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1. Intreduction. The examination of the rate of erythrocyte destruc-
tion is an important element in the diagnosis of haemolytic anaemias. Red
blood cells labelled by some radioisotopes are used in this procedure. The
methods which are used fairly widely in clinical practice are those of
“random labelling” in which a sample of the whole population is label-
led [4]. The simultaneous control of the circulating red cell volume enables
to perform the determination of erythrocyte survival also in so-called
non-steady states, i.e. in the cases in which the lack of equilibrium between
erythrocyte production and destruction is observed ([6], [8], [10], [11]).

In order to interpret the red cell survival data several mathematical
models have been proposed ([3], [8], [9], [12], [13]). In describing results
observed, most researchers have until now used a single index: the time
taken for half of the labelled erythrocytes to leave the circulation (i.e. to
die) or the mean red-cell life span. Nevertheless, erythrocytes are destroyed
simultaneously by senescence and random destruction, so it is recommend-
ed to determine separately the indices of both these processes [4], i.e. the
erythrocyte potential life span T and the coefficient of their random
destruction K. The analysis of a broad spectrum of erythrocyte survival
data obtained in patients with haemolytic anaemias, observed both
in steady and non-steady states [7], allowed us to distinguish several
variants of erythrocyte survival patterns ([5], [11]). Erythrocyte kinetic
characteristics presented in papers [7], [9] and [11] are sufficient to inter-
pret all of them. Nevertheless, the trials of approximation of experimental
data by theoretical survival curves revealed excellent accordance in some
cases and marked discrepancies in others (all data at our disposal were
obtained with the aid of the same instruments and methods). The problem
arises whether only measurement errors are the reason of these discrepan-
cies or perhaps also a marked statistical dispersion of the process of
erythrocyte destruction. The aim of this work was to analyze the second
possibility. It is obvious that the ideas used here may be applied to de-
scribe more general variants of cell behaviour [2].
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2. The medel. The mathematical models of erythrocyte destruction,
known in the literature (see [8] and [12]), consist of equations describing
the mean value of cell count. Such an approach supplies no information
on the dispersion of the process considered. In this section we give a prob-
abilistic description of our model in terms of a simple Markov process
with continuous time (see Fig. 1). The formulae obtained for variances
are used in the discussion of a fitting procedure described in the next
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Fig. 1. Destruction of erythrocytes as a Markov process. The trapping statc 0 is
achieved at finite time less than or equal to T
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section (see also [5]). In what follows it is assumed that we have at our
disposal a sample of identical red cells being independent one of another.
The cells are labelled at time ¢ = 0 and may die by two reasons:

(a) the age a of the cell is equal to T,

(b) the cell is randomly “shot” (in the time interval [¢,{-7] with
probability Kv+o(r), where K is the coefficient of random destruction
and o(z)/r — 0 as v — 0).

The age structure of the red cell population in blood is assumed
to be described by the age distribution density g(a), a € [0, T'], such that

T
j g(a)da =1
0

and the fraction of cells in age from the interval [a, a+ da] is equal to
g(a) da+o(4a). Therefore, for a cell in the randomly labelled sample,
the probability of death by reason (a) before time ¢ (¢t € [0, T']) is equal to

¢
(1) F(t) = [9(T—a)da.

Define additionally f(t) = dF/dt = g(T'—t). Then the probability
of death by reason (a) in [t,t+ 7] under the condition that it did not
occur up to the moment ¢ is equal to

f(@)

1-F0) t4+o(1).
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It is assumed that the probability of simultaneous random and
“natural” deaths, both of them being independent, is equal to o(r) and
that the count of cells labelled at ¢t = 0 is given and equal to n(0) = N.
The process of labelled red cells destruction is then the pure death pro-
cess [2] with time-dependent death rate, described by the system of
Kolmogorov differential equations

Pn(t) = [“nPn(t)+(n+1)Pn+1(t)][K+If(;—)(t)]’ n=20,1,...,N—1,
(2)

: () ]
Py(t) = —NPy())| K+ ——-—
~(t) ' N()[ +1——If’(t) )
where P, (t) denotes the probability that n cells are still alive at time .
Solutions of system (2) with usual initial conditions Py (0) = 1, P,(0) = 0,
n =0,1,..., N—1, may be obtained, e.g., from Theorem 2.3 (C) in [2],
where a more general case is considered. In our notation

(JZ) K- FO{1—e B 1-FOIY",  te(o, T,

P (T), t>1T.

Pn (t) =

For practical reasons it is enough to use the first two moments of
P,(t) which are obtained from known relations for the binomial distri-
bution, i.e.

(3) E[n(t)] = NA(#), D’[n()] = NAQ@)[L—-A®)],
where
(4) Aty=[1—-F@®)le ™1(T—-1), >0,

and 1(-) — the Heaviside step function — equals 0 for negative and 1 for
non-negative arguments, F(t) = 1 for ¢t > T. Note that the dispersion
¢ of the process,

(5) o(t) = Em ~Vw

¥YD?(n) 1 (1
&
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s an increasing function of ¢. Table 1 contains values of o for several
combinations of values of 4 and N.

Assuming the simplest case of the uniform age distribution ¢(a)
of the red cell population in blood (i.e. F(t) = t/T,t e [0, T]) we obtain

(6) E[n(t)] =N e KT —1t), t>=0,
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as a survival pattern. This formula is mentioned in the literature (see [8])
but actually considered to be not satisfactory. We show that, in fact,
it is based on the false assumption of uniformity of the age distribution.

TABLE 1, Values of dispersion g for several combinations
of A and N (see (5))

At
N (t)
05 | o1 | o001 | o001
102 0.1 0.3 I 0.99 3.20
105 0.032 0.055 0.31 1.0
108 0.0001 0.0003 | 0.00099 0.0032

To obtain the proper age distribution write the well-known ([1] and
[12]) von Forster equation for the age distribution of the whole red cell
population:

ou 7

(7) a +E‘ = —Ku(a,1t), te[0, o), ac[0,T],

where u(a, t)da denotes the mean count of cells in age from the interval
[a, a+da] at the moment ¢{. The production of cells is described by the

boundary condition
(8) p(0,8) = 8,

and assumed to be constant and in equilibrium with the loss of cells Ku(a, t),
where K is defined at the beginning of this section. The solution
of (7), (8) is

pla,t) = See”X*[1—1(a—1t)]+h(a—t)e X 1(a—1),
where h(a) = u(a, 0). The steady state ({ — oo) solution is of the form
i(a) = p(a, o) = Soe7%°,

We can normalize g dividing it by V,, the total count of cells in the
population, obtaining the age distribution density
(a) i (@) Ke ¢
g(a)=‘uV = T‘u = 1_6._K1'7 GG[O,T].
*  [j(a)da
0

By substitution of g(a) into (1) we get

: (K(t~T) __ ,~ET
F@) = [ g(T—a)da= g7, telo,T],
0
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whence
ET-0 _1

(9) E[n(t)] =N

This last formula is the actually accepted survival pattern [7]. Quite
analogous evaluations, but only for the mean values, are contained
in [8]. Our evaluation could be also deduced from [12] but it is not
stated there in the explicit form.

Formula (4) can be easily generalized onto the case where the coef-
ficient of random destruction is a function of time (i.e. K = K (¢)). Then
we have

t
(10) A(t) = [1—F(t)]exp{—fK(r)dr} 1(T—t), t>0.

In the simple but biologically important case where
K(t) = K,1(60—t)+K,1(t—0), 0<0<T,
formulae (10) and (3) imply
(11)  E[»()]

=N exp{K,(T—1)} -1
B exp{K,T}—1

[1(6—1)+exp{(K,—K,)(t—0)}1(t—0)], >0,

which agrees with the formula used in [7].

If in the blood there exist two independent red cell subpopulations,
differing in values of 7 or/and K, all the considerations above should
be only slightly modified. We omit the details, showing the final formulae
for two biologically important cases.

(a) T, # Ty and K, = K, = K resulting in

: K(T,—t)} —1
(12) E[n(t)1=2[Ni exzip{(ff}v.}tl}l ]I(Ti—n, t>0,

(b) Ty, T, - oo and K, # K, resulting in
2
(13) E[n(t)] = ) Niexp{— K1}, >0,
i=1

where N, (¢ = 1, 2) denotes the number of cells of the ¢-th subpopulation
at ¢ = 0, and K,;, T, are the values of the coefficients of random destruc-
tion and potential life span, respectively.

The dispersion p satisfies the inequality

t < pe——
& VE[n(t)]
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It is interesting that (13) was primarily used as an interpolation formu-
la [4] and later interpreted in terms of two subpopulations [11].

3. Practical implications and computational results. Taking samples
of blood containing labelled cells from the patient and measuring the
radioactivity we want to know what kind of survival pattern fits the
data in the closest way and what are the values of K and 7. The informa-
tion may be of importance for the right diagnosis [7]. The usually obtained
empirical values #(#;) of the cell count at moments ¢; are biased with the
Gaussian error resulting from superposition of errors of measurements
of biological parameters x;(¢;), necessary to compute #(%;):

(14) () = A [2(t)],

J
8,'7'-, 2lll2
15 o, = A(l;) = 2 A, (2;
) = 4ty {i [ 2=}

The exact forms of (14) and (15) are described e.g. in [5] and [7] and
vary according to the technique used by the investigator. But we should
always take into account the second error, namely the one resulting from
the fact that one tries to fit the realization of a stochastic process to its
expected value. It is not a Gaussian error (in our case — binominl) but
for very large N it can be similarly approximated. The variance of the
total “nearly Gaussian” error is

o = D*[n(t)]1+ &,

and the statistics

Jmax

(16) @ = D {E[n(t)]-%(5)} o

has the central y*-distribution with j.., degrees of freedom and can serve
as a tool to compare various fits. If D*(n) is comparable with &7, neglecting
D?*(n) may result in false conclusions. The value of o is, however, a decreas-
ing function of N (see (5)). In the cases which are presented in the sequel,
N was estimated in a simple way to be about 2-10° (100 ml of blood were
labelled with productivity of about 70 9%, then dissolved in about 41 of
circulating blood, the sample taken contained 3 ml of blood in each ¢;,
1 mm?3 of blood contained about 4.5-10° red cells). Then (after calculation
with such data) D*(n) could be neglected.

Data fitting was performed with the aid of a FORTRAN program,
minimizing (16) for 8 types of survival patterns. This program, written
especially for non-professional users, together with remarks is described
in [5]. Details concerning materials and methods used to obtain the
experimental data are given in other papers (see [7] and [11]).
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Fig. 2. Empirical data fitted to theoretical survival patterns
a — patient I. K., curve (9), K = 0.038, T' = 72.72, ® = 16.31, jpax = 12, a = 0. 85
b — patient T. M., curve (11), K. 1= 0.127, K, = 0.065, T = 42.35, 0 = 8.68,
¢ — patient I. T., curve (12), K = 0.01, T, = 31.98, T2 = 100.53, N,/N = 0.495,
® = 18.47, jmax = 16, @ = 0.7
d — patient W. K., curve (13), K; = 0.092, K, = 0.034, N,/N = 0.407, & = 15.67,

Jmax = 17, @ = 0.4

Dimensions: T [days] and K [da,ys x] a denotes the probability with which a random va.na.ble having
x*-distribution with jmax degrces of freedom is less than @ and is a standardized measure of risk that

the fit is not correct
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Figure 2 shows 4 cases of red cell destruction patterns. Case d is of
particular interest, since data of patient W. K. could be fitted better
(® = 5.98) with survival pattern (11) but, for some biological reasons,
pattern (13) was the only possible to be used (see [11]). Comparatively
high values of @ in some cases from Fig. 2 and in some cases not considered
in this paper might have been caused by:

1. measurement errors greater than usually,

2. the nature of the process differing from our simple model,

3. incorrect estimation of N.

4. Conclusions. The model proposed in the paper was thought as the
first approach to the complex stochastic process of erythrocyte production
and destruction. The expected values E [% ()] obtained are similar to those
calculated by authors who used averaged quantities. Moreover, estimates
for dispersion of the process are obtained, indicating that, in case of small
initial red cell count N, the dispersion should be added to the measurement
error. In our case it was safely neglected. There are some signals (e.g.
unsatisfactory fits mentioned in Section 3) that the real process may be
more complicated than the model is. One of the reasons of dispersion
greater than our model predicts could be the random character of the
parameter T (erythrocyte life span). Another difficult problem is the
elution of the radioisotope, changing the shape of survival curve [7].
Investigation of these problems requires more empirical data and new
mathematical models.
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STOCHASTYCZNE PODEJSCIE
DO PROCESU DESTRUKCJI CZERWONYCH CIALEK KRWI

STRESZCZENIE

W pracy zaproponowano model zjawiska destrukeji erytrocytéw czlowieka,
okreslony za pomoca prostego procesu Markowa. Uzyskane teoretyczne krzywe
rozpadu poréwnano z krzywymi otrzymanymi réznymi metodami przez rdéznych
autor6w. Rozpatrzono wplyw rozproszenia procesu na dokladno&é estymacji para-
metréw populacji erytrocytow.



