

Translation invariant complemented subspaces of L^p

by

J. BOURGAIN (Brussels)

Abstract. G be a compact Abelian group and Γ the dual group of G. Assume $\Lambda \subset \Gamma$ and L^p_Λ complemented in $L^p(G)$ for some $1 <math>(p \neq 2)$. A necessary and sufficient condition on Λ is given in order that L^p_Λ should be isomorphic to the space $L^p[0, 1]$.

Introduction. Throughout this note G will be a compact Abelian group and Γ the dual group of G. For $\Lambda \subset \Gamma$ and $1 \leq p \leq \infty$, L_A^p will have the usual meaning. The results presented here are a continuation of [2] (see also [3] for more details) in which more particularly the Cantor groupwas considered.

Our purpose is to show that if $1 (<math>p \neq 2$) and L^n_A complemented in $L^n(G)$, then the analytic condition for A considered in Th. 1 of [2] is necessary and sufficient in order that L^p_A should be linearly isomorphic to the Banach space L^p . From the descriptive point of view, our approach is satisfactory if the elements of G are of bounded order.

Notations and preliminary results. Let $\gamma_1, \ldots, \gamma_r$ be a finite sequence in Γ . Define by $V_k(\gamma_1, \ldots, \gamma_r)$ for $k=1,2,\ldots$ the set of characters γ which can be written in the form

$$\gamma = \gamma_1^{a_1} \dots \gamma_r^{a_r},$$

where $a_s \in \{0, 1, ..., k\}$ for s = 1, ..., r.

Similarly, let $W(\gamma_1, \ldots, \gamma_r)$ be the set of characters γ of the form

$$\gamma = \gamma_1^{\alpha_1} \dots \gamma_r^{\alpha_r},$$

where $a_s \in \{0, 1, ..., s\}$ for s = 1, ..., r.

For k = 1, 2, ..., we agree to say that a subset Λ of Γ has property (k) provided there exist a sequence (γ_r) of distinct characters and a sequence of characters (δ_r) in Γ such that for each r

$$(1) V_k(\gamma_1, \ldots, \gamma_r) \cdot \delta_r \subset \Lambda.$$

Analogously, we define property (L) for a subset A of I replacing (1) by

$$(2) W(\gamma_1, \ldots, \gamma_r) \cdot \delta_r \subset \Lambda.$$

96

Thus property (1) corresponds to the property stated in Th. 1 of [2].

Although the next results are in [2] explicitly stated for the Cantor group, they extend to any compact Abelian group.

Proposition 1. If p > 2 and L^p embeds in L^p_A , then A has property (1).

Proposition 2. Property (1) is "primary", i.e. if A has (1) and $\Lambda = \Lambda_1 \cup \Lambda_2$, then either Λ_1 or Λ_2 has (1).

In fact, Prop. 2 is purely combinatorial and related to Hindman's theorem (see [1], [7]).

Translation invariant complemented subspaces. In this section we state the new results. Proofs will be outlined in the next section.

Proposition 3. If $A \subset \Gamma$ has (L), then L^p embeds in L^p_A for all 1 .

Proposition 4. Assume $A \subset \Gamma$ has (1) and L_A^p complemented in $L^p(G)(p \neq 2)$. Then A has (L).

THEOREM 5. Assume $A \subset \Gamma$, $1 and <math>L_A^p$ complemented in $L^p(G)$. Then t.f.a.e.

- (i) A has (1).
- (ii) Λ has (L).
- (iii) L^p_A is isomorphic to L^p (assuming Λ countable).

Corollary 6. Assume $A \subset \Gamma$, $1 , <math>q < \infty$ and L_A^p , L_A^q complemented. If L^p_A is isomorphic to L^p , then L^q_A is isomorphic to L^q .

COROLLARY 7. Assume the elements of G of bounded order and $A \subset I$. Then t.f.a.e.

- (i) There is a sequence (γ_*) of distinct characters in Γ such that Λ contains a translate of the subgroup $gr[\gamma_1, \ldots, \gamma_r]$ for each r.
- (ii) There is a subset Λ' of Λ such that for some $1 <math>(p \neq 2)$ L_{Λ}^{p} is complemented in $L^p(G)$ and isomorphic to L^p .
- (iii) There is a subset A' of A such that for all $1 <math>L^p_A$ is complemented in $L^p(G)$ and isomorphic to L^p .

Referring to the classes \mathcal{S}_a introduced in [2].

Corollary 8. Assume $A \subset \mathbb{Z}, 1 and <math>L_A^p$ complemented in $L^p(\Pi)$. If Λ does not belong to any class of finite index, then Λ contains arithmetic progressions.

$$\gamma_1^{j_1} \dots \gamma_r^{j_r} = 1$$
 and $|j_s| \leqslant k$ $(1 \leqslant s \leqslant r) \Rightarrow \gamma_s^{j_s} = 1$ $(1 \leqslant s \leqslant r)$.

We omit the proof of following two simple facts.

LEMMA 1. If Λ is an infinite subset of Γ and k a positive integer, then there is a sequence (γ_r) in Γ and $\delta \in \Gamma$ such that (δ, γ_r) is k-dissociated.

LEMMA 2. Let (γ_*) be a sequence of distinct elements of Γ and k a positive integer. Then there exist finite subsets S_a of N satisfying $\max S_a < \min S_{a+1}$, such that (δ_a) is k-dissociated, where $\delta_a = \prod \gamma_r$.

The next lemma is easily obtained by standard approximation arguments.

LEMMA 3. Given $1 \le p < \infty$, $\varepsilon > 0$ and positive integers k, r, there exists an integer K such that if $(\gamma_s)_{1 \leqslant s \leqslant r}$ in Γ is K-dissociated and if $f_s \in$ $[\gamma_s^j; |j| \leq k]$ $(1 \leq s \leq r)$, then

$$(1-\varepsilon) \|f_1\|_p \dots \|f_r\|_p \leqslant \|f_1 \dots f_r\|_p \leqslant (1+\varepsilon) \|f_1\|_p \dots \|f_r\|_p.$$

LIEMMA 4. For $1 <math>(p \neq 2)$, there is a constant $c_p > 1$ such that the orthogonal projection from $[1, \gamma, \gamma^2]$ onto $[1, \gamma]$ is of L^p -norm at least c_{ν} , whenever γ in Γ is of order at least 3.

Proof. By duality, we can take 2 . Since further

$$||a + be^{i\theta}\gamma + ce^{2i\theta}\gamma^2||_p = ||a + be^{i\theta} + ce^{2i\theta}||_p$$

we can restrict ourselves to G = II and $\gamma = e^{i\theta}$. Now, one has for $0 < \varepsilon < 1$

$$||1+e^{i\theta}-\varepsilon e^{2i\theta}||_p^p=||1+e^{i\theta}||_p^p-\sigma\varepsilon+o(\varepsilon^2),$$

where

$$\sigma = p \, \pi^{-1} 2^{2(p-1)} \int\limits_0^{\pi/2} [\cos t]^{p-1} \cos 3t dt > 0$$
 .

The next result is immediate from Lemma 3 and Lemma 4.

LEMMA 5. For $1 <math>(p \neq 2)$, there is a constant $c_p > 1$ such that for given positive integers k, r, the L^p-norm of the orthogonal projection from $V_{k+1}(\gamma_1, \ldots, \gamma_r)$ onto $V_k(\gamma_1, \ldots, \gamma_r)$ is at least c_n^r , provided $(\gamma_s)_{1 \leq s \leq r}$ is a sufficiently dissociated sequence in T whose elements are at least of order k+1.

LEMMA 6. Assume L^p_A complemented in $L^p(G)$ $(p \neq 2)$ and A with property (k). Then for infinitely many characters γ , the set $\bigcap_{i=0}^{k+1} \overline{\gamma}^i \Lambda$ has (1).

Proof. Remark first that by Lemma 2, the sequence (γ_r) in the definition of property (k) can be chosen arbitrarily dissociated. Since further γ will be obtained as element of $V_1(\gamma_1, \gamma_2, \ldots)$, the existence of infinitely many candidates will be automatic. Denote P the orthogonal projection on L_A^p and fix r large enough to ensure $e_p^r > \|P\|$. Take $\gamma_1, \ldots, \gamma_r$ sufficiently dissociated and $A_1 \subset \Gamma$ with (1) such that

$$V_{L}(\gamma_{1}, \ldots, \gamma_{r}).\delta \subset \Lambda$$
 for each $\delta \in \Lambda_{1}$.

If some $\gamma \in \{\gamma_1, \ldots, \gamma_r\}$ is of order at most k, then obviously

$$\bigcap_{j=0}^{k} \bar{\gamma}^{j} \Lambda = \bigcap_{j=0}^{k+1} \bar{\gamma}^{j} \Lambda$$

has (1), since latter set contains A_1 .

Otherwise, Lemma 5 asserts that the L^p -norm of the orthogonal projection from $V_{k+1}(\gamma_1, \ldots, \gamma_r)$ onto $V_k(\gamma_1, \ldots, \gamma_r)$ is at least c_p^r . Fixing $\delta \in A_1$, one has

$$V_k(\gamma_1, \ldots, \gamma_r) \subset \Lambda . \delta \cap V_{k+1}(\gamma_1, \ldots, \gamma_r) \subset V_{k+1}(\gamma_1, \ldots, \gamma_r),$$

where in particular the second set is $\|P\|$ complemented in the third. Thus the first and the second set must be different, implying the existence of some $\xi_{\delta} \in V_{k+1} \setminus V_k$ such that $\delta \in A$ ξ_{δ} . Applying now Prop. 2, we can fix $\xi \in V_{k+1} \setminus V_k$ for which $A \xi \cap A_1$ has (1). There is a nonempty subset A of $\{1, \ldots, r\}$ such that

$$\xi = \gamma^{k+1} \eta, \quad \text{ where } \quad \gamma = \prod_{s \in \mathcal{A}} \gamma_s \text{ and } \eta \in V_k(\gamma_s; \ s \notin A).$$

Since

the set $\bigcap_{j=0}^{k+1} \bar{p}^j \Lambda$ has property (1), which conclude the proof.

LEMMA 7. Assume L^p_A complemented in $L^p(G)$ $(p \neq 2)$. If Λ has (1), then Λ has also (k) for any positive integer k.

Proof. We proceed by induction on k. So assume that under the above hypothesis the implication $(1) \Rightarrow (k)$ holds. Thus in particular Λ has (k) and hence, by Lemma 6, there is a character γ_1 such that the set

$$\Lambda_1 = \bigcap_{j=0}^{k+1} \overline{\gamma}_1^j . \Lambda = \bigcap_{\xi \in V_{k+1}(\gamma_1)} \xi . \Lambda$$

has (1). Observe that $L^p_{A_1}$ is still complemented in $L^p(G)$ since A_1 is finite intersection of L^p -complemented sets. So, by induction hypothesis, A_1 has (k).

Apply again Lemma 6 to obtain a character $\gamma_2 \neq \gamma_1$ such that

$$\Lambda_2 = \bigcap_{j=0}^{k+1} \overline{\gamma}_2^j. \Lambda_1 = \bigcap_{\xi \in \mathcal{V}_{k+1}(\gamma_1, \gamma_2)} \xi. \Lambda$$

has (1).

Iteration of this procedure leads to a sequence (γ_r) of distinct characters such that for each r

$$\bigcap_{\xi\in \mathcal{V}_{k+1}(\gamma_1,\ldots,\gamma_r)}\bar{\xi}.A$$

has (1) and hence is nonempty. Thus one can find a sequence (δ_r) in Γ satisfying

$$V_{k+1}(\gamma_1,\ldots,\gamma_r).\delta_r \subset \Lambda$$
 for each r .

Consequently Λ has property (k+1).

Proof of Proposition 4. We use the same procedure as in Lemma 7. If $\gamma_1, \ldots, \gamma_r$ are already obtained and

$$\Lambda_r = \bigcap_{\xi \in W(\gamma_1, \dots, \gamma_r)} \xi . \Lambda$$

has (1), Lemma 7 asserts that A_r also has (r+1). In particular, there exists $\gamma_{r+1} \in I^r$ so that

$$A_{r+1} = \bigcap_{j=0}^{r+1} \bar{\gamma}_{r+1}^j. A_r = \bigcap_{\xi \in W(\gamma_1, \dots, \gamma_{r+1})} \xi. A$$

still has (1).

Proof of Proposition 3. We will construct a system of functions on G with spectrum in Λ which is equivalent to the usual Haar system in $L^p[0, 1]$.

Take first sequences (p_m) , (q_m) of trigonometric polynomials with positive spectrum on H such that

(i) $|p_m| + |q_m| \le 1$.

(ii)
$$\int\limits_{T}|p_{m}|^{2}\!\!\rightarrow\!\frac{1}{2},\int\limits_{T}|q_{m}|^{2}\!\!\rightarrow\!\frac{1}{2}$$
 "rapidly enough".

Let further p_m , q_m be of degree at most q_m .

Let (γ_r) be a sequence of distinct characters and (δ_r) a sequence of characters s.t.

$$W(\gamma_1, \ldots, \gamma_r) \cdot \delta_r \subset \Lambda$$
.

We will fix our attention to the case where the γ_r are of unbounded order. We can then replace (γ_r) , (δ_r) by sequences (γ_m) , (δ_m) satisfying

(iii) $\gamma_1^{j_1} \dots \gamma_m^{j_m} = 1$ and $|j_s| \leq d_s \Rightarrow j_1 = j_2 = \dots = j_m = 0$.

(iv) $\gamma_1^{j_1}...\gamma_m^{j_m}\delta_m\in A$ provided $j_s\in\{0,1,...,d_s\}$ $(1\leqslant s\leqslant m).$

Define $\varphi_{m,0} = p_m \circ \gamma_m$ and $\varphi_{m,1} = q_m \circ \gamma_m$. Let further for $n = \sum_{s=0}^{m-1} \varepsilon_s 2^s = 1, \ldots, 2^m$,

$$f_{m,n}=\prod_{s=0}^{m-1}\varphi_{s,s_s}.\,\delta_{m,n},$$

.

where the $\delta_{m,n}$ in Γ are chosen such that $\operatorname{Spec} f_{m,n} \subset \Lambda$ and the system $(f_{m,n})$ is a martingale difference sequence for the lexicographical order in $L^p(G)$. By (i)

$$1 \geqslant |f_{m,n}| \geqslant |f_{m+1,2n-1}| + |f_{m+1,2n}|$$

and by (iii), (ii)

$$\int\limits_{\mathcal{U}} |\varphi_{m,0}|^2 = \int\limits_{\mathcal{U}} |p_m|^2, \qquad \int\limits_{\mathcal{U}} |\varphi_{m,1}|^2 = \int\limits_{\mathcal{U}} |q_m|^2$$

and

$$\int\limits_{G} |f_{m,n}|^2 = \prod_{s=0}^{m-1} \int\limits_{G} |\varphi_{s,s_s}|^2 \sim 2^{-m}.$$

By standard techniques, one can then show that $(f_{m,n})$ contains a subsystem equivalent to the Haar system (cf. [8]).

Proof of Theorem 5. (1) \Rightarrow (2) follows by Prop. 4.

(2) \Rightarrow (3): By Prop. 3, L^p embeds in L^p_A and hence also as complemented subspace (see [8]). The isomorphism follows from Pełczyński's decomposition method (see [9]).

(3) \Rightarrow (1) follows by Prop. 1 and duality in case 1 .

Corollary 6 is now straightforward. .

Proof of Corollary 7. (iii) \Rightarrow (ii) is obvious and (ii \Rightarrow (i) is a consequence of Th. 5.

Notice that the orthogonal projection on $\operatorname{gr}[\gamma_1,\ldots,\gamma_r]$ is given by a conditional expectation. The implication (i) \Rightarrow (iii) follows from standard Burkhölder-Gundi square-function techniques for martingale difference sequences and Stein's inequality (cf. [6] and [10]).

References

- J. E. Baumgartner, A short proof of Hindman's theorem, J. Combinatoria Theory (A) 17 (1974), 384-386.
- [2] J. Bourgain, Sous-espaces L^p invariants par translations sur le groupe de Cantor,
 C. R. Acad. Sci. Paris, Sér. A 291, 39-40.
- [3] New classes of Lp spaces, to appear in Springer LNM.
- [4] J. Bourgain, H. P. Rosenthal, G. Schechtman, An ordinal L^p-index for Banach spaces with application to complemented subspaces of L^p, to appear.
- [5] R. E. Edwards, G. I. Gaudry, Intllewood-Paley and Multiplier Theory, Springer Ergebnisse 90.
- [6] A. Garsia, Martingale Inequalities, Van Nostrand.
- [7] N. Hindman, Finite sums for sequences within cells of a partition of N, J. Combinatorial Theory (A) 17 (1974), 1-11.

- [8] W. B. Johnson, B. Maurey, G. Schechtman, L. Tzafriri, Symmetric structures in Banach spaces, Mem. Amer. Math. Soc. 217 (1979).
- [9] J. Lindonstrauss, L. Tzafriri, Classical Banach Spaces I, Springer Ergebnisse 92.
- [10] E. M. Stein, Topics in Harmonic Analysis, Ann. of Math. Studies, Princeton University Press.

DEPARTMENT OF MATHEMATICS VRIJE UNIVERSITEIT BRUSSEL

Pleinlaan 2, F7 1050 Brussels

Received September 21, 1981

(1707)