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A MIXED GAME OF TIMING: PROBLEM OF OPTIMALITY

The present paper is a continuation of paper [2]. Therefore, all nota-
tion, Definitions 1-8, Lemmas 1-10, and relations (1)-(41) given therein
are binding in what follows.

1. Proof of Theorem 1. Before proving the theorem we formulate
some lemmas.

Lemma 11. If 8 € {8(€)}eso € N; (2]l = 2), then the strategy S is admas-
sible in the game I;.

This lemma follows easily from Lemmas 5-8 and from the relation
8, (e/2) € BY (4y)-

LeMMA 12. For a strategy F € M, and a family {8(¢)}.>o € N, (Il7ll = 2)

described by (38) and (41),
(i) K(F; y|n) i8 a continuous function of the variable y in the interval

a,, a,);

(iis ,K(Da, (@) Fr (Z,,); 8(e)|7) is a continuous function of the variable
T in the interval {b,, a, ) for ¢ > 0.

Proof. Let @ € (b,, a,). Then, with the aid of (5), (13), (9), (6), (3)
and (4), we get

E(D,(2,)F%, (@,.); 8(e)17)
=0-a [{ [ P@+1L-P@I1-20) BT, @)+

y>z

+ [ 1-20)aT,, ) aF:, @)+

+a f {P (@)+[1—P(2)]K (55,,,1 ; S, (5) lﬂx)} AF7, (Fns),

Whence it follows that statement (ii) of the lemma is true. Statement (i)
Can be concluded similarly.

LemmA 13. Under the assumptions of Theorem 1, if w = ¢ and the
family {8(e)}.s, is of the form (41), then a < 1.
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Proof. Let us assume that a = 1. Then for any £> 0 we have

8(e)y = 8; (¢]2).
Hence we infer the validity of the inequalities

(42) & (8 82, (5)17) >
and
(43) K(F'; s, (5)|n)< vate

for any positive ¢ and for all F' e A, where v,, is the value of the gae I, .
Let us put

F(in) = Ua2(m1)'F;1(En,l) (’l’b = II””))
S:I (%) = [Gm, {Sm(y)}y] (’m' = [ﬂl).

By the definition of the strategy S (¢/2) it can be concluded, with
the help of (7) and (11), that suppG™ < @, ,1) and that G™ is a contin-
uous measure.

Further, we put

Y (Ezn) = -Da,,l ($1) F:l (En,l) .

On account of the definitions of F, S,":l(e /2) and F' the following
sequence of equalities is valid:

& (P @); 8 (2)17) 2 [ B (0,705 85 (5) 1) a7, @
D [ [ E((@nyy Zun); 50 (9)17)A6™ (9)2F%, (3,
Q[ [ (P(0) + 11— P (@)K (B0 80 (9) 7)) d0™ (9)2F, (3,

L P(a,)+[1-P(a,)1K (1"2'.‘1; 8a, ('28‘) ! ”)

L P(a,,) +[1—P(a,)1[1—2Q(a,)]
= [ P@)+1-P@)1[1-20(a,) 8T, (@) + 1,
a2

where h is a positive number independent of e.
Analogously it can be shown that

£ (75 55,(2)ia) = [ e+ 0-PEIL-200,)340,, (0.
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Therefore

(Fl S*( )|n) = K(F; S:I(%)I%)—Fh for any ¢> 0,

which contradicts relations (42) and (43).

Thus a < 1.

LeMMA 14. Under the assumptions of Theorem 1, if F and {8(e)}
take the forms determined by (37)-(41), then

(i) a; = b, in the case w = g,

(ii) @, = b, wn the case w = c.

e>0

The proof is immediate becwuse of the monotonicity of the functions
P(t) and Q(2).

LeMMA 15. If the assumptions of Theorem 1 are satisfied in the case
w = ¢ and if the strategy F and the family {8 (¢)}.., are of the forms given
by (38) and (41) with the condition a, = b, = a, respectively, then

(44) K(F; yln) = o,
for any y € <a, a,),
(45) K(-Dz(wl)p;:l(zn,l); S(S)In) = Uy

Jor any £ > 0 and for all z € <a, a, ), where v, is the value of the game I',.
Proof. The assumptions of the lemma imply

(46) K(F; yln) > v,, Yela,a,),
(47) K(F; 8(e)|n) < v,+¢e  (e>0).

Assume that for a certain y, € {a, a,) we have K(F; y,|n) > v,.
Then, by Lemma 12, there ex1st a number &, > 0 and a neighbourhood
Z, of the point y, such that

(48) T.(Zo) >0, E(F; y|n)>0,+¢&, yEZ,.

Hence, in view of the inequality ¢ <1 (the result of Lemma 13),
Wwe can evaluate the following:

47)

V+e> K(F; 8(¢)|n)
($)13) (1~—a)fK(§n; Sﬁ«}m)dp(zn)-pafK(E,,; S, (—;—)ln)df’(f?ﬂ)
W (1-a) [ [ E@s yimaL, (y)dF(anaK(F S( )I“)

2a—q) [ KEF; ylﬂ)dTa(y)+aK(F; S(E)m)
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”~

— (o) [ K(F; y|maLm)+1—a) [ K(F; ylm)dTay)+

veZ, véZ,
+aK(F S,,l ( )ln)
(16)(48)

> (=) [ (Ote) @) +1—a) [ ,dT, >+aK(F 8 ( )(n)

veZy vEZy
(46)

ZQ—a)v,+av,+ (1 —a)egT,(Zy) = v,+4d,

where d is a positive number independent of «.

Therefore v,+¢ > v,+d for any ¢> 0, which is impossible. Thus
condition (44) is valid.

Now, let x € <a, a,). From the e¢-optimality of the strategy §(e)
it follows that for any & > 0

K(Dz(wl )-Fy (% (~n1)7 (3)|”)<’0n+3-

We show that the left-hand side of this inequality does not depend
on e.
Indeed, we have

K (D, () Fr (%,,); S(e)i)
GXI) (1 _ q) f K (Z,; 8,217)d{D, (@) F} (F,,)}+

+a[{P@)+1-PE]K (i S, (5) 12 a2, @
= (1@ E(D,(0) T (%5 S m)+

+afP)+1- P(w]K( RN
(35)

= (1—(1 K(Dz(w1)°Fnl(§n,l); Sln?l”)"‘
+a{P(x)+[1—P(@)][1—2Q(a, )1},

which is of course independent of e.
Therefore, for any ¢ > 0 and for all z € <a, a, ) we get

K(Dz(wﬁ'F:l(fn,l); S(e) |7') < U,
Suppose that for a certain x, € {a, a,) we have
K(D, (2,) F} (Z,,); 8(e)|n) < v,.

Then, by Lemma 12, there exist a number ¢ > 0 and a neighbour-
hood Z, of the point z, such that U,(Z,) > 0 and

K('Dx(wl)'F:I(En,l); S(e)|“)<”n—517 reZ,.
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Hence
E(F; 8(e)|n) = [ E(Dy(a) Fr (%,.); 8(c)|n)dU,(x)

< [ 0.dU @)+ [ (0,—e)aU,(a) = v,—&, U, (%),

z¢Z, TeZ

which contradicts the assumption of the optimality of the strategy F.
Therefore, equality (45) holds.

LEMMA 16. If the assumptions of Theorem 1 are satisfied in the case
w = g and if the strategy F and the family {8(¢)}.-, are of the forms given
by (37) and (39), (40), respectively, then under the condition a, = b, = b
the equalities

(49) P(b)+[1—P(b)][1—2Q(a,)] = v.,
(50) 1—-2Q(b) = v,
are valid.

Proof. Using the optimality of the strategies F and S(¢) we con-
clude that

v, < lim K (F; y|7) L Pb)+[1—P(b)][1—2Q(a,)]

y—>a
71

@9 Pb)+[1—-P(b)K (F:l; S:l (%) | t)

GXA® K(F; S(e)|r) <v.+e.

Considering that ¢ is an arbitrary positive number we get equality (49).

Now we prove (50). Under the assumption b = 0, equalities (49)
and (50) would imply the relation @(a.) = 0, which contradicts inequal-
ity (29). Therefore we have b > 0.

Hence, reasoning analogously as above, we get

v, < lim K(F; y|v) L 1-2Q(b)
y—->b—

= lim [ [1-2Q®)]1dH g ps00(¥) P2 im K (D, (2;)-F}, (%,1); 8(e)7)
>0+ &0t 1

< lim (’0,-{-8) = Uy,
e—>0
which implies (50).
Proof of Theorem 1. First we consider the case w = c.
By Lemmas 13 and 14 it can be concluded that the strategy F' and
the family {S(¢)},., are of the forms

F(7,) = Uy(@) Fy (Rn1) (Il = m),
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= [(1 — )83+ Sk, (-;-)] (e > 0),

where supp U, = suppT, = (a, a,>, and a and a are certain numbers
such that 0 <a<a, and 0<a<1.
Let y € (a, a, ). Then

v, ‘2 f K(D,(z,)-F: (%,,); y|7)dU, ()

<5’__<6>f{p( )+ [1—P(@)] K (F} (Z,1); ¥]m)}dU,(2)+

a
71

+ [ [1-2Q(y)1dU,()
(5)(6) [ {(P(2)+[1—P@)]1[1—2Q(¥) 14T, () + fl [1—-2Q(y)]1dU,(x)

=1-2Q(¥)+ [ 2Q(y)P(2)dU,(x).

The above transformation and (5) lead to the identity

/)
(51) K (Fr; yla) =1-2Q(¥)+ [ 20)P(@)dUL(2), @, <y<a,
(it is sufficient to repeat the transformation for U, = U, defined by (24)
beginning with the second component of the sequence of equalities) and
to the equation

1
2Q( )
Integrating by parts we see that U,(x,) must be absolutely contin-

uous in the interval (a, a, ), and then, differentiating with respect to ¥,
we get

(52) f P(2,)aU, () =

AU, (x) _ (0.—1)Q" (%)

a<<a,.

dz, B 2P (2,)Q" () ’
Further, relation (52) is valid for ¥ = a, which yields
(53) v, = 1—2Q(a),
whence

dU,(z,) Q(a)Q’ (2
dz, B P (a,)Q*(,) ’

a< @< ay,.
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Since U, is a probability measure, we have

M Q@)@ (@)

dwy = 1.
Pa)@ (@)

Thus, in view of (31), a = a,. Hence, using (24) and (53), we conclude
that P = F% and

(54) v, = 1—2Q(a,).

Now we show that S(¢) = 8%(¢) for any £ > 0.
Assuming z € {a,, a,) we have

(45)

V2 = K (Dy(@:) Fy (%,1); S(e)|7)

a,,l

L (1—a) [ K(D(2) Fly(Z); ¥17)dTa(y)+

+aK (Dz(wl)'F:l (Zn,1)5 Say (2) ln)

L (1-a) [ [1-201AT.0) +

+(1-a) [ (P@)+[1-P@][1-200)}eT.)+

+a {P(a:) +M —P(w)]K(F:I; S:l (g) Im)}

(35)

(1-a) [ [1-20)1aT,)+(1—a) [ 200)P@)aT,() +

+a{l—2Q(a,)[1—P(2)]}.

The above transformation leads to the identities

(5) K (D,(w,)-F2 (7,,); Sa(e)ln) = (1—a,) [ ' [1—2Q () 14T, (v) +

tl—a,) [ 2Q@)P(@)dT,(y)+a,{1—2Q(a,)[1-P(@)]}, . <z<a,

T

(It is sufficient to repeat that transformation for T, = T,, a = a, and
8(e) < 8(¢), beginning with the second component of the sequence



438 T. Radzik and K. Oriowski

of equalities) and

a,,l

(56) v, =(1—a) [ [1—2Q(¥)]1dT.(y)+

Gnl

+(1—a) [ 2Q(y)P(2)dT,(y)+a{l—2Q(a,)[1—P()]},

a<w<a,,l.

Putting # = a, in the last identity we get
a.,.,l
v, = (L—a) [ [1—2Q(¥)1dT4(y)+a{l—2Q(a,)[1—P(a,)]}.

Hence identity (56) can be transformed to the following form:

o a Qa,)[P(a,)—P@)]
J ewaT.y) = —— Pra) )

T

a.

a,,<m<a,,l.

Integrating by parts we see that T,(y) must be absolutely continu-
ous in the interval (a,, a, ), and then, differentiating with respect to z,
we have

dT,(y)  IP'(y)
Iy QWP YT %
where
L= P(a,)Q(an) T

Since T, is a probability measure, we obtain

@,

J aT.() =1.

Summarizing, equations (25), (26) and (34)imply « = a,and T, = T,,
which means that S(e) = S%(¢) for any ¢ > 0.

Thus Theorem. 1 has been proved in the case w = c.

Now we consider the case w = ¢g. By Lemma 14 the strategy F and
the family {S(¢)}.., are of the forms

F(7,) = Dy(®)-F; (T,,) (Izll = n),

1

86) = [Hoseson 81 (5)] | >0
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Comparing the left-hand sides of equations (49) and (50) we get

Q)
T 1—-Pp)’

Q(a,)

which, in view of (21), gives b = a, and
(57) v, =1—2Q(a,).

Therefore, F = F;, and if 6(¢) = 6,(¢), Hpppoe = He(e), then,
finally, S(e) = 87 (e).

Thus Theorem 1 is valid also in the case w = g¢.

At the end of this section we give a lemma which will be used in
the proof of optimality.

LEMMA 17. The following equalities are wvalid:
(58) K(F:; ylﬂi) = Vg, an<y<a’n17
(89)  E(Dy(@)-Fr(%,.); Si(e)ln) =0,y £>0, 6, <7< ay.

Proof. Equality (58) follows immediately from (51) and (24), and
equality (59) is a simple consequence of (55) and (25).

2. Proof of optimality of strategies F; and S;(¢). In this section we
show that the strategies F; and 8} (¢) are optimal for player A and e-optimal
for player B, respectively, and the number v, given by (54) and (57) is the
value of the game I;.

LeMMA 18. The following inequalities are valid:

(1) K(F;g; S|1Ig)> vy for all 8 e Bi(1l9),

(ii) K(F; 87,(¢)|1lg) < vy, for all FeA, (¢>0),

(iii) K (Fp.; S|nle)>v,, for all 8 e Bj(n|c) (n=>1),

(iv) K(F; Spe(e)|nle) < vy, for all Fed, (¢>0,n>1).

Proof. The first two inequalities are a particular case of the result
of paper [1], the next two were proved in [3].

THEOREM 2. For every vector A the strategies F; and S (¢) satisfy the
tnequalities

(60) K(F7; 812) = v
Jor any 8 € B}, /(A) and
(61) K(F; 83(e)14) < vite

Jor any F e A, and for all &> 0.
Proof. We prove by induction with respect to the number n = ||4|.
Step 1. If n = 1, the theorem follows immediately from Lemma 18.

Step 2. Assume that for some n>1 and for every (k,|w) = A’
Such that ||A’|| = n inequalities (60) and (61) are satisfied for 4 = A'.



440 T. Radzik and K. Orlowski

Step 3. Let us fix in an arbitrary way a vector (k,|w) = A such
that ||A| = n-+1. We show, under the inductive hypothesis, that inequali-
ties (60) and (61) hold for the vector A fixed above.

At first we consider the case w = g.

Let 8 = [6™, {s,,(4)},] = [6™, {8_1(")},] € B%(¥) (m = |z]) accord-
ing to the notation given in the Remark in Section 2 of paper [2]. We
investigate, using the statement of Step 2, the expression K (Fy; s,,(y)|7).

(i) If y<a,, we have
K(F; s, (9)17) 2 1—-2Q(y) > 1-2Q(a,) 2 o,.
(ii) If y = a,, we have
K (35 s,(y)17) E 1-Q(a) —Q(a,) [1— P(a,)] > 1—2Q(a,) £ v..
(iii) I y > a,, we have
E(F?; 8,(9)17) L P(a,)+[1—P(a,) 1K (F?; Sp_i(ar)7y)

(21)(57)

= P(at) + [1 —P(at)]vrl (2
Summarizing cases (i)-(iii), we get

K(F%5 sy (y)le) >0, O

N

y<1,
whence, by (5) and (19), for every S e B, (v) we obtain
(62) K(F*; 8|7)>=v,.

Now we prove inequality (61) in the case w = g for the vector v fixed
in Step 3. For simplification we introduce the following notation: b = a,+
+6.(¢) and H = H}(e).

Analogously as before we estimate the expression K (9‘0,, 13 St (s)lr)
for z,,, € X,,,, and &> 0.

(1) If 2, < a,, we have

K (5ui0i 826019 % Py + 11— P@IK (T 85 (5] 1)

<Pa)+ 1 - Pl (v, + )

57) @1)(s7)

<P(a,)+[1—-P(a;)][1—2Q(a,)]+¢& = "v.t+e.
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(ii) If «, € (a,, b), we have
K<in+1; S:(E)IT)
1
L[ n-200aH @) +
atb
« [ €
+ [{PEi+-P@E (0 8, 5) 1m)}am
)

b
[ o+ 0PN (5ss 84 (5o az )

1

< f [1—2Q(a,)]dH (y) +

67 A

b
< [ 1-20@naE+ [ {P(b)+[1—P(b)][l—2Q(a,1>+§]}dﬂ<y)

22) = - g £
< [ n-se@narw+ [fi-20,)[1-P@)- 1]+ 1l amw
a, z;

Iy b

< | n-20@)aEE+ [ {1-20(0,)[1—P(@)]+ 5 dH ()

L9

a’1 b
2 [ n-20@naEw + [{(1-206)+edE©)

b

< f [1—20Q(a,)]dH (y)+& S v,+¢.

Gy

(iii) If , > b, we have

b b
K(Z,05 83(0)17)F [[1-20)1aH () < [ [1—-2Q(a)1dH (y) Do,

Summarizing, for any ,,, € X,,, we have
K (%pp1; 87 (a)7) <o+  (¢>0),
Which, by (5), implies finally
(63) K(F; 83(e)|7) < v.+s

for any # e 4,,, and for all > 0.

Thus, under the inductive hypothesis, inequalities (60) and (61) have
been Proved in the case w = g.

Now we consider the case w = e.

Let 8 = [@™, {s,,(¥)},] € B, (%) (m = |n|). We investigate, using the
Statement of Step 2, the expression K (Fx; 8m(y) 7).

5~ Zastos. Mat. 17.3
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(i) ¥ y < a,, we have

E(F3; su(y)17) T 1-2Q(y) > 1-2Q(a,) 2 o,
(i) If y e<a,, a,), we have

K(F;; sm(y) Iﬂ) (5)2(6) K(F:; yl.’n) g) v

ne

(ii1) If y > Qn y WE have

E(F5; s,)7) L [ {P(w)+[1—P(@)]K (Fr; 8,(9) 7)) AU, (wy)

s4) %m

> [ {P(e) £ 11— Pe)][1—2Q(a,) U, (2)) "2 1-2Q(a,) & v,.

A

Therefore for all ¥ € <0,1> we get
K (F7; 8, (y)|7) = v
which, by (5) and :(19), implies
(64) K(F7; Sin) > v,
for all strategies S € BY, (7).

Now, taking into account relations (62)-(64), one can see that in order
to complete the inductive proof of Theorem 2 it suffices to show that the
inequality '

(65) K(F; 85(e)17) < v,+

is valid for any F € 4, ., and for all ¢ > 0.

In view of Lemma 18 (iii) we can restrict our investigation only to
the case r > 2 (n = (k,|c)).

Inequality (65) is equivalent, by (5), to

n

(66) K(Z, ; ‘S:(e)ln <v,+te
n+

for any ¢ > 0 and for all Z,,, € X,,.,.
To prove this inequality we use the forthcoming Lemmas _19-23.
At first we introduce the following new notation, taking n;, = (k, ;|¢):

by 51

TV) =D [] an_,(0—0n_)Tay_ (V)

i=1 j=1

(67) for V e 2(<0,1)) (!J(-) = 1),

P = 0g0p ... a,,kr_l,
ls = Qn0y ... a,,s_l(l—a,,s)l,,a 1<s<k,),
where T, a, and I, (i =0,1,...,k —1) are determined by (25)-(27)-
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We define the auxiliary strategies 87 (¢) and 8% ,(¢) (¢ > 0) for every
j=0,1,..., |ln] as follows:

D, if j = [=l,
S:,(a) if j< llell

{[(1 a,) 8+ a, S;H(e/z)]

83,(e) =

2k—1 1
Sz'i(e)_l if 2 k,_, < @<Zk, , for some k> 0(2(-):0),
n=0 n=0 ne0

S 1 (¢/2) otherwise.

By Lemmas 5-7 it is easy to conclude that the strategies S7(e) and
87 are admissible in the game r,

Let us associate with every nmsy action of player A in the game I,
& point in which this action is taken under the condition that player A
uses the strategy F. Now, the strategy S%(e) can be interpreted in the
following manner. Player B, applying the strategy S8%(e) (0 <j < |l=l);
behaves according to the strategy S%(¢) if all noisy actions of player A
belonging to the group of j initial actions were taken not later than in the
associated points. |

For strategies 85(s) and 8] (s) we obtain, with the aid of (3), (4), (9)
and (13), the following equalities:

(68)  K(Z,..; Si(e)lx)
j J
=1— [[1=P@)]+ [ ] (1—P@)1K (Farr55 S2(e) )

(69) K (Z,y15 8% (e)Im)

—1—H[1 P(wi)]+H[1 —P (21K (Tpn,5 S5 () 17)

if 0<a<...<g;<a, (0<]< |al),
70) K(§n+l,l; S:I (¢) I”l)
i g _
=1—[[[1—P@)1+ [ 1 —P @)K (Znsr55 85, (e)1m)
=2 1=2

if 0<2,<...<5;<a, (0<j<Inl).
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In the forthcoming lemmas we use the additional notation:

Ty = (kr,k,.[c)°

LEMMA 19. For any & > 0 and for all %, ., € X, ,, satisfying z, > a,

. . kr
the inequality

‘K(En+1; S;(S) l”) < K(E(nl.);.l; S;(E) In) + -—g—

- 4 _l —
18 valid, where ), = (@, Fpi1,1)-

Proof. By (3), (4), (9) and (13) we have
(1) K(Zpy15 S3(e)17)

a“kf

[1-2Q(y) 14T (y)+pK (%; S (%) ln),

14

where T' and p are given by (67).
For simplification we write

€

a = a"lcr’ b= a"kr+ 6"kr (F)’

€

PR

H = H(a,b)’ & = 9

¢ = min(z,, b),

$*(y) = [-Dw {Sif.k,.+l[c(€r)}vl]°
One can easily check, by (3) and (4), that

(72) K(Zpp; 80 |m) =1-2Q(y), a<y<wm,.

Since x, > O,y WO have
— * €
s 525

¢ b
%)f [1—2Q(y)14H (y) + f (P (@) + (1= P (@) 1K (2,15 8*(y) [ 7) | AH (y)

< f {P(a)+ [1—P(a)][1—2Q(y)]} 4H () +

b
+ [ P®)+ (1= PO)IE Fryns; () 17)} dH ()
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@2) £
< | {P(e)+[1—P(a)][1—-2Q(y)}dH (y) +

a

+ f {P(@)+ [1—P (@)K (Fo1,5 5*(3) ) + 2} AH (@)

(72)
f {P(@)+ [1—P(@)1K (Zyu1,5 8%(9) Im)} A (3) +

(3)4)
L K(*,:zq, S5 (5 )1) + 2

Hence we conclude that the assertion of the lemma is true because
of the validity of (71) for Z,,, = z,.

LEMMA 20. For every %,., € X,,, such that , < a, the inequality
K (Z,15 83(e)17) < K (235 8a(e)Im)  (e>0)
8 valid, where TC), is the vector obtained from a?n +1 by putting the number
a, in place of all its components smaller than a,

Proof. It is easy to check using (68) that K (%415 Sn(e)|n) con-
sidered as a function of variables x,,,,...,o; (j = max{i: &; < a,}) is
an increasing function on the set 0 <z, g ... <@ < a, with respect
to each variable. This implies the assertion of the lemma.

LeEMMA 21. Under the inductive hypothesis the inequality
K(T,.,; Sn(e)n) < v,+ % (e > 0)

8 valid if the vector %, ., satisfies a, ,<Hm<a

Rler *
Proof. Let us assume that a, < *; < a,,  forsomes (1<s <k, —1).
Then, using (67), we evaluate

K(%,.1; Sy () In)

@XA)I3X9) f [1—2Q(y)1dT (y) + f [1—-2Q(y)1aT(y) +

az,
Gnpy

+ [ {P@)+ P @)K (Fs1s5 yIm}AT () +

+p {P(aﬁ) +[1-—-P (wl)]K( Zpt1,19 S:kr( ; )|7‘1)}

;
= [ n-20w1are) - f 2P (2,)Q (W) (v) +

Gn “l
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B3

+ [ {P@)+1-P@)1 20T () +

ax,
Gngy

+ f {P(22) + [~ P (@) 1K By 115 917} 4T (3) +

+p {P(wl)‘l‘[1—P(w1)]K(5n+1,17 S;k,.(2 )I”l)}

From (34) and (67) it follows that

a
g 7

J aT@)+p = a,.
anl

Hence, taking into account the inductive hypothesis, we obtain

K(5n+15 S:(e) l"‘)

1 x
= [ n-20waT@w) - [2P@)Q@W)TW) +aP@)+

an
%npp

+[1-P () f [1-2Q@)1aT(y) + f K (Zi1,05 ¥17)AT(9) +
-|-I’K( Zpt1,1) S:,c,(;cr)lm)}

[ t—seunare)- f 2P (2,)Q (1)4T(y) +

a
Gy 7

+a, [‘P(wl) +[1—P(z)]K (§n+l,l; S:I (g) Iﬂl)f

a.
Ti+1

f [1-20WdTw— > [ 2P@)Q)aT(y)—

B)4X9)13)

s—1

i=1 %a;

— [ 2P@)QW)ATW)+ au{P @)+ [1—P(@)](1 - 2Q(a,)} + 5

a,,l

i t
- [ n-20nare +2P@) { - 52 + Fy -
" 12 by b by l-l—
TP, [ Play T Pla) | Play |

+ . {1 —2Q(an) [1 — P (@)} + 5
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Let us consider the function

L _ . i
Bl 9) ‘2P‘“”{ Pla,) @ Play " Play) +P<w)}+
+a,{1-2Q(a, )[1—P(2)]}
defined on the set (a,, y G, o X{1,2,...,8h
Since

) EOEE a,P(a,)Q(a,)

P<a1 +a,Q(a.)

1—P(a'u1)
and
i ba ceenen P(a,,,)Q(a,,,)
P(a,) P(a,,) TN 1—P(a,, ) ’

E(x, j) is a decreasing function of the variable z in the interval (a,,, 7 O Q. 17
for every fixed j =1, 2,...,s and, consequently,

(2, 8) < E(a,, s) = E(a,,s—1) < E(a,_,,s—1)
'=E(an271)<E(a'ul7 )

Now, returning again to the previous evaluations, we get

K (%415 8(e) |7)

< [ 1-20@)1dT@)+B@, 9+

an
n

< f [1—-2Q(9)14T(9) + B(an, )+ 5

“08)19)

—a,) f [1—2Q(®1AT4(y) +0a {1 —2Q (0, [1—P(ar) B+ 5

(85%59) &

T2

The lemma has been proved.

LEMMA 22. If the vector %,.,€X,., satisfies @, G,y %5 < Gn,

Tiiy = a, for some j, 2<j<n+1l (w,,, = 1), then, under the inductive
h'lpotheszs, the tmequality

K (7,15 83(0)|7) < E(ED5 Si(e)ln)+ 5 (6> 0)
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holds, where Z3)., is the vector obtained from %, ., by putting the value a, in
place of the components x,, x,, ..., x;.

Proof. Let 7,,, be the vector satisfying the assumption of the
lemma. Then for y e (;, a,) we have

1-2Q(y) i 2<j<ntl,
'K(En+l,j; ylm) =1—1 lf.'l =n+1l, w,, = ¢,
—Q(¥) ifj=n+l, w,y, = ¢,

which implies the following inequality:
(73)  K(Zp155 ¥1lm) <1-2Q(y), #,<y<a, (j=2,3,...,n+1).

Now we introduce the notation

(74)
Ti_1 an j—1
Ei(z,, ..., ®;_y) = f K(%, 15 y|n)dT (y)+ fl{l"‘ h [1—P(z;)]+
Ay .’Ej_l =1
+ H [1—P(2)][1—2Q(y)1}4T (y) + au {1 — H [1—P (21},

where T is given in (67) and j = 2,3, ...,n+1.
As is easy to see, the expression E;(w,, ..., #;_,) depends only on the
variables x,, x,, ..., ®;_;.
Now, using the definition of the strategy S%(c), we evaluate the
following:

K(En+1; S;(s) |“)

Ty % i-1
L [ K @y; yimarw+ [ {1- [ -Pei+
Gy %j—1 =1

+ ” [1—P(#) 1 K(Tp 11,515 Y17 1)} aT(y)+a, K( Tn+13 S"l )In)

zj_1 @y
56 f (s ymaT)+ [ {1 [1—P<w;>]}d1'(y)+
QZj 1

+ ” [1—P @] f [1—2Q(1))aT(3) +

Z"_l

+ f (P(@)+ [1—P () 1K (Zapr 55 917} T @)+

{ H[l P(w)]+H[1 —P(a, ]K(nm, ,,,( )m)}

=1
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1‘]1

f K(Z,115 y1m)dT (y)+ f{l—”[l—P(x (¥)+

+ [] [1—P()]| f [1-2Q(y)4T(y) +

i=1 zj_l

+ f P (@) +[1—P())(1 - 2Q() BT ()} +

a1 [][1 P(w>]+[][1 P@IEK (51055 84 (5) 1)}
(74)

j—1 "1
DBy, )+ | [ L-P@) [ 2P@)0@AT W) +a,P (e +

+a,[1—P(a)]1K (z,m,,.; 8 (%) ;n,.)}

(67) !
D, (s, .. 1)+ﬂ[1 Pw)]{ (- a,.)le'){ P@) P(a,,l)}+

+anP(xj)+aa[1 ”P(wj)]K(§n+1,j§ S:jxl (—;‘) lﬂj)}

(26)
= Ej(®y, ..., 0;0) +

j-1
+[[o-Penfea—att ok (w5 (5) im)+

‘iﬂl

+ P () [ —20,Q(ay) + 0, — o, K (fnﬂ,,-; 8y (g) 1::,.)]}

<B(o, a0+ [ [ 1-P@ifza—a)t,+

t=1

&
+a, K (5n+1,j§ S,jxl (E)l nj) +

+P ()| ~20,0(0) + aut a0 — 0 (20ins 84 (5] 1) |}
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Further, we investigate, using relation (70) and the inductive as-
sumption, the coefficient which stands at P(x;) in the last expression:

14 . €
—2(1,,@(“,,1) + an+ Ay E - anK (§n+1,j§ SZ':I (5) | nj)

> =20,Q(an) + ot g —au{l—[1—Pa )P+

+[1 —P(anl)]i—lK (5n+1,j5 Sf,l (%) l n])}

(50

P> _ £
_2anQ (an1)+an+an5 —anK ((a'nl7 s anl’ xn+l,j); S:I ('2_) l”l)

j—1 times

> —24.Q(a, )+ oyt~ —a,|o, +—) 0

Therefore, the above-investigated coefficient is non-negative. Con-
sequently, returning to the previous evaluations, we have

‘K(‘/_i'n+l; S:(E) ITE)

j—1
. )
< Ej(wl’ ceey wj-—l) + ]—1 [1—P(x;)] {2 1—-a,)l,+a,K (§n+1,j5 ’Sle (_2‘) | "‘j) +
i=1

& )
+P(a'n1) [_ 2anQ(a'nl) + Ay + an_2" - anK (En+l,j; Sg'] (5) I n?)]}

%
= K((a"l’ ooy i1y By Bjyyy eeey Zpi1)3 Sn(e)lﬂ)'l‘

+aP(a,) [ [ 1-P@ils,

=1

where the last equality is obtained analogously as in evaluating the expres-
sion K (%,,,; Sx(¢)|x) in the initial part of the proof.

Now, repeating step by step the procedure outlined above for the
components @;_;, L;j_s, ..., T2, We get finally

j  s-1
* — * \ | £
K (%, 5 82(e)|7) < K (585 83 |a) +aPa) D) [ [ n—P@ilz-
$=2 1i=1
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However, the second term of the right-hand side of this inequality
can be estimated as follows:

a,.P(a,,,)ij ﬁ [1—P@)]5

§=2 1=

N 1-P
<a,P(a,) Y [1-Pa)F " = a,,p(a,,l)_mf%g

en @(a,) 6‘2’8
Qa,) 2 2

Summarizing, we have

K (%15 8i(e)1m) < K (735 Sh(e)|a)+ 5 (e>0),

which completes the proof of Lemma 22.
LEMmA 23. Ifthevector,,, € X,, ., satisfies a, < ¥, < a, and v,> a, ,
then under the inductive hypothesis the inequality

&
K(En+l; S:(£)|”)<’vn+ —2—

18 valid for any ¢ > 0.
Proof. Using the definition of the strategy S (¢) and the assumption
of the lemma we obtain

K(§n+l; S:(e) I“)

gy
(3)(4)(°=)‘9)(13)(1—an)f K(Z,115 ylm)dT,(y) +
apn

+an{P(m1)+[1 —P(wl)]K(5n+1,1; S:I (%)17&)}

(54)

< (1 - an) f K(En+1 H y l n)dTn(y) + an{'P (ml) + [1 _P(wl)] [1 - 2Q(an1)]} +§'

T

(6)

= (1-a,)] f 20wz, + f (P(@)+

L —P(@)][1—2QW)dZa()] + 4, {1—2Q(a,) 1 —P (@] + 5
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a,,l
= (1-a) [ [1-20@)aT.) +

+(1=a) [ 20W)P(@)dT,(4)+ax{1—2Q(a,) 1 —P(@)}} +

55) _ € (59) &
= K(Dzl.F:I(xn+l,l); S:(S)[?I)-i——é—: va+§‘
This completes the proof of the lemma.

Now, summarizing the results of Lemmas 19-23 we infer that the
inductive hypothesis (Step 2) implies inequality (66).
Hence, by (5), we get finally

K(F; 8x(e)|n) < v,+¢

for any ¢ > 0 and for all F € A, ,. This inequality, together with (62)-(64),
completes the inductive proof of Theorem 2.

We end our reasonings with a conclusion being equivalent to The-
orem 2:

For an arbitrary vector A the game I, has the value equal to v; = 1—
—2Q(a,), Fy is the optimal strategy for player A and 8; () is the e-optimal
strategy for player B for any ¢ > 0.

Acknowledgement. The authors wish to thank Dr. Stanistaw Trybula
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T. RADZIK i K. ORLO WSKI (Wroclaw)

MIESZANA GRA CZASOWA: PROBLEM OPTYMALNOSCI

STRESZCZENIE

Niniejsza praca jest kontynuacja pracy [2]. Jest ona dalszym ciagiem rozwazan
dotyczacych modelu gry czasowej na zbiorze <0, 1>, w ktérej gracz 4 dysponuje
dowolna skonczong liczbg akeji cichych i glodnych, a gracz B — jedng akcja glosna.
W szczegdlnoéei dowodzi sie twierdzenia o jednoznacznodei strategii optymalnych,
sformulowanego w [2], oraz wykazuje sie, Ze znalezione tam strategie sa optymalne.



