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SEQUENTIAL ESTIMATION IN FINITE-STATE MARKOV PROCESSES

1. In the papcr, the Cramér-Rao inequality for statistical structures
is applied, in the sequential case, to some stochastic processes the distri-
bution of which depends on a finite number of parameters. Examples for
some processes with independent increments and some Markov processes
are presented. The problem of efficient estimation of a function of the
intensity matrix of a homogeneous finite-state Markov process is consider-
ed and all efficient sequential plans for which the efficiently estimable
function depends on one row of the intensity matrix are found. A negative
result concerning the existence of efficient plans in the case where the
efficiently estimable function depends on two or more rows of the intensity
matrix is proved.

The problem of determining efficient sequential plans has been inten-
sively investigated. For binomial samples this problem was solved by De
Groot [6]. He formulated important definitions (') generalized later by
other authors. Bhat and Kulkarni [2] solved the problem for multinomial
samples, and Do Sun Bai [3] obtained some results for the m-state Markov
chain. Efficient sequential estimation for continuous time processes was
considered by Trybula [11]. He investigated the problem for the Poisson
process and for some other processes with independent increments. The
exponential class of processes was considered by Magiera [7].

In Section 2 of this paper we apply the result of Rozanski [8] who
generalized the important Sudakov lemma [10]. In Sections 3 and 4 we
use the results of Do Sun Bai [3] and in Section 5 those of De Groot [6].

2. Let a(t)= (my(t), 2(t), ..., x(t)), t=>0 or t=0,1,2,..., be
a stochastic process defined on the probability space (2, #, P,;), where
£ is a space of r-dimensional vector-valued right-continuous functions
o = x(+) for which left-hand limits exist, & is the least ¢-algebra with
respect to which all x(t) are measurable, P, is a probability measure
defined on # and dependent on a parameter 6. We suppose that
0 = (04, 06,,...,0,,) takes its values in an open set K < R™.

(1) See also [5].
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Let &, be the least o-algebra with respect to which all z(s) are measur-
able if s <t and let P,; be the measure P, defined on the s-algebra #,.
Denote by

Z(w,t) = (Zl(w, 1), Zo(w,yt)y ..., Z)(w, t))

a mapping Q2 — R' #,measurable and right-continuous with respect to
1 € P, almost surely. Let us suppose that the measures P,,, 6 € K, are
absolutely continuous with respect to the measure P, ,, 6, € K, and
that the density function is

P,
dP,, ,

=g(t, Z(w, 1), 6, 0,),

where g is a continuous function.

Let T be the set of values of ¢,T = [0, o0) or T = {0,1, 2, ...},
and let 7(w) be a random variable mapping 2 — T and such that
{w: 7(0) <t} e F; for each teT. Moreover, let Py(0 < 7(w) < o) =1
for each 6 € K. The random variable 7(w) is called a sequential plan.

Let U = Tx R’ and let # be the o-field of Borel subsets of U. On
(U, #) we define the measure m, by

my(4) = Py(t(0), Z(w, 7(o))) €A) for each 4 2.

It follows from the results of Roézanski [8] that the measures my,,
0 € K, are absolutely continuous with respect to m, , and the density
function is of the form
dm,

(1)

dmoo = g(s,2,0,0,),

where s is a value of 7(w) and # is a value of Z(w, T(w)).

We observe the process #(t) in the interval (0, ] and want to estimate
the function A(6). An estimator f(s, 2z) of k(0) is a #-measurable function
defined on U such that D2(f(r, Z(r))) < oo and

(2) E(f) = Uff(s,z)g<s,z, 0, 0o)mq, (du) = h(6).
From the assumption that P(z(w) < oo) = 1 we obtain
(3) Ufg(s,z, 0, o)me, (du) = 1.
We suppose that we can pass with the derivatives with respect to

6; (¢ =1,2,...,m) in (2) and (3) under the sign of integration. Let

W, — 8lng(r(w),Z(aa;, (), 0, eo)’

1

W= (W, W,y ..., Wy).
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We consider only such sequential plans = for which
m
E(ZW%) < oo for each e K.
t=1

From (3) we obtain

(4) EW)=0 (¢=1,2,...,m).
Moreover, from (2) we get
(5) E(W.f) = k(6) (i =1,2,...,m),
where h;(0) = 6h[06;.
Put
2 = E|WW,.

Let us suppose that for each 0 € K we have 2| # 0. Put

27 = llos; ()11
Let

(5) ’ ’ ’
r; = B(Wf) and R = (ry, Tayeees ) = (i, By oery bip).
Then

m
RE'RT = ) o;hik,
=1
where RT is the matrix transposed to R.
Write W = (W, Wy, ..., W,).
We are in the conditions of the Cramér-Rao inequality for statistical
structures ([1], p. 52, Theorem 5), which implies

(6) D}(f)> BI'RY = D ay(6)B(6)1;(6).

In (6) we have equality for a particular value of 6 if and only if for
this value the equality

(N f = RZ'WT +h(0)

holds myg -almost surely.

Let us suppose that we can pass in (3) with the second derivatives
with respect to 6, and 6; (¢,j = 1, 2, ..., m) under the sign of integration.
Then we obtain the second equation of sequential analysis in the form

’lng
96, 06

(8) E(W,W;) = _E( ) (0, =1,2,...,m)
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g = g(r(w),Z(w,r(w)), 6, 00), and o;(0) can be easily evaluated
)

Examples

1. Multinomial process. Let X = (X,, X,,..., X,,) be. a random
variable with the multinomial distribution. X takes the values

e =01,0,...,0), e = (0,1, ...0),/ eee €y, =1(0,0,...,1)
with probabilities
(9) P(X =¢)=p;, (=1,2,..,m),
where 0 < p;, <1 and

m
pr =1.
i=1

Let (1), (2), ... be independent and distributed according to (9).
Let x(t) = (,(2), #,(2), ..., #,(¢),t =1,2,..., and assume that

¢
Nty = D m(i) (6 =1,2,...,m).

Let 6 = (1, Pay«-ey Pmy) and 0, = (p”, 9", ..., pia.,). We obtain

APy, ( p \MOf p, \O | p,, |V S
4 L h Z N,(t) = t.
ar, ( ) ( (0,) ( ) ,  where 2, () =1t

" 2 2
Then we can put

Z(t) = (Nl(t)’ Nz(t)7 seey Nm—l(t))

and write
dPﬂ,t N3(2) ). No(t) Nyt
P, , = Q(t’Z(t)y 00)?1 P2 oo Pp™.
0>
Hence we obtain the equation
dm
dm: = q(s, 2, 0,) P}, P32 ... PIm,
0

where s, 2,, 2,, ..., &, are values of the random variables 7, N,(z), N,(7),...
..y N,.(7), respectively.
Let f(s,2) be an unbiased estimator of h(0). From (6) we obtain

D) =0 [Slpj(h;—w»‘-’ —(fp,-h}(e))z],
j=1 i=1

which was proved by Bhat and Kulkarni in [2].
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2. Finite-state Markov chain. Let x(0), z(1), #(2), ... be an m-state
Markov chain with initial probabilities p,, p;,..., p,, and transition
matrix ||p;ll, where

0<p<l, Dp=1, 0<p;<1, Dp;=1
P P

(¢, =1,2,...,m).
Let
1 if 2(0) =k,

k= .
0 otherwise,

and let N;(t) be the number of jumps of the process from the state ¢ to
the state j up to the moment ¢.
Let

0 = (P1y+evsy Pm—1s P11y ceeyPrm—1y ooy Pmay ""pm,m—l)'

Then we obtain

dP,, ( ( " )N 50) T, .
— = l l = qlt, Z(t k Nj(t)
dP%,t 1} (0)) [I pgg) Q( ( )7 ) k7 pk pu J b

=1 7,j=1

where
Z(@t) = (Viyeors Vs Nia(®)y ooy Ny (8)y Noa ()5 -y N (2), coes N (1),

s Nppma (1)

In this case we get

B B

where 8, 2y, ...y Zpy 2119 -+ + 3 Zmm aT€ Values of the random variables v, V,, ...
s Vius Nua(7)y ooy Ny (7), respectively. From (6) we obtain

(10) D> m§_’1pk<h§c>2—(mj puli) +
k=1 k=1
+ 25 E(.N [Z Pij(hy) — (‘;1 pijh;j)z]’

j=1
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where

Y , ch ch
Ni(z) = Z Nij(T)y by = —-—, hij = E‘p--'
ij

.
—

Inequality (10) was obtained by Do Sun Bai in [3].

3. Finite-state Markov process. Let z(t) be an m-state homogeneous
Markov process with initial probabilities p,, p,, ..., P,n, intensity matrix
m
4, 0<p;<1 (i =1,2,...,m), D p,=1, and with intensities 1, > 0

i=1
(¢, =1,2,...,m, % # j).
Let
1 if z(0) =k,
o otherwise,

and let N (¢) be the number of jumps of the process from the state ¢ to the
state j in the interval (0,t], ¢,j =1,2,...,m, ¢ = j. Let T,(t) be the
joint time of staying the process in the state ¢ in the interval (0, ?].

Let
0 = (P1y s Pimis Arzy -oos Aimy oovs Amiy oeey }'m,m—l)
and let
Z‘i = 2)»”.
j=1
FED)

From [4] we obtain

(11) 320’2 = n ( (0)) [_[ ( Aff,)) e exP(Z (A0 )

k=

1961

at q(t, Z(¢), O)Hp ” (% )Nu(nexp( Zl T, (¢ ))7
1,9&]

Z@) = (Viy ooy Viuy Nua(t)y ooy Nin(8)y vy Nt () ooy Nonus (8),
Ti(®) ooy Tmoa (9).

d m m m
m '
d’mo = q(s, 2, 90)”1’2" r] 13""9111’(—2 l,.t,.),
0y k=1 i,j=1
i#J

r=1
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Where ¥y, ...y Vpyy Nyay evey N1y b1y ooey by, aTe the values of V,,..., 7V,
Npp(t)yeony Ny (), Ti(7), ..., T, (z), Tespectively.
Inequality (6) takes now the form

m—1

(12) D*(f) > S,lpk(h;c)z_(z Pih ) 2 E(T ('r
= k=1

1,]_
1,7—]

where h, = ¢h/op, and h;; = Oh[6A;.

4. Multivariate Poisson process. Let x(t) = (2,(t), ®,(t), ..., z,(¢)) be
a process with independent increments for which P(x(0) = (0,0, ..., 0))
=1 and

kyqk k
)ullzzz... lrr L —At

P(wl(t) = kyy 2:(1) = ko, ..., 2, () = k") AT k! !
1°Vge o0 re

where

Let 60 = (44, A3y ...y 4,,). We have

dPB,t - A; x4(8) o s o
P, , =U(W) exp((2¥ —2)1) = qft, Z(1), oo)” 75O g X

i=1

where Z(t) = «(t).
Then

r

d
0 = g(s,2, 00) [ [ w067,

dmoo

i=1

where 2,, 2,, ..., 2, are the values of z,(7), %,(7), ..., z,.(7), and

2 1 - r\2
D (f)?m; 2 (hy).

5. Multivariate Wiener process. Let x(t) = (x,(t), 2,(1), ..., z, (1)) be
an r-dimensional process with independent increments for which
P(2z(0) = (0,0,...,0)) =1, 2(t) has a normal distribution with density

i’ (xi - Azt)z

=1
exXp \ — o1

p(t,x) = @t

2 — Zastos. Mat. 17.2
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Let 6 = (A, A5, ..., .). We have

r r
ar,, iy
EPoo,t = Q(ty Z(t), Bo)eXP(g; A;2;(2) 2 2 A3l

=1

where Z(t) = x(t). Then

dm,, 8
0)€ Az, — — lf)
dfmo = 46,20 XP(Z 2 g; ’

where 2,, 2,, ..., 2, are the values of z,(z), ,(v), ..., 2, (z), respectively, and

2 1 - 2
D(f)>m;(hz).

This incequality (in a more general form) was given by Skrjabin
in [9].

6. Finite-state birth and death process. Let xz(t),t > 0, be a birth and
death process with values 0,1, ..., m and intensities

Ai=ald (i=0,1,..,m—1),

pi=bu (¢=1,2,...,m)
for given a; > 0 and b, > 0. Let A > 0, x> 0 and let p = (o, P1) --+3 Pm)»

m

0<p;<1, Yp, =1, be the vector of initial probabilities. Then
i=0

0 = (Poy P1s vy Pm—1y 4y 1),
and from [4] we obtain
dP,
apy ,

. Nty P N—(@)
—”( (0)) ( (0)) (W) exp((A® — A) TV (1) 4 (4@ — u) T (1)),

where N*(f) and N~ (¢) are the numbers of jumps of the process to the
higher and the lower state, respectively, in the interval (0, t],

m—1

TO@) = Y aTy(t), TO(t Z b, Ti(2),
i=0

T, (t) being the joint time of staying the process in the state ¢ in the interval
(0,t], and V, are defined similarly as in the previous examples. Then
we have

Z(t) = (Voyoory Vouy N* (1), N (1), TV (1), T® (1))
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and

dmy

m
— alz. 6 2 g2t 2T —AE—
dmoo Q(zy o)gpk ® eXP( C1 ﬂ%),

where z,,...,2,,2",27, 1, {, are the values of the random variables
Voyeery Voo N7 (2), N~ (), T"(7), T®(z), respectively.
The information inequality takes now the form

m—1 m—1
2 AR LA
D*(f) > .h’2—(,v he) + o et
where h, = ¢h/Cp;, by = ¢h[0A and h, = Oh/opu.
7. Finite-state Markov process with related intensities. Let x(t) be
a homogeneous Markov process with values 1,2,...,m and intensities
Aij = Gy5p,

where a;; >0for¢,j =1,2,...,m,¢ # j,and g; >0forj =1,2,...,m.
We suppose that the constants a; are known. Assume that the initial
Probabilities p,, Psy ..., P, fulfil the conditions

m
O<p;<1l (i1=1,2,..,m)), Zpi'——l
i=1

and let V, (k =1,2,...,m), N;({) (¢,j =1,2,...,m,% # j) and T,(t)
(¢ =1,2,...,m) be the random variables defined as in Example 3.
Let us write

.J U

m

T;=Ya;T; and N;= )N,
=1 '
17

Let 0 = (p1) Pay «-+y Pm—1s b1y B2y - -+ ). BY (11) we have

dP m m . m
52t = qft, 20, 0) [ [ ol [ [ ¥ 0exn( = D wT,0),
0ot k=1 j=1 r=1

Where
Z(t) = ‘(Vl’ °**) Vm7 N.l(t)7 MRS | N.m(t)’ MR | T.l(t)7 MR | T.m(t))7

and we obtain

m—1 m-—1 m
v\ [N eh wi [omY
D (f) > ( ) —( —) + ! J ( ) .
() ;Pk o, ;ﬁ'{ Pr 2p, Séf’ E(T,,-(‘t)) o,
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3. Definition 1. For a fixed sampling plan <:

(i) the non-constant estimator f, is efficient for E(f,) = h(6) at 6 if
inequality (6) becomes equality for f = f, and 6 = 6,

(ii) the estimator f is efficient if it is efficient for E(f,) = h(6) for
all values of 0 € K.

(iii) the function h(0) is estimable if there exists an unbiased estimator
of this function;

(iv) the function h(0) is efficiently estimable at 6 if it is estimable
and there exists an unbiased estimator of this function which is efficient
at 6;

(v) the function k(0) is efficiently estimable if there exists an efficient
estimator of this function.

Definition 2. The sequential sampling plan 7 is efficient at 6
if for v there exists a non-constant function h(0) which is efficiently esti-
mable at 6,. The sequential sampling plan v is efficient if for v there exists
a non-constant function A (0) which is efficiently estimable.

Let z(f) be the m-state Markov process considered in Example 3.
We write Z, N; and T; instead of Z(r), N;(r) and T,(z), respectively.
Let us put
ologg(v,Z, 0, 6,) _ P V=DV

W, = k=1,2,...,m—1),

8pk DiPm
clogg(v,Z, 0, 0,) N,;—A;T,; .. . .
Wi = = 6"2 = Jl ’ (0,0 =1,2,...,m, i #)).

ij ij
Then from (4) we obtain E(W,) = E(W,;) = 0. Moreover, by (7)
we have the following
COROLLARY. If under the sequential sampling plan 7 a mnon-constant
estimator f is efficient for E(f) = h(6) at 6, then there exist constants
a,b; (4,) =1,2,...,m, 1£j, k=1,2,...,m—1) not all equal to
zero and a constant ¢ such that
m~—1 m

(13) f= a(Puvi—puv,)+ D by(ng—A;t)+e
k=1 1’1,?;;'1

for almost all (with respect to measure my) points uel.

Let A‘L:(lll’""ll,’l,—l,li,‘l-f-l’"'71’”71) fOI' ’&.=1,2,...,m. In this
section we find all efficient plans in the case where & is a function only of
A; (with 7 fixed). Without loss of generality we may suppose that ¢ = 1.

Two distinct values

1 1 2
AP = (29,243, ..., 40 and AP = (A7, 47, ..., A5

are equidalent with respect to h(d,) if h(AP) = h(AP).
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THEOREM 1. If wunder the sequential sampling plan v there exists
a non-constant estimator f which is efficient for some function h(A,) for two
values of A, which are not equivalent with respect to h(A,), then there exist
constants ay, ag, ..., a,, f not all equal to zero and y +# 0 such that

m
v ajm;+pt, =y

._)

Jor almost all (with respect to measure my,) points u € U.
Proof. Inequality (12) in our case takes the form

2 1 N 7 \2
D) > 57 gzzu-(hu)

By the Corollary, if the estimator f is efficient for E(f) = h(4,) at
AP = A9, A9, ..., AD), then there exist constants b, b, ..., bY
not all equal to zero and a constant ¢! such that

(14) F= Y U= at) +

j=2
for m,, -almost all points u e U.

Slmﬂa.rly, if fis efficient at A® = (A2,19,...,13,), then there
exist constants B, bP, ..., b2 not all equal to zero and a constant ¢
Such that

(15) f= Y b (ny;—A21,) +¢®

'Ns

[
]

J

for my,-almost all points u € U. From (14) and (15) we obtain

m

(b9 — by my;— ) (6222 — bV Aty + P — ¢ = 0.
j=2

s

1l
ta

)

But ¢ = h(A?) = E;(f) (¢ = 1, 2), where E,(f) is the expectation
of f for A, = A{’. Moreover, A" and /1‘12’ are not equivalent with respect
to h( 1)- Then y = ¢V —¢® =£ 0 and it follows that the constants

(b(2);(") b(]))(l))

‘Ms

¢ =bY—-b» (j=2,3,...,m) and B= —

<.
!
)

are not all equal to zero.

THEOREM 2. Let v be a sequential sampling plan for which P (T, > 0)
=1 and there exist constants a,, ag, ..., a,, not all equal to zero and y- # O
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such that

2 a;fy+ Bty =y
j=2
Jor my -almost all we U.

Then for my,-almost all w € U either

(16) gy + Moyt ooo + Moy =1
for some positive integer 1, where (o(2), 6(3), ..., o(m)) is a permutation of
(2,3,...,m) and k is an integer, 2 < k < m, or
t]_ = a
Jor some a > 0.

Proof. Without loss of generality we may assume that y > 0. Let us
consider all cases:

(i) Let a;, <0 for some j,. Since E(N;) = 4;E(T;), we obtain
(7) (aedyp+asdiz+ ...+, +B)E(T,) = yp.

For sufficiently large 4,;, and sufficiently small 4,; (j # j,) the left-hand
side of (17) is negative and the right-hand side is positive, which is impos-
sible.

(ii) Let ;>0 (j =2,3,...,m) and B < 0. For sufficiently small
M (5 =2,8,...,m) the left-hand side of (17) is negative, which is im-
possible. '

(iii) Let a; >0 (j = 2,3,...,m), let a; > 0 for at least one j = j,,
and let g8 > 0. Put

R(t) = aa Ny () + ... +ap Ny, (8)+ BT, (2).

Since R(t) is a non-decreasing function of ¢, for sufficiently small
£ >0 we obtain

P(R(t) 7 77t>0) = P'(R(y—s) = 7’_87-R('y_8/2)>7+37

5 F
R £y, L5 <1< -7_;/2) > P(4)>0,

where A = |w:#(f)=1 for 0<t<(y—¢)/B, #(t) has in the interval
((y —¢)/B, (v —&/2)/B] the only jump from the state 1 to j,}. Then

P(R(7) # y) > P(R(t) # y,t>0) >0,

which confradicts the supposition that P(r < o0) = 1.
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(iv) Let a; > 0 and assume that at least two non-zero a; are unequal
(0 (0)

Say az > a, > 0 and B = 0. Suppose that there exist n{) > 1, n{?, ..., n{®
such that
(18) asniy +asnl® + ... +a,n? = y.
Then
a 2 a0y (nQ—1)+ agn® + ... +a,nl <y,
as(nQ —1) + ag(n{Y +1) + anQ + ... +a, 7 > .

Let
Bo(t) = a3 Ny (8)+ oo +ap Nip(l).

Then for any ¥ (0 < <) we get
P(Ry(t) # y,1=0) = P(R (1) = a, Ry(1") = a+ agn{?,
Ro(t) # y, 1 <t <) >P(4,) >0,
where
Ao == {w M le(t(O)) - n(lg)—l’ Nlj(t(O)) = ng{;‘) (j S 3, 4, ceey m)’
Npo(t) = 0l =1, Nyy(¢7) = nld+1, ¥y (") = nf)
(=4,5,...,m)}.
Thus
P(Ry(7) # y) = P(Ro(t) # y,t>0) >0,

which contradicts the condition that P(r < o) = 1.
If (18) holds only for n{) = 0, then n;, = 0 me,-almost everywhere,
and E(N,,) = 0, which contradicts the equation E(¥N,,) = 1,,E(T,) > 0.
(v) Let a;, = a] = ... = @, = a = 0 for some k¥ (2 < k < m), where
Jg <Jey1 (8 = 2 3, ...y k—1), let the remaining a; be equal to zero, and
let p = 0. Then we obtain

a(n1j2+’n1j3+ ces +n1jk) = y

m,,0~almost everywhere, whence

&

Y
n1j2+nlj3+ ) +’n1jk ='; l.

Obviously, ! must be a positive integer.
(vi) Let a; =0 (j = 2,3,..:,m) and let 8 7 0. We obtain

pt, =y and t1=:—/§-=a.

Obviously, a > 0, which completes the proof of the theorem.
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Let 7(w) be the time of the first attaining of the line (16). It can be
proved that 7(w) is a sequential sampling plan fulfilling all our regularity
suppositions. Then we have

EI(N10(2)+N10(3)+ L +-Nla(k)) = l'
Since E. (Ny;) = 4;E.(T,) (j = 2,3, ..., m), we obtain

k
(19) 2 zla(j)Er(T1)= l.
ji=2

Let 7’ (w) be another sequential sampling plan fulfilling our conditions
for which equation (16) holds. For given 7’ (w) let Ny,, ..., Ny, , T; be ran-
dom variables defined analogously as N,,, ..., Ny, T, for the sampling

plan 7(w). Then
Er’(N;a(l)+NIn(3)+ .ot Nia(k)) = l’
and since E..(N;;) = A;E,.(T,), we get

N

I
to

(20) lla(j)Et’(T;): .

J

From (19) and (20) we obtain E..(T;)= E,(T,).
From the equations

Er(Nlj) = llet(Tl)7 Er’(‘N;j) = }‘ler’(TI)
and from the result above we obtain
ETI(N;]-) =Er(N1]) fOI' j =2,3,...,/n7/.

Now, let 7(w) be the time of the first attaining of the line ¢, = a for
some o > 0 with probability 1. Let ’(w) be the sequentiul sampling plan
for which ¢, = «a me,-almost everywhere. It is easy to see that in this.
case 7'(w) = 7(w) with probability 1.

Definition 3. Let »(w) be the time of the first attaining of the
line (16). The sequential sampling plan t’(w) is delimited by 7v(w) if
it fulfils our regularity conditicns and condition (16) m{,;-a'lmost. every-
where.

Example. Let 7(») be the time of the first attaining of the line (16)
and let ¢'(w) be the time of the first jump of the process x(t) after rv(w).
Then it is easily seen that T, = T, Ny; = Ny; (j = 2, 3, ..., m) my -almost
everywhere. Then 7'(w) is delimited by 7(w).

Definition 4. If v(w) is the time of the first attaining of the line (16)
for some k = 2,3, ..., m and for some positive integer I, then (w) is
said to.be an inverse plan. -
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If v(w) is the plan for which 7, = a holds for some a = 0 with
probability 1, then 7(w) is called a simple plan.
From the Corollary and Theorems 1 and 2 it follows that the only

plans which could be efficient when h = h(A,) are inverse plans, plans
delimited by them, and simple plans.

THEOREM 3. The following functions h(A,) are efficiently estimable:
(a) for an inverse plan v with some k,l and o or for plans delimited
by =,

ayhiat+ .o Fapdy,+B
Moyt oor Ty ’

(21) B(d,) =

(b) for a simple plan =,
(22) h(/ll) == a22.12+ cee +am}‘1m+ﬂ'

Proof. Let us consider an inverse plan r with some k (2 <k < m),
l and o for which

f = allea(g)_’— cee +a'kN16(1n)+a/T1+b.

For the plan 7 we have %54+ ... +Ngpy =1 moo-almost everywhere
and, consequently,
E(Nlo(2)+ +-Nla(k)) = (110(2)4‘ +)*1a(k))E(T1) = l7
whence

l

E(T,) =
( 1) }'la(z)_i_ e +/11cr(k) ’

(0 a,nd

l(a, Moyt -or + Ay, Mgy + @)
(23 E = +b
) ) Ty & —r + Aot
df a2/‘|.12—|— se e +amllm+ﬁ

}‘la(z) + oo F o

Since
Ny = Nyy— A, T, +4,,T,,
we have
(24)  f = @2(N1o) — by T1) + -+ + 8 (Nig(m) — Arom Ta) +
+ (azlmz) + ooi F O lagmy +a) T+ b.
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But
()'10'(2) + .0 + lla(k))Tl = Nla(2) + ... +-Nla(k) -

k

_[(NIU(Z)_}"IG(2)T1)+ +(N16(k)_)'16(k)T1)] = Z—Z (Nlo(j)_lla(j)Tl)

j=2

and

l 2 (Niajy = Aoty Ta)
Moyt +o+ Aoy Moyt -or T+ Ao
From equations (24) and (25) it follows that

m
012 210(2) + e + alm A’lo’('m,) + a
f= S'a,NU.—Aa.T— X
" J( te) teth 1) )'16(1)+ e +lla(m)

(25) T, —

k

U@y Aoy + +or + G Argomy + @)
JZ_; 16(j) lo(j)4-1 Moyt -++ Aoy
_ vhh

< E(T ) ( le_}‘lej)+h(A1)'
Then from (27) below we infer that the function h(A4,) defined by
(21) is efficiently estimable.
For the simple plan ¢, = a let f = a; N2+ ... +a,N,,+b be an
unbiased estimator of the function (22). We obtain

(26)  E(f) = (Gdia+ ... +apru) B(T,)+b
= (Gahgat oor LA hip)a+b Z apdipt oo +apiin+ B,
f=aNy,+... +a,N,,+b
- az(N12—112T1)+ oo A (N — A T2) + (@2 hgs+ oo +apAyy)a+ B

- hl’(lN — A, T:)+ h(A
= E(T )( 15 j)+(1)-

G2
Then from (27) below it follows ‘that for a simple plan the func-
tion (22) is efficiently estimable.

4. Let h(A) depend only on the matrix 4. From (7) it follows that
the estimator f is efficient for E(f) = h(4) if and only if

O k(A
(27) f= Z—:é:’z(l_,:;—(lvij—lijTi)'}‘h(A)'
1,J=1
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Now, let h(A) depend only on two rows of the matrix 4, say, h(A)
= h(A4,, A,;), where A; denotes the i-th row. Then f is an efficient esti-
mator of E(f) = h(A4,, 4,) if and only if

hl] Al’
(28 f= 2 DL (=i T+

1 By (Ay, A

> B (W= i)+ by, 40,

J#3

Assume that (A", A") and (4P, AP) are values of (4,, A,) such that

(AP, ADY = B (AP, AP, Then, similarly as in Theorem 1, we can prove

that there exist constants ay;, oy (j = 2,3,...,m and j’' =1,3,...,m)
and f,, f; not all equal to zero such that

m m
(29) Z'QIijj‘f‘ﬂlTl'l‘Zazj-sz-l-ﬂsz =1
j=2 =

j#2

my,-almost everywhere.
Let us suppose that there exists no hyperplane

m

(30) ZalgN1,+ﬁl 1‘1‘2 a2]‘N2]+ﬂ2 =1,
j=2
19&2

different from (29), such that (30) holds simultaneously m, -almost every-
where.

Moreover, assume that all second derivatives *h[0A;04;; (i,7 =1, 2)
exist and are continuous for all a;; >0, a5, >0, and E(T,), Iu( 2)
have continuous derivatives with respect to all parameters A; 1n the whcle
considered domain.

Differentiating (28) with respect to 4,, we obtain

S hy; S ll'h;j ’
6o (pes) w- D (), i+
— E(T)) /4y, N ]Zz E(T)) A '

i , T, = —k;, (k=2,3,...,m).
Z(m ), - (E(Tz ) 2om e G=2,m
1953

2#3
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]
td

Similarly,

m ’ ’ m ’ ’

1 h’l s 11 : hl :
39 (—J_) N, — (_#_ T,+
( ) % E (Tl) }lzk' lJ JZZ E (Tl) ;.;-_,k' !

I

: [ Agihe: | ,
+2( I ) 2j_2(__)—:2—) Ty = —hy (K =1,3,...,m).

]#3 Jj#3

Then the following equalities must hold:

h,, ’ , )
(33) (ﬁ) = _aljhlk (J, k=2,3,...,m),
V7 2k
by \ : :
Gy gy —ayhhe (J=2,3,...,m, k=1,3,...,m).
1 ‘21.-,

Comparing equalities (33) and (34) for fixed jand k = 2,3, ..., m,

E=1,3,...,m we obtain
h;j = —-.al'h+clj (j=2,3,...,m)’

E(T,) !
where ¢,; does not depend on 4, and 4, (it may depend on A, ..., 4,,, p,
where p is the vector of initial probabilities).

Similarly, comparing expressions at T, N,; (j =.1,3,..., m) and
T, in (31), (32) and (29) we obtain

(35)

m

by
(36) = EI(JTU Pubt s
b, .
E(z’z) = —azjh+czj (J = 173’°°"m)’

m' },,,jh;j
=2 . = h d

< E(Tz) ﬂz + 29

i#3

where dy, ¢,; and d, do not depend on A, and 4,.
From (35) and (36) we get

m

_Z a,,;,,h+2 eyl = Prh+dy.

Suppose that not all ay,, 0y, ..., aj,,, 81 aTe equal to zero. Then

m
Y
2‘ Clillj - d1

h _ LJj=2

m

_-;J al_) 1,+.31

J=
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Suppose that not all ay,, as;, ..., a,,, B2 are equal to zero. Then we
have simultaneously

m
D Cjhoj—d,
i=1
h = j#2

- .
21 a2j)“2j+ﬁz
ij=

j#2

But this is impossible. Thus & is a function only of A, or 4,.

The generalization for h depending on more than two rows of the
matrix 4 is obvious.

It should be noticed that for m = 2 the supposition that for a given
cfficient sampling plan 7 there exists only one hyperplane of the form (29)
is not always true.

Let v be the time of the first entry to n,, = ! when 2(0) = 1 and let
7 be also the time of the first entry to n,, = ! when 2(0) = 2. In other
words, 7 is the time of the first attaining of the line n,, +n,, = 2l. This
sampling plan is said to be a mized inverse plan. For this plan we have
Ny =N, =1 my,-almost everywhere.

Let 7’ be the inverse plan defined by N,, = ! and let v"’ be the inverse
plan defined by N,, = I. Then 7 is simultaneously delimited by 7z’ and
by .

We have proved that for the inverse plan N,, = I the function A
= a/A;;+ f is efficiently estimable. Similarly, for the inverse plan N, =1
the function h = a/A,, + B is efficiently estimable. Let us consider the
mixed inverse plan. Let

f == a1T1+a2T2+b.

But E(N,,) = 1,E(T,) =1 and E(Ny,) = 1,,E(T,) =1, thus
a, Ay
E(f) =l—+ —) +b.
0 =17+
On the other hand, since N,, = Ny =1 my -almost everywhere,

we have

a a a a
fm =B (Npm Ty — 22 (N21—221T2>+l(—‘ +-%) s,
212 2‘21 112 121

Now also the function

a as
h =1|— +—)+b
(}*12 Aoy

is efficiently estimable.
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5. Sometimes we have the information that the value of A is near
a given value A®. In this case we can use an estimator efficient at A®
hoping that for A near A® the variance of the estimator will be near
the right-hand side of inequality (12).
Let f be an estimator efficient at A”. We know that
m
— Z b
ig=1
i#j
and from (27) it follows that

Nij_lg;')Tl)‘l‘c’

Wy (A)
C = h(A(")) and bi]' = —E%(l’—.)’

where E9(T;) is the value of E(T,) for 4 = A, Since

WA) = B(f) = D) byldy;—AP)B(Ty) +e,

i#j

we obtain

(37) h(4) = 2 hij (AD) (A — AD) E“’()(li')) + R (A,

i#j

Then, if we want to estimate efficiently a given function h(A) at
A®, we should find a plan with E(T,) (i = 1,2, ..., m) such that equa-
tion (37) holds.

Furthermore, we have

D(f) = Dz(z bij(Ny— 25 T;) +by; (A l(o))T)
ij=1
Pei

m

- 3 s, -1 00 3] -2+
HEJ

z] 1
i5#j

+ ' bybu(hy—AD) E((Ny;— 4;T:) T)

i’jlk,l
t#5, k;él
m
(5)’=(B)Z bfjlﬁE(Ti)‘*‘Dz(a Ay 1(0))T)+
t,j=1 1,j=1
1#£]

OB(TY)
Z bybua (= A By

t,7,k,0=
i#7, kaﬁl
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Let 7,(w) and 7,(w) be two plans efficient at A” with the same E(T,)

(¢ =1,2,...,m). Since

_ i (A9)

(T’

iJ

for given A this plan is better for which the variance

(A5 — A

m _,
9 ( h;; (/1(0))

S\E) z("))T.)
 BO(T,) :

=
i#]

is smaller. Particularly, when h(A) = h(A,;), for given A, this plan is
better for which D?(T,) is smaller.
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S. TRYBULA (Wroclaw)

SEKWENCYJNA ESTYMACJA DLA PROCESOW MARKOWA
0 SKONCZONEJ LICZBIE STANOW

STRESZCZENIE

W pracy zastosowano nieréwnos$é Craméra-Rao dla statystycznych struktur,
w sckwencyjnym przypadku, do niektérych proceséw stochastycznych o rozkladzie
zaleznym od skoiiczonej liczby parametrow. Podano przyklady dla niektérych proce-
sOw o przyrostach niezaleznych i niektérych procesé6w Markowa. Oméwiono problem
efektywnej estymacji funkeji macierzy intensywnosci jednorodnego procesu Markowa
o skonczonej liczbie standéw i znaleziono wszystkiec efektywne plany, dla ktérych
efektywnie estymowalna funkeja zaleiy od jednego wiersza macicrzy intensywnosei.
Otrzymano takze pewien negatywny rezultat dla efektywnie estymowalnej funkeji,
ktora zalezy od dwoch lub wiecej wierszy macierzy intensywnosei.



