(dw®) if and only if (wh) e 4,(d0®).

Proof. By (L.10), it suffices to consider s = 0. Then, & € A,(du)

implies & € B, (dy) for some € (1, oo). Hence, for all balls B,

ws—l(B)

and  B,(dw®) = B,(do®")

9 1 '
(wh)yg (B 0™ )y == w(BY»(B)™* {‘IM‘(‘E“)‘ f hf"zd/ﬁ}(h’”l)mﬂ)
i

< (B2 (B) iy Lofimy I (0 sy
< Oy ()
Hence, & €. 4,(du) implies that (wh)e dy(dv) = 4,(dp) by (1.9). By
Corollary 1.3, @™ € A,NB, and so the converse also holds.
Remark 1.7. Let X = 0D, where D < R" is a bounded Lipschitz

domain (see [5], [6], etc.) starshaped about & fixed point P, say, and
let 4 = Buclidean distance. If dy = do is the harmonic measure for .D

gince & By.
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(evaluated ab L), then (X, @) = (8D, w, d) is a space of homogeneous
type with »(X) = w(dD) = 1. If do = surface measure on 8D, then

== ¢ and » = @ are mutually absolutely continuous. Moreover, the
donsity

ldp = dolds = 0(Q) = K(Py,Q), QeoD =X,

callod tho Poisson kernel for D (evaluated at P,), satisfies o € B,(do), see [5].
Thus oquivalently,
(L1.12) w&.dy(deo) if
In the particular case when D is o (*-domain (e.g. [67, [7], etc.) the main
regult of § 1 in [8]skhows that  and o~ arein 4(de). Consequently,

(1.13) o, 0" € Ay(do)\By(do) i

D iy a Lipschitz domain.

D ig a C*-domain.

§ 2. Bounded mixed variance and duality. From now on, let us suppose
that w(X) << oo, (At any rate, the cage u(X) = -+ co is slightly easier.) -
Accordingly, the constant function » (X)~* ig considered to be a (1, ¢} atom
of typo (u, »), while the constant x(X)™" is considered to be a (1, ¢) atom
of type (v, u).

DrrmNreoN 2.1. A funetion g e INX, dv) has bounded mized variance
of type (u,») if

(2.0) ¥ ol0) = sup{ (B [lg— gm0} < 0o
B

with supremum taken over all balls B c X, o = dv/du.
Noto that, adapting to our abstract setting a resulb in [14]; condition
(2.0) is equivalent to

(2) Il = sup{a(B)™ [ lg—gumld} < oo
B

whenevor @ &.44(d»). The class of all such functions g will be denoted by
BMY,(dv) == BMV,(X, d»). Bquipped with the norm

(2‘2) ‘/V(A,v(g) gn I'))(X)-l f gd"" "I'Vu,v<g)
X

tho space BMV ,(dv) = {g & LNX, dv): ¥, ,(g) < oo} is complete.

Our noxbromarks, including Theorem 2.3 below, extend the correspond-
ing “anwoighted” results of Coifman~Weiss (see [4], pages 631-633).
then |g| € BMV, (dv) for all
g € BMV ,(dv). Hence, BMV,(dv) forms o lattice.

Proof. As usual, the proof amounts to showing that, if for each B
and g @ I (dv) there oxists a constant gp for which

(2.0") {nB)y [ 1gmgB|ﬂwdw}1’“<K
B
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with constant K independent of B, then g e BMV,(dv) with variance
¥ ,,(9) < OF. Since o € A, (dv) is equivalent to o ¢ By (du), it is easy to see
that 7,,(9) < (1+By) K.

THEOREM 2.3. If dvjdp = o € Ay(dv), then BMV,(dv) is the dual of

the atomic space kL* (dv) for some pairing f, ¢, such that, for all g e BMYV,,(dv),

Ky >0 = [fgd,  for all atoms f e T (dv).
x

(2.3)

Proof. By Lemma 2.2 and standard arguments (see [4]), in order
to verify the inclusion BMV, (dv) = [7:,;'z(dw)]*, it suffices to consider the
case when f is an atom. For the constant atom f = y(X )~1, it is clear that
I<fy 0>0) SN uylg). Otherwise, let f =a be a (1,2) atom of type (u,»)
supported by B. Since [ adv = 0 then, for any g € BMV, (d»),

Kal’ g>m| - lf a[g_gv(B)]dvi = ! f “w—m [g—gu(ﬂ)] a)wdi:
B
g{ f atip }1/2{ flg”‘ﬂvm>!2wdv}1/2
B B

<{u®B [lg—gumltod]” <700
B

Conversely, if A e [3,*(d»)]* with norm |4, wo fix & ball B = X and
denote by x5 its characteristic function. Consider the linear subspace

@B, &) = [y e I*(B, d): [yody = 0}
B

which is the orthogonal complement of «'*in I?(B, d»). In fact, denoting
by || |l the norm in I*(B, dv), we have

o

1 1 .
oy = (B e [t} < Bo(Bu(B < o
' 1 (B) I
gince w € By(dy). For each y € Q¥(B, dv), we obscerve that the function
o =y o™ Iyl u(B)™"

is a (1,2) atom of type (u, ») supported. in B, Thus, yy, belongs to i (dy)
with norm < p(B)*lyll, and so A(yyy) is defined und. satisfios ]/l(yxn)l
< Al w(BY? yl,y. Bxtending 4 by Hahn-Banach to all of L*(B, dv), we
deduce the existence of some g e I*(B, dv) such that

(2.4) A(y) = [ygdv, for all y e I*(B, d).
B

Moreover, a familiar argument (see [4], page 633) yields then a function
g € I*(X, dp) such that (2.4) holds for every ball B < X.
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Tt remains 1o show that g ¢ BMV,(dv) with norm dominated by 14].
Note first that

Q) ()7 [ gar| = 14@)] < 14)
X
by = w1 I8 tho constant atom, Secondly, we claim that
(i) P up(9) < (L By) 4]
By (2.0), observe that

14 /x v((/ o H'll])’ f(/‘[‘/” (])(3)1(” d”//“’(]})

for all p wapported in balls B and. satistying

(i) [orodrjuB)<1.
B

Thus, wo must show that for all f == pw, with ¢ as above,

@) sub | [ F19—gum)@n(B) | < LB 4.
n

But, tor any such f, Schwars’s inoquality and (iii) imply that
(13) 1 f
- | e w)wdy | < B
since o & By(dp). Tence, using again (iil) we see that the function
b= (14By) 7 [f = Jumu(B iz

is a (1, 2) atom of type (4, ») supported in B, for every f = pw as above.
Con ﬂoqnum.]v, applying 4 to any such atom b, it follows from (2.4) that

- J U=l b ®)] =] J fl9=0us)0e(B) |

Vol ==

(L--13,) | A (D))

KINeo alno [ - ] s dr-intogral zoro over B. This proves (2.5) and hence
(i) above. Therelore, g € BMV,(dv) with norm. < (24 By) 4]
Roemark 2.4. Sinco o ¢ By(du) implies tho estimate

Ppn(g) == H}:P' {M(B)*l f lgow!|*du }1/2 +Bz|90~’|u(13)]7
5

wo have in this case that

(2.6) (go) € L™ (dp)
with 77, ,(¢) = (1] Ba) lgolleo,pe In pmmculm,

{2.7) o & By (du) ~! e BMV, (dv) .

implies g € BMV,(dv)

jmplies
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with mixed variance ¥, ,(du/dv) < (1+-B,). In view of this and of The-
orem 2.3, it seems more natural to include in the definition of BMV, (dv) the
condition that o = dv/du € By (du). Thus, we shall do so from now on.

Asgsuming merely that o = dv/du eA oo (@), it follows that BMV, (du)y

= BMV,(d») = BMO (X) is the space of all funetions with bounded mean
oscillation on X. By a special case of Theorem 2.3, we then have

(2.8) (A2 (d@) T* = BMO(X) = [R);* (du)T*.
Moreover, by Theorem (2.25) of [4], we have the formula
(fo) € by, (du)

where At = I"® = M2 for all 1 < ¢ < oo ([4], Theorem A).
Despite formula (2.8), we cannot conclude from these facts that any

(2.9) fehi(dv) if and only if

density o € 4, (du) multiplies BMO. This would be false even for o e A, (du)

since such densities can still be unbounded. (Compare with {177, Theorem
1.2)

§ 3. Bounded p-variance and other remarks. OQur carlicy definition of
bounded mixed variance referred to an ordered pair of measuros (u, ») such
that o = dv/du € By(du). But, in certain applications (see [8], [16]), one
must also consider the pair (v, u). Since 4, == By, wo only have that

(3.1) o™ = dufdv e B,(dv),

for some L < p < oo depending on w. Therefore, the intorchange of moasures
p# and » in formula (2.1) gives rise to the following notion of bounded
mixed p-variance.

DEriNmrioN 3.1. Let 1 < p < oo. A function g € I} (X, du) has bounded
mived p-variance of type (v, u) it
32) 70 = V(B [ g gm0 rau )" < o,

b

where the sup is taken over all balls B « X and o~ = du/dv e B, (dr).

Note that, by (1.4) and Theorom 4 of [14], (3. ‘)) i oqmmlmn, 1o
(3.2)

1910, = Hup{ "(B)” f If/—f/mmlflﬂ} <« 0.

Hence, the class of all such g will be denoted by BMYV, (dg) = BMV, (X, ap).
Equipped with the norm a

(3.3) Hn(g) = IM(X -t f ﬂdu| e

the space BMV,(dx) = {g e L(X, du): #P,(g) < oo} is completo.
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Lmmna 3.2, If ¢ is in BMYV, (du), s0 is |g|. Hence, BMV, (du) is o latiice.
Proof. As before, it suffices to show. that the uniform bound .

B [lo—gatet2au ) <x
implies that g e BMV, (du) or, equivalently, that flg]l . < .

Let ¢ = p/(p —1).

TuroREM 3.3, BMV,(du) 48 the dual of the atomic space hY%(du)
for some pairing <f, g> suoh that, for all g € BMV, (du),

(8.4) Sy gy = ffgdy, for all .atoms f e B9 (dp).
X .

Proof. Sinco the argument is analogous to the proof of Theorem

2.3, wo will ho brief. For any atom f = a e h}?(du) with support in B,
ginee pt-b-gt =0 L and du = o™ dv, wo have

< e P dn P
\Hbfla\“dv} {ﬁ[l P pdw}

. - —p g, \UD .
<{r®7 [ lg—gumlP e au " <72(9)
I

(<t 1 == | [ alg = gumlo™ v

and thoe inclusion BMYV, (du) < [b¢(du)]* follows as before.

Convorsely, given A e [h(du)]* with norm [[4]| and fixing some B,
wo let now LY(B, du) = {y € (B, du): f ydp = 0} with norm [ly|,. For
cach y & L (B, du), the function

a = yypu(B)0 (B) lyl;?

in o (1, g) atom of type (v, ,u) Thus, A(yys) is defined and [A(yxz)|

< Al (B) w(B)" |y .
By Hahn-Banach and the . Riosz Ropxesentauon Theorem, thero
oxigts nonie g € LY(B, du) such that

A(y) = [ygau, for all y € LB, dp).
n

As Defove, it follows that there is & g e L?(X, du) such that (3.4') holds
for every ball B, Finally, we claim. thatb
() Prug) < (L- %BJ,)IIAH

From (3.2), it follows that

(3.5) P29) = sgp\ 1= gum1auiv(B) |
ris
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for all f = po'~? supported in balls B and with norm <
For any such f, Holder’s inequality implies that

v(B _ .
Vum) < { B f ”dav} <B,
! & B, (dv), by hypothesis. Consequently, the function

b= (LB [f ~fum T as o (B)
is a (1, ¢) atom of type (v, u) supported in B and the rest of the prool of ()
follows as before.
Remark 3.4. Since w™

< 1in LYB, dulr(B)).

since w™

Y& B, (dv) wo havo that

(3.6) (g/w) e L®(dv) implics g € BMV, (dp)

with mixed variance ¥7,(¢) < (1 -+ By) /ol - In particalar, if 1 < p < oo
then

(3.7) w™ e B,(dv) implies o eBMV, (dy)

with mixed variance ¥7,(dvfdu) < (14 B,).
Next, let us consider a weighted vmlam of Theorom (2.25) of [4].

THBOREM 3.5. Let dw® = w()® du for any real s, and let W' = W', If
weA*(d,u)nB*(dm then

(3.8)
(3.8")

a el (do™) if and only if

if and only if

(aw) €} o s (0%,
aehl, i(dw®) (aw) € ,_y(de®™),

Since dw' = dv and dw® = dy, we arc mainly interested in the cases
$ =1 and s = 2 of this result. We bogin with a lemma.
LiznmA 3.6. Let 1 < qg< o0 and ¢ = q/(g—1).

If ™ e By (du), then W2(Au) = W™ (du).
If w e By(dp), then h%(dv) = hL™(dv).

(3.9)
(3.9

Proof. The two parts ave similar, and are simple analogues of The-
orem A in [4]. In (3.9") for example, it suffices to show that any atom o
ek (dv) may be decomposed in the form (L.1) with respect to (1, oo)
atoms a; of type (u, 7). Following now the notation of [47, 1ot a be supported
in a sphere §, and let b = au(8y). We consider Whitney-type Docompo-
sitions of bounded opon subsets

={weX: [M,q0](x)>a}, where M b = (M, b

and

(810)  [#,f1(®) = sup{u(8)™" [ |f1du: § is a sphere, & e S},
8
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Lot denote the characteristie functions of the spheres §; which
form an M-disjoint covering of U?, and define

o if wo¢U"
() { (@) Doy (2), it weU".’

Since [ bdv = u(8,) [ ady = 0 by agsumption, we choose

Q]('r]/b>v(ﬂj)Xj(w)! it ael
hy(@) = b(w)n, (o) — (njb),,(,qj)x,(w) for all # ¢ X,
go that
(3.11) b(@) = go(o)+ 5}k (2)

Clearly, each Ty iy supported in the sphere §; and [ Iydv = 0. In order to
infer that also the bounded part g, satisties [ gody = 0 we need to check
that the sum in (3.11) is convergent in Z*(dv) norm.

But, by the M-disjointness of the spheres 8;, we see that

2 Iy, <23 [pid <2y [ play
[] 3 Slj Ue

< 2Mu(S) { (80 [ blwdn}.
Sp

Hoence, using Idlder’s inequality with exponent g, the desired conclusion
follows whenever o & By (du). The rest of the proof is identical to the
argument in [4].

Proof of Theorem 3.5, Let us consider (3.8) in the case s = 1, say.
Tor any atom @ & bl (du), it suffices to show that b = (aw) belongs to
Y (dw). In fact, with o' in place of o, (3.9') shows that h,*(dw™)
= hy™(dow~") provided w™' = (dw™'/dp) is in By(du). The latter holds by
our &Hﬂumptwus and Corollary 1.3, If the atom « is supported by B, we
have

{er* f vapf" < o(B) {wB [ otdu )" <Bou(B)"

i
since m & By(du). Tt follows at once that (aw) e ky* (dw™).

& nnv@rmsl’y, for any b & hy®(dw™?) suppor“red by B, it suffices to check
that @ == (bjw) helongs to h} “(tl,u) by virtue of (3.9) with ¢ = 2. We havo
[adu =~ﬂ»-fbcu T =0 and

(B [ aa)™ <u®)™ | By (B)™
n

B [ (Lw)rdy }""’ <
Vi

sineo w & Ay(du) implies that (1/w) & By(dy).
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" The proofs of the other cases are all analogous.

Remark 3.7. Since o & By (du) if and only if o e A,(dv), combining
(3.9") with Theorem: 2.3 yields the duality

(3.12) BMY, (dv) = [BL(@)]*, where I} = A1,

On the other hand, if w™ €B,(dv)NB,(du) then, ﬁombiniug‘ (3.9) with
Theorem 3.3 we obtain

(3.13) BMY, (du) = [P(dp)]*, . where  R' == pb™,

In particular, by Corollary 1.3, formula (3.13) is valid whenoever & A, (du) N
N By (dp). :

Wo close with a result about multipliers of BMV, (dp) on (XX, », u)
‘= (0D, v, o).

ProrosiTIoN 3.8. If w = (dv/du) e Ay(du), then, for all 0 < a-%1
Lip(a) is contained in BMV,(du) and mulliplies BMV, (du) ao‘mmuously:

Prooi. It sutfices to show that for all f e BMV,(du) and ¢ e Lip(a)

(3.14) Wl < OlghA ()

where |lgll, = 9lo-+Cs a8 usual.
Fixing an arbitrary Dall B == B, (,) in &D, wo have

Bf g —Fum 9 @o) s < Wl [ 1F —Fuiz |8+ Fu| [ 19— (20) 1 0.
B : B

Hence, with C(B) = f,z9(%),

. 1
W oo | 1f!]"0(B)fdﬂ~<\[|0|]u{"//»,u(f)+Lf s i ).

B

Using f = fo® PPy~ and Holder's inequality yielils

| [1an] < 1floaui-ap (BYY < Oyt ()n(B)
il

where p’ = p/(p—1) and L<p < co.
_ Tinally, using the 4. (du) property, it follows that for any & > 0 thore
13 & constant ¢, > 0 such that

(i) »(B) = (1/e,) (B, uniformly in B. Now, u(B) - o(B) ~t ok
Thus, choosing & = 1 and fixing any p > 2 (% -1)/a, wo have

(i) | fFdu|rp(B) < O,h,,(frre-tobio
B

and the conclusion follows at once from (i) and (iit).
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