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1. Introduction. In recent years, much effort has been devoted to the
Mmathematical study of problems of nonlinear heat generation. The most
Important of them, i.e. calculations of critical conditions of the thermal
€Xplosion, is a classical problem of the combustion theory.

The thermal explosion problem was formulated by Semenoff [20]
Who obtained the solution for a zero-dimensional model.

The thermal explosion theory, for bodies of one-dimensional geome-
try, started with the work of Frank-Kamenetsky who obtained analytically
& critical parameter of the thermal explosion for an infinitely long lay-
€r [5]. The next analytical solution, for an infinitely long cylinder, was
given by Chambre [4]. In the last two works the critical conditions of
the thermal explosion were defined by a limit value of a certain param-
eter for which the heat generation equation was solvable.

Because of an essential difficulty in obtaining analytical solutions
for more complicated shapes of bodies, approximate solutions have to
be calculated. For example, Chambre [4] obtained the approximate
Solution for a sphere by means of tabulated functions.

In general, there are three distinct ways of solving this problem:

1. By the expansion of the solution of the heat gemeration equation
With infinite series [3], [4]. In this method the coordinates of the point
f the zero temperature gradient must be known, since the solution is
€Xpanded by series at this point.

2. By the explicit integration of the heat generation equation and next
by using tabulated functions [21]. It seems that this method is limited to
the cases of one-dimensional geometry.

3. By the estimation of the critical parameters of the Laplace operator.
This method, first given probably by Hudjaev [6] and Joseph [7], does
11_0‘5 make it possible to evaluate critical conditions of the thermal explo-
Slon in an exact way.
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From the practical point of view, methods which allow to use the
computer technique for calculating critical parameters are required.
Examples of numerical calculations of critical parameters of the thermal
explosion have been given by Parks [16] and by Anderson and Zienkie-
wicz [2]. In both works, critical parameters of the thermal explosion were
defined as a limit value of some parameter of the heat generation equation
for which numerical calculations become unstable.

This paper presents the method for evaluation of critical conditions
of the thermal explosion and extinction based on the bifurcation theory.

In Section 2 the problem of the thermal explosion is formulated.

In Section 3 we collect (without proofs) some basic results about
the nonlinear eigenvalue problem which occurs in the thermal explosion
theory.

The necessary and sufficient conditions for the existence of bifurca-
tion points of the heat generation equation are given in Section 4.

In Section 5 we present properties of solutions of the heat generation
equation in a neighborhood of bifurcation points.

Section 6 contains two caleulation procedures of critical parameters.
Both procedures make it possible to calculate numerically the critical
parameters by means of a computer.

Finally, in Section 7 we illustrate the presented method by some
examples of numerical calculations of critical parameters of the thermal
explosion.

2. Formulation of the problem. We consider a closed volume £ with
chemically reacting bodies inside. A result of the chemical reaction is
heat generation at every point of this volume. Assuming that the efficien-
¢y ¢ of heat sources per unit volume depends only on the temperature
9 according to the Arrhenius law [23],

. < E
q ~ exp Ik

we obtain the model of the thermal explosion “without consumption” [5]-
In this case there may exist stationary states of temperature distribu-
tion #(x), which follow from the equality of the rate of heat generation
and of loss of heat by the boundary surface 02 (Fig. 1).

From the nonlinear dependence of the efficiency ¢ of the heat source
upon the temperature 9 it follows that there may exist one of the two
stationary states (Fig. 2). The first of them is characterized by low inten-
sity of heat generation and by a body temperature almost equal to the
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temperature of assembly #,. The second state is characterized by a high
rate of heat generation and a high maximum temperature of the body.

The transition from the one to the other state is discontinuous. Con-
ditions under which an arbitrary small variation may cause a change
of a stationary state are called critical conditions of the thermal explosion
(self-ignition) or extinction.

The purpose of this paper is to give a method for the evaluation of
critical conditions of the thermal explosion and extinction for arbitrary
shapes of Q.

Fig. 1. A closed vessel with

!
]
]
|
|
' %
Inside in the stationary state: By By, 3,

a chemically reacting mixture 1 >
[dae = [qae0), Au Ax
a o4 Fig. 2. Dependence of the maximum temper-
_ I ﬁ ature of the body upon the temperature of
T Vo the assembly for the sphere [16]

The mathematically formulated problem may be described as follows.
Let Q be a bounded domain in R® with the smooth boundary 0. The heat
generation without reactant consumption is described by the nonlinear
elliptic boundary value problem (NEBVP)

(1) Lu+Af(w) =0 in 2, u =0 on 99,

Wwhere I = V? and » is a dimensionless temperature.
We assume a heat source f to be in the dimensionless form

. u
-l

However, since for combustion the dimensionless parameter f
Is usually small, a simplified model of the thermal explosion with the
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approximate form of the heat source

J1 = exp(u)
will also be considered.
The dimensionless parameter A plays an essential role in the formu-
lation of critical conditions of the thermal explosion and extinction [5].
The basic assumption of this work is that the points of the thermal
explosion and extinction are the points of bifurcation of the NEBVP (1).
For this reason the linearized form of (1) will be considered:

(2) Lo+ Af (w)p = 0.

In the sequel, we shall denote by ux the principal eigenvalue of (2),
and by ¢ the corresponding eigenvector.

3. Nonlinear eigenvalue problem (1). Denote by {i} a set of positive
real values of A for which there exist positive solutions of (1). The upper
limit of {1}, denoted by 4,, is called a critical value. The following theorem
shows how the nonlinear spectrum {1} depends upon the properties of
the function f.

THEOREM 1 ([6], [9]). Let f(u) >0 for u> 0 and assume that the
limit

lim J(w)

u—oco W

exists (maybe, infinite). Then the NEBVP (1) is solvable for every 2 > 0
if and only if

lim—f(i) = 0.

u—oo U

Moreover, the critical value A, exists if and only if

g )

u>0 U

> 0.

From this theorem it follows that for f = f; the critical value 2, exists
and the nonlinear spectrum. of (1) is of the form (0, 1,). In the case of
f = f, the NEBVP (1) is solvable for every positive A.

THEOREM 2 ([9]). Assume that- 2’ belongs to the spectrum {1} of (1).
Then the NEBVP (1) is solvable for, every i (0 < A< 1') and the solution
u is an increasing function of A for every x € Q.

In the case of the simplified heat source f = f, the properties of the
implicit function u (1) are defined by the following

THEOREM 3 ([22]). Suppose that f(u) >0, f,(u) > 0 and f,,(u)> 0.
Then a minimal solution of (1) depends continuously upon i € (0, A.).
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In the case of the function f = f, the NEBVP (1) has a positive
solution for any A > 0, i.e. 4, = oc. Since the second derivative f,, takes
Positive values for » < 1/2*—1/8 or negative values for » > 1/28*—1/8,
the function f, may be convex or concave, respectively. Since we do not
know a theorem similar to Theorem 3 for functions of this kind, we apply
the inverse function theorem.

Let E, and F, be Banach spaces and let @ = Q(u, A): E, — E, for
4 and u such that [A—1, < a (A€ R) and |lu—u,) < b (v € E,). Suppose
that @ (ug, 49) = 0, i.e. u, is the solution of the equation

(3) Q(u, ) =0

for 12 = A,.
We say that @ has a Fréchet derivative for w € E, if there is a bounded
linear operator @' : E, — E, such that

Qu+h)—Qu = Q'h+w(u, k),

where
} (%, h)
lim ———— =
o Al
hEEl

THEOREM 4 (the inverse function theorem ([14]). Assume that the
operator Q for 1 and u such that |A— 2, < a and |lu—u,| < b satisfies the
Jollowing conditions:

1° Q is continuous and Q(uy, 4,) = 0.

2° Q has the Fréchet derivative Q' which is continuous in the operator
horm at the point (uy, A)-

3° The linear operator Q'(uq, Ao) s continuously invertible.

ww>-  Then there exist numbers o, § > 0 such that for every A with |A—2i) < a
equation (3) has a unique solution u (1) in the sphere ||lu — u,y|| < B. The function
U(A) is continuous.

In order to use Theorem 4 we transpose the NEBVP (1) into a fixed-
Point equation in a Banach space. By applying the Green function G for
the operator L subject to the Dirichlet boundary conditions, NEBVP (1)
is transposed into the following nonlinear integral equation of the Ham-
merstein type:

) u(z) = A [ G, y)f[u(y)]dy, ae .
Q
Denoting by T the nonlinear operator

Tu = [ G(,y)flu(y)]dy,
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we reduce the NEBVP (1) to the equation
(5) u = ATu

in which T is a completely continuous operator (!) of a certain Banach
space (%) of functions on 2 [1]. It is clear that the operator

Qu, ) =u—ATu

is continuous.
The Fréchet derivative Q' exists and is of the form

Q' =I-.T,

where 71",

T'v = [ G(y y)fulu()]o(y)dy,

Q

is a linear, completely continuous operator [13].

The operator Q' is nmoninvertible only if A~' is the eigenvalue of T".
In particular, for f = f, we infer that for every point of bifurcation 2
(see below) there is at least one interval [1', i) = {A} for which u(4)
is continuous.

4. Bifurcation points of (1). Consider a nonlinear operator equation
(see [13])

(6) y=F(yp,1), F(0,1) =0.

The real number A, is called a point of bifurcation of the operator I
if for every & > 0 there exists a number A which satisfies the inequality
|A—2+] < ¢ and for which equation (6) has at least one nontrivial solution
yielding [yp(2)]| < e.

Assume that F(z, 1) has at x = 0 the Fréchet derivative F'. Then
the inverse function theorem implies the necessary condition for the
existence of a bifurcation point.

THEOREM 5 ([13]). If [F'(0, Ax) — I] 28 a continuous invertible operator,
then A cammot be a point of bifurcation.

We are interested in operators for which the Fréchet derivative
takes the form

(7) F'(0, 1) = AB,

(1) T is called completely continuous if T is continuous and maps a closed bounded
subset into a compact set [11].

(%) In the sequel, we assume that E, = FE, = 0,(Q), where C,(2) denotes the
set {velC(2): v = 0 on 92}
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where B is a linear continuous operator. Then from Theorem 5 it follows
that the necessary condition for A« to be a point of bifurcation of (6) is
that 1;! belongs to the spectrum of B.

A sufficient condition for the existence of a bifurcation point of (6)
follows from the analysis of the vector field (see [15])

(8) D9 =yp—F(y,1).

According to the assumed form of the operator F, the index of (6)
is defined by #(F) = (—1)™, where m is the multiplicity of an eigenvalue
of B.

THEOREM 6 ([15]). If A:! is an eigenvalue of B of odd multiplicity,
then 2« 18 a bifurcation point of (6).

Now we return to the fixed point of equation (5). Since the operator
T does not have the property 7(0) = 0, we introduce an operator

Ay, 4) = ATTu(A) +y]—u(4),

where A € {4} and % (4) is a solution of (1). The operator 4 is also com-
pletely continuous and 4(0,4) = 0, A’ = AT. In such a way we re-
place (5) by

(9) p = A(y, 4).
THEOREM 7 ([1], [13]). The eigenvalue problem
T =21""¢

has the largest eigenvalue Ay' which is positive and simple. There exists
exactly one mormalized eigenvector ¢ corresponding to the eigenvalue Ay,
and it can be chosen to be positive.

It is an immediate consequence of Theorems 5-7 that if Ay' is the
largest eigenvalue of 7", then A is the bifurcation point of (9), and hence
of (5). From the equivalence of the fixed-point equation (5) and NEBVP
(1) it follows that if A, is the principal eigenvalue of (2), then A, is the bi-
furcation point of (1).

5. Properties of the bifurcation solutions of (1). In order to obtain
the properties of solutions of the NEBVP (1) in a neighborhood of the bi-
furcation point 1., we expand the left-hand side of equation (1) in the
Taylor series at the point (A«, ux) and obtain

(10) L+ M (4a) 9 + A [ fu () 92+ O (93)] = — &f (us),

Where ¢y = u—wu, and & = A—A4. Let us put

(1) 8(A)y = Ly+Mu(w)y, Cy = 3f,(u,)y?, Dy =0(y?),
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where C is the homogeneous operator of second order with the properties

(12) 100, — Cooll < gorlloa— vl (llall, llwell < 7),

r being a positive constant, and D is the operator of order higher than
two and such that

(13) DD, — D, || < gy (7) l0, — el (lvally lloall < 1),

where ¢,(r) = o(r).
Substituting (11) into (10) we get

(14) S(A)y+A(C+D)y = —ef (ux).

Denote by N (8) the zero space of the operator S(A.). The space N (S}
is one-dimensional with a positive eigenvector ¢ as a base vector.

Further we denote by P, a linear operator which projects Cy(£2)
into N (8) and is defined by

(15) Pyv = n(v)p, ©veCy(2),

where 7(v) is the scalar product

, ) = [ v(@)p(x)dw

o}

and 7 (f,(us)p) = 1.
The linear operator P° = I —P, projects C,(£2) into an invariant

subspace C;(£2) for S(A:). In this way every element v € Cy(2) has the
decomposition

(16) v = Pov+n(v)ep.
Assume a solution of (14) is of the form
a7) v = P'y+ap,

where a = 7(y).

We show that a determines uniquely the qualitative dependence
of the solution y on a parameter . Applying the functional » in (14) we
obtain the scalar equation

(18) ea+n(Cy+ Dy) = —enlf(ui)],

and hence

(19) _ n(Cy)+n(Dy)
a+n[f(us)] .

Projecting now equation (14) into N (S) we obtain
(20) S(A) Py + AP (Cy+ Dy) = —eP°f(ux).
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Since Oy;(£) is invariant for S(14), there exists an inverse operator
R(2) = 8(4)~' for values A which differ sufficiently small from the value
Ax [13]. Hence equation (20) takes the form

P’y = —AR(A)P°(Cy+ Dy)—eR(A)P°f (us).
By (19) we have

(Cy)+n(Dy)
Py = —IRMP oy +Dy— " *},
v —ARWP* {0y Dy T ETCEIE s

whence, using (17), we obtain the following equation which permits to
estimate P’y as a function of a:

(21) P’y = AR(A)P°Q(a)(P’y),
‘where

Q(a)(P'y) = —C(P'y+ap)—D(P’y+ap)+

n[C(P'p+ ap)]+n[D(P'y+ ap)]
+ at nF ()] J(te)-

It follows from properties (12) and (13) of the operators C and D
that the operator Q(a) satisfies the Lipschitz conditions [13], i.e.

1@ (a) v, — @ (a) va]l < gallvy — sl

Where the constant g, depends upon a real r > 0 (|jv,ll, l[v.ll < r) and may
be arbitrarily small because

limgy(r) = 0.
r—0
Since R(4)P° has a bounded norm on C,;(£), we may choose a suf-
ficiently small 7, (r, > r > 0) such that, for a with |a| < r, the operator
R(2)P’Q(a) in the sphere M = {|v]|<r:veCy(R)} is a contraction.

Consequently, equation (21) has exactly one solution P%yp in the spherc M
for every a with |a| <7, 7 < 7,.

Next, from (21) (with B = R(1)) we get

IRP*Q(a)0ll < IRIIP| {'Ho(aq)) + D(ag) [1 4 il ]}

a+n[f(us)]
and, further, by (12), (13) and by the inequalities

! < 1 <(1+2 o] ) 1 for || < =,
@tnlf(ue)] — nlf(us)]—lal L (ue)1] LS (20)] 2
We obtain the estimate
(22)

IB(A)P°Q(a)0l < g lal*, g, = O(1).
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From (22) and (21) we get
IP°yll = AIRP°Q(a)(P°y)I
< A[IRP’Q(a)0l| + |IRP’Q(a) (P y) — RP’Q(a)0]]
< Algslal®+ g IR PO IP II],
whence

s lal?

23 Pyl <
23) IS T2 mP

<gla?, R =R(}).

Introducing the scalar funection
£(a) = n[C(P’y+ap)]—1n[C(ap)]+n[D(P°y+ap)],
we obtain equation (19) in the form
_ ;70 (ap) + &(a)
a+n[f(us)]
By the properties of the operator C and then by (23) we get
(24)  lIn[C(P°y+ ap)1—n[C(ap)]l < Ellnll [IP %l 4- 2 |a|1IIP w)|
< kinlllgslal® +2lallgslal* < gs(a)|al®, el <7,

where % is a positive constant. Since the operator D contains terms of
third order and higher, we have

| Dol < gq,1vll3, g, = 0(1),
and hence

(25) lln LD (P°y+ ap) ]Il < lInll g, [I1P°y + agl®

<|
< lnllgz(lal +¢51a]?)® < gg(a@) |af®.
For sufficiently small r, (|a| <7 <7,) it follows from (24) and (25)
that
1(a)] < a?[gq(a) + gs(a)],
where
lim g¢(a) = lim gg(a) = 0.

la|]—>0 la]—=0

Suppose that 7(Cp) % 0. Then the function &(a) takes the form
(see [10], [13], [14])

£(a) = a?n(Cp)r(a).
Glearly,
lim »(a) = 0.

lal—0
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Finally, equation (19) can be written as
1+v(a)

n[f(ux)] +a )

Hence for sufficiently small r, we have

(26) ¢ = —Aa?n(Cyp)

(27) signe = —signyn(Cp).

From (26) it follows that equation (14) has nontrivial solutions with
a small norm if |¢] # 0. There are no solutions if ¢ does not satisfy (27).
For ¢ fulfilling equality (27) there are two solutions (e, > 0 and a, < 0) which
converge to zero as ¢ — 0.

The geometric form of the results obtained is shown in Fig. 3. From
the point of view of physics it means that for f = f, there is one point
of bifurcation of the type as shown in Fig. 3a. This point corresponds
to the point of thermal explosion for the simplified model. In the case of
f = f,, two bifurcation points of the type as in Figs. 3a and 3b can occur,
since 7 (Cp) can take positive and negative values. One of these bifurcation
Points corresponds to the thermal explosion 14, and the other one to
the extinction 4., (Fig. 2).

o]

>J"

/ ; l\

| I\ a
a, /| N2
v/ A-x—] (BN

Fig. 3. Geometric form of small solutions in a neighborhood of the bifurcation points
a — for n(Cp)>0, b — for n(Ce)<0, stable solution, — —— -~ unstable solution

6. Calculation procedures of critical parameters. For the calculation
of singular points of the NEBVP (1) a nonstationary calculation proce-
dure will be suggested. We consider the following system of equations:

du

(28) Tl = Lu -+ Af(u),

(29) % _ Lot if.wg,
7

(30) a = u(d)—A.

dt
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The desired solutions u, ¢, 4 of (1), (2) will be the limits (for ¢ — o)
of solutions of (28)-(30). We have chosen (30), since dA/dt — 0 as t — oo
implies 2 = p, which is a necessary and sufficient condition for 4 to be the
bifurcation point of (1). We show that (30) in the limit takes the form

A= p.
Assume that 1 is a function of ¢ such that
di
(31) — = wlO1=2().

Multiplying equation (31) by du(4)/di—1 we obtain

din(u—A) du
(32) — & —d —1.

First we determine the derivative du/dA in the neighborhood of
the bifurcation point of equation (1).

If 4, <4, <2,, then two corresponding solutions wu,, u, of (1) exist.
Assume that u,, u, are minimal solutions of (1). Let u,, ¢, and u,, g,
be principal eigenvalues and eigenvectors of (2) corresponding to values
4, and A,. Then the following equation holds:

(33) L + pofu(®e) 1 = prafu(Ws) @1 — pa fo(%1) 1.
The right-hand side of (33) must be orthogonal to ¢,, so
|
(34) <l‘2fu('“2j)%—ﬂ1fu(“1)%, @2y = 0.

Using the mean value theorem for f,(u,) we can write (34) in the
form

(38) (o — 1) {fuu(t1) 1y ¢§>
= — oy [y 0 (U — 1)1 (U — U3) Py @20, 0<6<1.

If we put u; — u.« =2 a,p«, Where @, is the eigenfunction corresponding
to 14, we can write approximately

Uy — Uy =2 (A3 — ay) Px.
Then equation (35) becomes
(36) (g2 — paa) {ful®1) @15 @2
— (ay— ay) o {fuu L%+ 0 (U — 1) J@x 1y 2>~

Since the principal eigenvalue g is simple, in the limit for |4, — 4, — 0
‘we have

I

|pe— 1] — 0, lps — @il — 0,
and if A,, 4, - l*, then ¢,, ¢, — Pye Dividing (36) by 4,—A4,, in the limit
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for |A,—1,] -~ 0 we have

d da
(37) == = — i )9, 92,
where ¢ corresponds to x4 and is normalized by <{f,¢, ¢> = 1.

At the bifurcation point of the type as shown in Fig. 3a we have
{fuu®ss @s» > 0, and so in a sufficiently small neighborhood of i, we get
{fuu®?s ¢x> > 0. From the inverse function theorem it results [14] that
the function u(4), as a solution of equation (1), has a derivative du/dA
which is nonnegative (Theorem 2), and hence da/dA > 0.

Equation (37) indicates du/dA < 0 and, finally, equation (32) implies
the estimate

t

(38) |y—l|<ll[exp[f(% —1) ds]<Mexp[—t],

where M is a positive constant.
For convenience of computations we replace (30) by

da

(307) pTE Ci Lo+ Af.9, 90,

where C, is a positive constant. We have chosen (30’), since the equation

Lo+ ufu(w)p = 0
implies
_ (Le, 9> .
{fu®s &

for every g(x) such that {f,(u)p,g> # 0. We now substitute (39) with
¢(t, x) instead of ¢ into (30) and get

i/l_ _ (Lo + .9, 9>
di {fu®s 90 .

In the sequel we replace {—f,p,9> by a positive constant C;'.

Equation (30’) was used in [18] for.solving the linear eigenvalue
Problem of type (2). It was proved that for an arbitrary negative function
g(x) the solutions of (29) and (30’) converge to the principal eigenvalue
# and to the corresponding eigenfunction ¢.

In the case of the second bifurcation point, where {f,.¢%,ps» <0,
it follows from (37) that du/di > 0 for the stable solution a, > 0 (Fig. 3).
Attempts to calculate coordinates of this bifurcation point by procedure
(28)-(30') failed.

(39)

8 — Zastos. Mat. 17.2
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Another calculating procedure, based on the suggestion of Keller
and Langford [10], is proposed:

(40) 62—1; = Lu -+ Af(w),
de
(41) i Lo + uf, (u)p,
d
(42) —d’ti = O <Lo+ uf(W)p, 9,
di d
(43) — = —02<0371"—ufu(u) +5(w), ¢>-

We have no proof of the convergence of this procedure, but we com-
ment on the choice of constants C, and Cj. Since the solutions of (41) and
(42) converge expotentially to the principal eigenvalue and to the eigen-
vector of (2) [18], we omit these equations in the simplified analysis of
the linearized stability of the system of equations (40)-(43). Assume that
A > ;. Then equations (40)-(43) may take the approximate forms

da
E = &{f, 9D,
de

where P =@y U—Ux = 0p, & = l_]‘*! f =f(’ll/*), fuu =fuu(u*)' The
roots of the equation

det(4—sI) =0,
where

A = l 0 <o
_"02<ufuu‘p7 (P> _0203<f7 (P> ’

are of the form

_ 1 4 (Uf 0y @D
81,2 = — = C,05{{, >[1:E]/ EANLaRhed N
2 i G0, o

Clearly, the system of equations (40)-(43) may be stable only if
Ufuups /03 < 0.

The constants O, and C3; may be chosen in such a way that the solu-
tions a(?) and &(¢) are periodic or aperiodic. It was shown in [12] that,
in the case of the slab and the sphere, oscillations appeared when 1/C,C;
> 100.
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7. Results of calculations. Equations (28)-(30’) and (40)-(43) were
Solved numerically [12] by the finite-difference technique using the
explicit and implicit methods [17].

The convergence of procedure (28)-(30°) illustrates the dependence
of the parameter 1, and the maximum temperature u, on the grid density
h = 2q /N for the slab and the simplified heat source f, (Table 1). An in-

TABLE 1. Dependence of the parame-
ter 2% and the maximum temperature ux on
the grid density for the slab

h Ax Wk
2a/10 0.87388 1.18348
2a/20 0.87733 1.18508
2a /40 0.87831 1.18644

>

B

Fig. 4. Dependence of critical parameters 4, of thermal explosion and extinection
for the slab and the sphere on the parameter 8 [12]
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crease of the grid density causes the convergence of results of the nu-
merical calculations to the analytical solution [5]. The results obtained by
procedure (28)-(30’) for other simple shapes were in good agreement with
those given in the literature [12].

In the case of the limited heat source f, both procedures were used,
the first for calculations of thermal explosion points and the second for
calculations of extinction points. In Fig. 4 the dependence of the critical
Pparameters Ay, A+, on the parameter g for the slab and for the sphere
is presented.

Experience [12] showed that procedure (28)-(30’) is characterized
by good stability and small sensitivity on the selection of initial condi-
tions. Procedure (40)-(43) is slowly convergent and its stability depends
on the choice of initial conditions, particularly for small values of the
Pparameter S.
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¥. K. KORDYLE WSKI (Wroclaw)
ZASTOSOWANIE TEORII BIFURKAC]I
Do WYZNACZANIA WARUNKOW KRYTYCZNYCH EKSPLOZJI TERMICZNE]

STRESZCZENIE
W pracy wyznacza si¢ punkty bifurkacji nieliniowego réwnania eliptycznego
Lu+ Af(u) = 0,

OpiSujqcego przewodnictwo i gencracje ciepla w procesie spalania. Wspélrzedne tych
ktéw okreglaja warunki samozaplonu i gasniecia.
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Wykazano, ze dla wartoéci parametru A, rOwnej pierwszej wartodci wlasnej
zlinearyzowanego réwnania

nastepuje bifurkacja rozwigzania.

Analizowano warunki zbieznoéci dwoch procedur obliczeniowych, przeznaczo-
nych do wyznaczania punktéw samozaplonu i gaéniecia. W przypadku punktu samo-
zaplonu wykazano zbieznoéé procedury obliczeniowej dla warunkéw poczatkowych
dostatecznie bliskich punktowi bifurkacji.



