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CERTAIN INFINITELY DIVISIBLE CHARACTERISTIC FUNCTIONS

1. Introduction. Let ¢(t) be an infinitely divisible characteristic
function (c.f.). Then {1 —xloge(t)}~* is the c.f. of the power mixture on
y of {¢(¢)}¥, where y has a gamma distribution with c.f. (1 —ait)~“. Since
the gamma distribution and ¢(¢) are both infinitely divisible, {1 —xzloge(?)} ¢
is also infinitely divisible. Moreover, Steutel ([5], Theorem 3.5.2 and
Definition 3.4.5) has established infinite divisibility for c.f.’s which are
mixtures of the form

[ {1—aloge (1)}~ dF (v)
0
when one of the following conditions holds:
(i) 0<a<1,
(ii) @ = 2 and F(z) is the distribution function (d.f.) for a unimodal
distribution,
(iii) « = 2 and F(x) has at most four points of increase.
The purpose of this paper is to show that the transformation 7 map-
ping ¢(t) into

(1) p{l—xloge(t)}~*+q{l—xloge(t)} "

preserves infinite divisibil_ity when p,¢>0,p+q¢=1,2>0,a>0, and
also to find conditions such that mixtures of the form

oo

(2) [ p{1—alogg(t)}—"dF(@)+[ ¢{1—alogy(t)} "' dF ()
0 0
are also infinitely divisible.
Examples of c.f.’s having the forms (1) and (2) are then discussed.
Finally, certain further transformations are examined. The trans-
formation

To: @(t) — {@(t) —1}/tg" (0)
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maps the c.f. with d.f. F'(x) into the c.f. with probability density function
(p.d.f.) {1—F(x)}/u, i.e. into the renewal c.f. Lukacs [2] and Moran [3]
give a number of other transformations which produce new c.f.’s from
given c.f.’s. The present paper shows that under certain conditions these
are self-transformations for (1).

2. The initial transformation. When « = 1 and ¢(t) = cxp(it), (1)
becomes the superposition of the gamma c.f.’s with parameters 1 and 2,
respectively. The p.d.f. is (px+qy)exp(—vy/z)[x%, 0 <y < oo, and this
is valid provided that  >0,p > 0,4 > 0,p+q = 1. Given these con-
ditions, (1) remains a valid c.f. for all non-negative a.

THEOREM 1. If p, ¢q>0, p+q=1, >0, a >0, and ¢(t) s an
infinitely divisible c.f., then (1) is also an infinitely divisible c.f.

Proof. Firstly, suppose that ¢(f) = exp(¢t); then (1) takes the form

(1 —piat) (1 —imt)**" = @1(1)@a(?),
where ¢, (t) is the c.f. for the gamma distribution with parameter a, and
(3) ga(t) = (1—piat) (1 —ixt) = p+q/(1—iat)
= A[{A—logg.(t)},

where ¢,(t) = exp(ps(?) —1), ps(t) = (1—bixt)/(1—pixt) and b = p—2i+
+Ap. By (3), @,(t) is a valid c.f. Clearly, 2 can be any value such that
0 < 1< plg, and so g4(t) is also a valid c.f. Now ¢,(¢) is infinitely divisible
because it is a Poisson mixture of ¢,(t), and so ¢,(¢) is also infinitely di-
visible since it is a geometriec mixture of ¢,(?). Finally, ¢, (¢)@,(?) is infinitely
divisible, since it is the product of two infinitely divisible c.f.’s.

Now, let ¢(t) be any infinitely divisible c.f. and let G(y) be the d.f.
corresponding to the c.f. ¢,(f)@,(). Then

1—pxloge(t)
(1—alogp (1))

= [ wwyracw),
0
1.e. (1) is an infinitely divisible c.f.
3. Mixtures of the form (2).
THEOREM 2. Mixtures of the form (2) are infinitely divisible when
a = 0.
Proof. When a = 0 and ¢(¢) = exp(it), (2) becomes

(4) pll—iat) 7120+ q [ (L—iat)™ dF (a),

which is infinitely divisible by Corollary 2.2.1 of Steutel [5]. If ¢(?) is any
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infinitely divisible ¢.f. and G(y) is the d.f. with c.f. (4), then consideration
of mixtures of the form

o]

[ {p}vaa(y)

0

completes the proof of the theorem.
THEOREM 3. Mixtures of the form (2) are infinitely divisible when
a = 1 and F(x) is such that {pf(x)— qxf' ()} changes its sign at most once,
where f(x) and f'(x) are the continuous first and second derivatives of F(x),
and
limzf(z) = limzf(x) = 0.
xl0 T—>00
Proof. When ¢ =1 and ¢(t) = exp(it), (2) becomes, integrating
by parts,

(5) p[ (1—ist)fl@)do+qlo(l—iat) " f@)]F—q [ a(l—iot)"'f () do

= [ (1—iat)™ {pf(2) — guf’ (@)} da.

By Corollary 2.2.1 of Steutel [5], this is infinitely divisible provided
that {pf(z)—qxf’(r)} changes its sign at most once. If G(y) is now the
d.f. corresponding to (3), then the infinite divisibility of (2) under these
new conditions follows as before from consideration of

[ fey aa(y).

The restriction for Theorem 3 that {pf(x)—qzf'(x)} should change
its sign at most once is not as severe as it at first appears. This condition
holds for all sesquimodal distributions with non-negative support, and
also for many of the widely-used mixing distributions such as the gamma,
Inverted-gamma, beta, inverted-beta-1 and inverted-beta-2 distributions.

4. Examples. Examples of distributions which are infinitely divisible
by Theorem 1 can be obtained by taking ¢(t) to be the c.f. for the degen-
erate, normal, Poisson and Cauchy-type distributions, ete. For instance,
using the Cauchy-type distribution (see [2], Theorem 4.5.3) we obtain
the infinitely divisible c.f.

(L+palt) /L +alt) !, 0<e<2.

Also the case a = 0 for Theorem 1 is interesting in that it implies
that any exponential mixture of an infinitely divisible ¢.f. remains infin-
Itely divisible when zero-modified.



274 A. W. Kemp and T. Artikis

By Theorem 2, all mixtures of the above-mentioned distributions
are infinitely divisible provided that a = 0. In particular, zero-modified
mixtures of zero-modified exponential mixtures of infinitely divisible
c.f.’s remain infinitely divisible.

By Theorem 3, all gamma, inverted-gamma, beta, inverted-beta-1
and inverted-beta-2 mixtures of c.f.’s of the form (1) are infinitely di-
visible provided that ¢(?) is infinitely divisible. Consider, for example,
an inverted-gamma mixture of (1) with ¢(tf) = exp(it). The resultant
distribution has the p.d.f.

ef°{(1+qo)y +pB}/(y+B)°**
and the c.f.

pey(l, 1—c; —pit)+ge(c+1)yp(2, 1 —ec; —pit),

where y(a,, a,; ) is the confluent hypergeometric function of second
kind. (Note the relation to the F-distribution for p = 0 or 1, and see also
[3], p. 39-40.)

Also, for « = 0, 1, an inverted-beta-2 mixture of (1), with ¢(¢) being
the c.f. of a Poisson distribution, yields

1—pix(e’—1) ' (14+xz)"°¢

) A= @1 Ble,d) aw

_ poFi(a,c;atc+d;Ae") | g Fy(a+], 05 adltod-d; AeY)
Jhi(a,c;a+tc+d;A) oFi(a+1l,c;a+1+c+d;A)

For 2 =1, a = 0, this becomes the c.f. for a zero-modified Waring
distribution, and for A = 1, a = 1 we get the weighted sum of two Waring
cf’s:

. d
Ji(1, 050+ d41; 6+ — 2

1— S el
( cq>c+d c+d+1°*

F,(1,c+1;¢+d42; €%

(using contiguity relations for the Gaussian hypergeometric function).
For ¢« =1, ¢=d+1, d= }, this becomes the weighted sum of two
“lost-games” c.f.’s (see [1]).

Finally, consider Steutel’s conjecture (following his Theorem 2.2.2)
that there seems to be no way to generate c.f.’s of the form

l

[T wda—atyy [T =ity i}y m<my 3 < Xy b =1,2, .00y m,

k=1 j=1 k= j=1

—
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other than by mixing exponential distributions. Lukacs’ ([2], p. 323)
operator

Ty:9() —{¢ (1) —¢"'(0)}/te” (0)

maps the c.f. for the exponential distribution, that is (1 —<xt)~!, into
(L —dxt/2) /(1 —at)’, which is of the form (6) with n =2, m = 1,2, = A,
=1, u; = 2. This is an alternative derivation; for a physical interpre-
tation see [2], p. 321-322.

S. The self-transformations. The renewal operator T, and Lukacs’
{[2], p- 323) operator T'y map the c.f. 6(t) into

(6(t)—1}/t6°(0) and  {26(t)—1—16'(0)} /126" (0),
respectively. For 6(f) = (1 — piat) /(1 —ixt)®, T, and T, yield
(L—izt)(2—p)}/(1—ixt)) and {1—(2 —p)izt/(3—2p)} /(L —ixt)?,

i.e. both T and T, give self-transformations for T (see (1)), when a =1
and ¢(t) = exp(ut).
Now let

Ts: 0(t) — A0(8)[{A+1—0(t)} and Tg:0(t) — A/{A+1—0(2)}.

Then 7T, is the operator for Moran’s [3] transformation (8) with
b = 1, whilst T, is the operator for Moran’s [3] transformation (7), where
the image is P{0(t)} and P(t) is the probability generating function for
the geometric distribution (see [3], p. 275-276, and also [2], Theorem
12.2.3). For

0(t) = {1 —pwzloge(1)} /{1 —xloge(t)},
T5 and Ty map 0(t) into
{1 —pzloge(t)}/{1—(1+1/A—p/i)xloge(t)}
and

{1 —aloge()} {1 —(1+1/A—p/A)zloge(l)},

respectively. Thus 7, and 7'y both give self-transformations for 7 when
a = 0.
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O PEWNYCH NIESKONCZENIE PODZIELNYCH FUNKCJACH
CHARAKTERYSTYCZNYCH

STRESZCZENIE

W notce pokazuje si¢, ze pewne transformacje funkeji charakterystycznych
zachowuja wlasno$é nieskonczonej podzielnoéci. Transformacje te (i wymagane zalo-
Zenia) podane s3 w twierdzeniach 1-3.



