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Applications of Jacobi’s symbol to Lehmer’s numbers

by

A, ROTEIEWICZ (Warszawa)

Introduction. The purpose of this paper is to earry over some ideas
included in the papers of Chao Ko ([11, [2]) and G. Terjanian [10] to the
study of Lehmer’s numbers.

Chao Ko and Terjenian prove the insclubility of some diophantine
equations. The coramon idea of their proofs is to evaluate some Jacobi’s
symbels in two ways: first — without any asgumption about the equation
and next with the assumption that the equation has & solution. Different
results of these caleulations prove the impossibility of the given equations.

According to the theorem of G. Terjanian, the equation #*2 - y** = 2°7,
where p is an odd prime, has no integer solutions if 294 » and 2p4'y. In-order
to prove this theorem G. Terjanian ecalenlates the gymbol

—Am(wry)) r—y '
MEELAMEE AN here 2 A, = 4lw—y.
. (-A-ﬂ(myy) 7 w. e]‘e T*nﬂ" %(mi y) m_.yJ Em y -

Chao Ko, in order to prove that the Catalan equation @*—1 = y?,
where p is an odd prime >3, has no integer solutions, calculates. the
symbol ' :

A £

) L —1Y*
(Qp(y)), where g, _ ==V
Q. (y) ' y—(-1)
We shall apply similar ideas to the diophaniine equations P, = o,
P, = po (pis an odd prime), where P, is the Lehmer number.
' (*—p"/(a—p)  for n odd,
(e — M (a*—pF*) for m even,

Py(ayf) = l

e and f are roots of the trinomial 22 —VIe+ M , L > 0 and M are rational
integers, .
Before the discumssion of the solvability of the equations P, = o,

P
P, =pu we calenlate in Section 1 the Jacobi symbol (P—") and then

m
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jn Bection 2 we apply the result of Section 1 o some diophantine equations
connected with Lehmer’s numbers.

In Bection 2 we note also that the proof of Chao Ko’s result that the
equation #*—1 = ¥, where  is a prime >3, has ne golution in, integars
@ and y, repeated in the book of Mordell [5], can be simplified and ingtead
of the discussion of 5 cases for the prime number p: p = 8%—1, 8k+5,
24k 411, 24%--19, 8k +1 it is enough to consider only two cases for the
prime number p: p = 4k-+3 and p = 4% 41,

1. Properties of Jacobi’s symbol ( P
m
positive cdd integers. As in Eisenstein rule (see [9], p. 330) we write he

following sequence of equalities

) Let. » and m Dbe coprime

no=2kmter, O0<r,<m,
mo=2ky1y +eaty, 0 <y <1y,
ry = 2l tagry, 0 <y <y,

g =2k 17 o gy,
T2 =2lpr_1+ gy,
g =1, 24

0<r <1y ,,
=1,
for i==1,2,...,1.

Then (see [9], p. 332) the following formula holds:

m—-l 31r1—1+rl~1 szr2—1+ +r;_z—1 &y 1r1_1n1+r1_1—1 gri—1

(2) (—n“) = (—1) bz TET E 2 3 z z

m

‘Now we shall find & similar formula for the gymbol (%’3-)

THEOREM 1. We have

: Pp—1 &Py ~1 1>,.1—1 &Py, —1 Py —1 gPp-1
3 P, _ A S g et 21 ’ zz -
{3) 3= (—1}) . X
&—1 gg—1 AT ] &—1
R R —— gy R i
e— TR Y T T ’
P P’l 'P"l—z P, fl—1

where My 0y T8 (3=1,2,..., 1) are numbers defined by conditions (1).

It fo]lows__ﬁ‘om (3) that this formula will he simpler if (%[—) =1.
N

In this case, in order to ealeulate ( ﬁ

M

) it iz gufficient to Enow P, modulo 4.

icm

) (P“)———(—l)” T (-1 i 2

where &'4s the number of posilive &s in the sequence g, &, ..
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TeEEOREM 2. Let 2+¥mn, K = L—4M > 0. Then

— L

(4) (ﬁ;) =(::;) if 4L, M = 1{mod4), (_11_[_)=1,
L

{5) . (i:;) =1 if 4|5, 3 = (modé},(ﬁ)=1,
po M

(6) (iﬂ ) ..;(::L) if 41, L = ——l(modet),(_) =

ulﬁ:'h
i
Rk

(N (%) =1 if 4|M, L =1(mod4),

tq}a

I
=

1M, L =1{mod4),

-Pm

s 81 defiim;d
1] Y
3 ]‘la

by (1), A is the number of terms in the empansion -— = a1+i

; —Fll—1 into a simple continued fraction with a, > 1,
aa " . ' 2

o (E)eewd T

L .
if 210, M = 1(m0d4) (M) =1, 7y = M.

Now we shail prove the following lemma.

LevMA 1. Let 2¥n. We have:

(a) If 4|1, M = 1(mod4) then P, *‘oz(mod_f&)

(b) If 4|L, M = —1(mod4) then P, = 1 (mod 4},

(cy If 4|M, L = —1(mod4) then P, = n{mod4). -

(d) If 4|M, L =1(mod4) then P, = 1(mod4).

e) If 218, L = 1(mod4) then P, = —1(mod4) for n>3
()" If 2UM, L = 3(mod4) then P, = —n(mod4) for n>3.

—2
M = = dd) and
g) If 215, M = 1(mod4) then P, _( - )(me ) an

P, = 1(mod4) if » =1, 3(med8),
P, = —1{med4) i n =05, T(mod§}.

n
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(b) If 2||L, M = 3(mod4) then P, = (-i-) (mod 4) and
P, =1(mod4) if n =1, 7(mod8),
P, = —1{mod4) if n =3,5(mod8),

Proof of Lemmsa 1. Wehave Py =0,P, =1,P, =1, P, = LM
and we check Lemma 1 directly in all cases for n =1, 3.
Proof of (a). Suppose that P, = n{mod4) for an odd #. We have
Loy =LP,  —MP,, 2n+2 = 0(mod 4) for odd n. Thus P =0-Pp . —
—1-n = n+2(mod4) and (a) ix proved by induction.
Proof of (b). Buppose that P, = 1(mod4) for an odd n. Then, ginee
L = 0(mod4), and M = ~1(mod4) we gee that Py = LP, ,, ~MP,
= 041 =1(mod+4), This implies (b) by induetion.
Proof of (e). Suppose that P, =x({mod4) for an odd =. From
M =0(mod4), L = —1{mod4) we obtain Py = LP, ,~MP,
= LFP,.,(mod4). But since P, , =P,—MP, ., 2n+2 = 0(mod4) for
an odd # we have P,., = L(P,—MP, ,) = LP, = —n = n+42(mod 4)
and (¢} is proved by induetion.
Proof of (d). Suppose that P, = 1(mod4) for an odd ». From
M =0(mod4), L =1(mod4) we obtain P,,, = LP, ,~MP, =LP,,,
- =L{P,~MP, ;) =LP, =1-1 = 1(mod4)and {d} is proved by induction.
Proof of (e). Suppose that P, = —L(mod4) for an odd =. This is
true for » = 3. Let n > 3, 2¢n, M = 2(mod4), L =1(mod4). We have
P,y =P,—~HMP, and?P,,, = LPy, 1~ MP, =L(P,—MP, ) —M(LP, ,—
—MP, ) = LP, —2MLP, ,+M*P, , = ILP, = L{—1l) = —1(mod4)
and P, = —1(mod4) for every odd »>>3 by induction, :
Proof of (f). Let 2iM, I = 3(mod4). We have P, = L—M =3—2
= —3(mod4). Suppose that P, = —#(mod4) for an odd n. We have
Prsy = LB, —3MLIP, ,+M'P, ,, %142 =0(modd), P, 2 =LP,
=(—1)(—n) = —{n4+2)(mod4) and P, = —n(mod4) for every odd
#2253 by induction.

Proof of (g). Let 2||L, M = 1{medd), (L, M) = 1. First we note -

that P, = 1(mod 2) for odd n. Indeed Py = L—M is odd. Suppose that
P, =1{mod2) for an odd #. Then Ly =LP,, —MP, = 0—1(mod2)
and P, =1(mod2) for every odd » by induction. Thus LP, = 2(mod4)
and for every odd # = 7 we have

-Pn-i-z = LPn-'_z'MLPn-l +MPn—2 E L-Pn +Pn—2 =2 +Pn—2
=242+P, ; =P, , {mod4).
Hence
Py =P (mod4) for L = 0,1,2

Y
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Thus it is sufficient to check the formula

-2 '
P, E(T) (mod4) for n=1,3,5 and 7.

We have Py =1 = (T) (medd), P, =L—-M=2-1=1= (_é")
. : 9
(mod4), Py =LFP,+P, =2+l = —1 = (—5-—-) (mod4), P, = LP,-+P,

—2
=2+1 = —1 E(T} (mod 4) and (g) is proved.

Proof of (h). Let 2||L, M = 3(mod4). As in the proof of (g) we
have

Py =P {modd) for £ =0,1,2,,..;7r=13,5,7.
Thusg it is sufficient to check that

9y - . .
P, E(_,,) (modd4) for =n =1,3,5 and 7.
¥ ‘ ‘ :

We have - _
‘ 2
Pi=1 E(i;i—) {mod4}, Py=L-M =2-3=—1 E(—a—) (mod 4),

9 :
P.=1LP,+P =241 = —1 E(g) (mod4),

Py =LP,4+P, =2-1=1= (7) (mod 4)
and (h) is proved.
Lmyma 2. Let (n,m) =1, 24mn, n =3km+er, ¢ = 41, 217, then

P e—1

" =)=
. (_Pm P, J\P, )
Proof of Lemma 2. From (n,m) =1 it follows that {P,,P,)
=Pupum =F =1
I. First we consider the case # = 2km+r, where 0 < » < m. We have

Shmtr __ pokmebr 2km __ p2ikm r_gr
glbmtr_ gakm =ar(a__ﬁ__)+ﬁzkm(f__ﬂ)’

Py a=f P
‘azkm{-r_ﬂ‘lkm“' _ r(azkmmﬁﬂm) P M
a'—ﬁ i = C!--“‘ﬁ * ( a—p ).
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Henee
o+ B -".B”‘m .
Hitnsr =( atp )( aog ) A ET AP
Let
il for n odd,
o, =1 atf
a"4-f*  for m even.

Since z, = 2, », =1and v, , = Iv, ., —Mwv, for n even, s, ,, = v,,, — Mo,
for » odd, the numbers v, are rational integers.

We have o
u 2P2km+r = 0, Lo Le + Vo1 Py
and from P, |P,,, it follows that
(11) . 2P2km+r _ azkm _!_ ﬁzkm ( rPr ‘
P, 2, P,

From o' — g = (q—B)P,,, if
21km, P, |Piony a—f = VE, (a+f) =

2t km, @™~ " = (o — §* )Py if
= VT it follows that P2, |(od — gim)2,

Thug ,
( 2km+ﬂ2km) 3 (akm_‘skm)2_{_2Mfﬁn B 2 Jm _ 2 M\
P, “( P, ) ‘(_ P, ) B (P)(E:)
and gince 24m, we have ' ‘
(12) (azkm_l_ﬁzkm) _ i E ]
) 7 P m P m P m -

From {11) and (12) it follows that

(P2m+f)=(’Pr ﬂ{_k
. P, P, J\P,]"

II. Now we consider the case & = —1. Then 0 o= 2kmmr, where
0 <r<m. We have

azkm-r_ﬁzkm'—r _ oFm _‘32km +ﬁ”km ﬁ—"‘
Ca—f a—f a—f '
azkmmr._ﬁzkm—r _ .ﬁur azkm. _ ﬁﬂkm 4 a2km a—r—ﬁ_’_'
a— ﬂ ’ . o — ﬂ . a— ﬁ '
Hence '
27 —r _ T
2Py = () S BT (g gy O

—F S
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Thus '
azkm_ 2km A oAt pr
B(0h) Pt == (01 F) Sl (g iy ["( = )]
a—p a-—f
ie. B . )

. a + ﬁr a!.fcm_ ﬁzkm | . v o . ﬁ,,
20t Pu, =( S (et 17+ oo [ - (£
and
(13) 2M Py, = qu-szmL_i'vz}‘cm( —2,).

2 Mk .
By formula {(12) we have ~Pm = 7 )\7 and smee-Pm [Popm, from

formuia (13) we get
_2_ E’. Pi’km—r)m 2 M k "”‘”-P,-
-Pm ‘Pm -Pm B Pm Pm 'Pm )
Since 2¢r we have (%—I;—) = (if—) Thus

et

- -

Thig completes the proof of Lemma 2,

M
Now we shall caleulate the symbol ( 7

"

) First we shall prove the
following _ :

Luawa 3. Leb 2|\ ML, (M, L) =1, 2—i’m. Then

(a) If M =1{mod4) or 4|L then

M\ [ L\ue
= B v v
() If T = L(mod4) or 4| then
M B \e-)2
) w2 -tz
(¢) If 2|\ ¥, L = 3(mod4) then '
MYy M\em-ne
oo N S
Q) If 2(L, M = 3(mod4) then
: ' LM 2\ L \tue
w (7))
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Proof of Lemma 3. Let M = 1(mod4). For m =3 we have

) -5 )

Suppose now that formula (14) holds if m is edd and m 2= 3.
Bince M = 1(mod4) we have

o) =15 = (=) = (5] - (5) ()

- () - () - (™

T \(enta)-1)
~ (i

and formula (14) follows by induction.

Let now 4|L, ¥ = —1(mod 4). By Lemma 1 we have P, = 1(mod4)

for # odd and

© g1

(%)%fﬂ)m(ﬂf)z(%)=(%)T-

Suppose now that formula (14) holds for an odd m. Since P,

P,

e+l

M
El{modé_) we have( )=( W )a,nd in the same way as in the

P,

m--2

case M =1(mod4) we prove formula (14) for the odd number m+2.

Proof of (b). Let L = 1(mod4). Note that (—;lw) = (;E) for odd n.

Indeed, from the identity o} L —KP} = 4M" it follows that
(vE,L—KP,i {4\
‘Pn - 'Pn. )

L M
and sinece 2 h: o ) =
24 n we have (Pﬂ) .('Pn) Thus

3-8 2592,

Suppose now that formula (18) holds for an odd #. Since (-—;}‘)
n

icm
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L =1(mod4) we have

(mﬂ) (+) (+) ( o )z(—ﬂlffpﬂf)
-1 -

M

L

M (m+2)—1)/
(%)
(1

and formula (15) follows for every odd m by induction,

i
Let now 4|M. Tf I = 1{mod4) then as we already proved (P—~)
m

Ar\fm-nie .
=(T) and it remains to prove formula (15) in the ecase 4|M,

L = 3(mod 4).
Let m == 3. Then we have

)52~ (592

Suppoese now that formula (15) holds for an odd m = 8.

We hfwe( 2 ) =( L ) Since 4|M, I = 3(mod4), by Lemma 1
-Pm-w Pm»i—" :
we have P, =n(mod4). Thus

L P, o { LPp sy —MP,
e (] \OmtR) -2z f T2 Y (3D M)
( > ) (1wt ( : ) (1) ( -

m+2
o ( _1)(m+1){2 ( —ﬂffpm) ( 1)(,,1,“)/; ( ) (
L

)
=y () ) -7
7

= ( —1)ymH! My (M (mnlm_(ﬂf_ )( )(m iz ( M\ (fme2)—1)
== (T)(T) —\Z/

and formula (18) follows by induction.

Proof of formula (16). Since 2)M, L __3(1110(14) by Lemma 1
we have P,, = —m{mod4).

Let m = 3. Then

(%) =(L%M)'=(L;M) - _(%{)

and formula (16) holds for m = 3.

)
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Suppose now that formula (16) holds for an odd m. By Lemma 1 we

have P, = —n(mod4) for odd » >3 and since L = 3(mod4) we have
( M ) =( L ) = (Hl)(—(m'i‘z)’l)/g (_-.Pim‘__!-z)
P Py L
e, . ,—MP
= (=1 (—m—2~1)/2 mt1 m
(-1) [

—MP MNP
= { —1)—m—2-Df2 my o _pyeme2-niey oy [ m
(a2 = ”‘”(L)(L)
-ttt (S ) - oo [ 2)(
_ o M L\ ea—1i2 M (m-:-z)-1),'2
=1 (T) (=D (7;“) = —(—L')

Phis implies formula (16) by induection.
Proof of (d). Eor m = 1 formula (17) holds. Let m = 3. We have

( M ) =( M ) _ _(I-M LY (2\( L
P, I—H o )T T\ "(E)(“J"ET)
Suppose now that formula (17) holds for an odd n. By Lemmsa 1
2 .
we have P, = (—q’;—) {mod 4) for odd ». Thus

e
2

icm
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and it remains to check the formula

(e ) -2

RS N ES)
m m-2
2 2 s
Since (m—l— 2) = (E)( —1)m+I2 40 prove (18) it is enough to check that
(G - w1
(—1) : = (-1 *

)o-s

4 =1

The latter formula is true because if m = 3(mod4) then {—1)

(3).0—2
m,
e

and if m = 1(mod4) then (-1) =
of Lemma 3. .

COROLLARY 1. Tel 2¢m, (L, M) =1. If

= —1. This completes the proof

2| and L =1(mod4}, (-73-) =1 or

z .
21L ond M =1(mod4), (—) =1 or
M _
‘ L (M
4|L  and (M) 1 or 4iM and (L)
M
then (P_m) = 1.

" Proof of Oorollary 1. By Lemma 3 we have

m-1 =1

-6 E-E)

and since d 1 for even M and|— L =1 for even L we have (E)
] V3 P,
== 1. This completes ‘she proof of Gorollamy 1.
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Proof of Theorem 1. From equations (1) and Lemma 2 it follows

that
) Ic-}-.‘l_l
(Pn) AT S
?. \ P, /\P, ’
) . 8g~1
-2
Prl ‘Prl r '
ot g—~1
(Pﬁ) ‘(ESPra e
Prz B 'Prg Prz) ’
(19) e e
. P~ 51—1-1
=) =)
P"l—z P"z—z P"z—z ’
81—-1
(-Prl—z) _(Sz.Pr,;)( M )kﬁ- 2
F -1 P 771 Py
Since '
L
b af’
(“) —( ® ) for ab oda
7= o) or ab odd,

P, >0 | (becanse K = L —4M > 0)

it follows from formulae (19) that

Al Bl—l
(Pn aly) ()" T
7o) - (5=
P11 Fp -1 ; _:_31_1
S O A
P.Tl Pm

Pm“"l &3Py —1

-0 (R T
| P, J\P, P

icm

()

L &) .
Pp—1 a]Prl_l P;,.l—l ’2Pf2 1+ +ITZ—'2

) EIFIPrl—l‘._‘l +Pr1_l_—l ,!z-f“rlﬂl
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’ eg—1 -1
Pm_1_’1Pr1“1 Py -1 -szprg_l P o kg—!»—‘)g i lx:lri-slz
. F’aPrz -Prl Pm
gp—1 2r—1
Po—1 SI'P:l'l_:l P’."I—l 82P1’2_1 kz-l-"z—" k1+—1———
(T (Prl)(M) 2 )
Pr2 ’Prl Pm.
Pp—1 aFr=1 Pp=1 gFp=1 Py _,—1 4Py -1
— (_1) 2 2 Fi 2 2 2 x
;_1—1 32-1 51—1
o e Ry —— Iy +——
¥ |— P e
7, I\P,_, P, 7,
Pp—1 8Fp=l Pp—1 &Pp—1 Pyy_,—1 by -1
- (—1) 2 3 2 2 2 [ .
. f—1 §f.-1—1 gyl g1
It —— Ep—qt —egen kyh— Iy e
(EIP‘H)( lli-)z 2 (M) 2 (‘BI) 2 (M) 2
% = —
'P"l—l 'Pi‘l_l Pfl_..z 'Pfl Pm
Pp—1 0Fp—1 Pp-l agP,.z'-l Pp,_,—1 81—1Pfg_1_1 P,.l_l—-llzLP,.l—-l
=(_1)2'2..2'z+"' T H 2 Ty
L g—1 . . +sz__1—1 P +az—1 - +e---l .
it —— ' J1t—3— ity t— 1T
e [y I e IR - B 5 B
W ey | -
P’z P"l-—l P"E—z PT; Pm_
Since
(Pr!—l) - (Prl_l) - 1
P,.z 1 .
. we have

= (-1 * 2 2 2 - 2 2 2 z
gyl eg—1 . -1t [ ot
o\t ( M)“_“ ( o )""“_‘+ E ( b )’ 7
X e -d e
(Pﬂl) P"l Prl—z Prl—l . .

" This completes the pfoof of Theorem 1.

5 — Acta Arithmetica XLIL2
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' M
If now 24m, (L, M) =1, 2| and L =1({modd), (_f) =1 or

5L M
2|Land M=1 1110(14),( ) =1 or 4|1, ("ﬂ) =1 or4[M, (—L—) = 1 then

M
by Corollary 1 we have (—13——) =1 and from formula (3) we obtain the .

formula
P,n,_.l BIP,.I—I Pf‘l_l ‘21’1'2—1 .P,.!_I—l BzP,,z"—I
P, 7 Tt RACER A S
(20) == (-1 : .
'Pm

Proof of Theorem 2. First we consider the case 4|0, M = 1(mod4),

L
(:'ﬂ?) =1 or 4|M, I = 3(mod4),
P, =n(mod4). Thus

M
(T) =1. By Lemma 1 we have

Pp—1 &aPp—1l ;-1 er -1

3 2 =—3 5 {mod 2),
P11 &P, —1 gy -1 gr,—1
P
3 2 5 g (mod2),

and from formula (20) we get

' m—1 er—1 ri~I grg-1 r—1—1 sr—1
P R - g LAY .
( L2} (__1) 2 % 2 2 2 2 .

By formula (2) we have

Mm—1 gry~1 #—1 eory—] rp—1~1 &rp~1
171 1 Ty -1 iy
n X . +_— ot 4 —_——
( ) ( 1)2 2 5 2 2

2z
P n
Th n) = {2
“S(Pm) (m)

Now let 4|L, M = —1(mod4) (

EJH

M
(.—L_) = 1. By Lemma 1 we have P, =

)=1 or 4|M, L =1l(mod4),

1{mod4) and frem formula (20}

icm
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we obbain
1-1 £l 1-1 e9—1

- 9 1~1 81—1
) TR
P,

Now we shall consider the last two cases.

215, M = 1{modd), (%) =1.

First we congider the case:

-2
By Lemma 1 we have P, E(M%—) (mod 4). From Corollary 1 i

follows that ( il

n

) = 1 and from formula (20) we obtain

w7 ) G e )—1 i el

()(

2

= (— )’_ ’

where m = #,.

M
It remains tc consider the ease 2| M, I = 1(mod4), (—L——) =1.

M
By Corollary 1 in this case we have (“13_) = 1. By Lemuma 1 we have
n
P, = —1(mod4) for » > 3 and it follows from formula (20) that

—-1-1 {—a—1 f—-l-—l —&y—1 1. 1\ g_1—1 - —1—1\ 5_1—_];
(_%’_u_)=(_1)( =)+ ) ) v (B ) 2,7(2)

P

-1

= (-1,

where ¢ is the number of positive e’s in the sequence s, &,...,4_;.
On the other hand let P, = (y™—1)/(y —1), where 2[y. Then M
= g1 = 2(mod4), L = (a4 = (y+1)¢ = 1(mod4) and

_P a;—-l
(7)==
Let
By I' |+ e ] ‘where %, > 1,
Ikz [7 ih .
Suppose that # = km . Then )
i I i ¥ —1
y 1 _(y e
y—1 y—1

¥—1
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For example for ¢ = 2 we have 27 —1 = (2" —1)2" 4+ 2" —1. Thus

)= =) -lF=)

Let;
7 = hym -y, 0 < ¥ <m,
m = Eo¥y ¥, 0 < ry<< iy,
Ty = kyvy 7, O <y <<y,
Ties =By a¥i g +Mi_ay  0<<r_, < ¥y,
Pig =i Taa 0oy, 0<ry =1 <y gy
Tpg = Eyr2_1+0.
Hence
Pp=1 Py -1 Py—1 P ~1
1
(Pn)=(‘Prl)=(_1) 2 ! 2 ('P‘m):(_l) 2 ’ 2 (‘P"Z)
P P , Pﬁ _P,,I
. Pl Bp-1 Pp—1 P,.z-l P"}.ws"'l PTA—z"l
. T Ty g et e Pry_,
= (~1)
Pry_,
‘ Ppy—1 Pp~1 Pp—1 Py -1 Py =l By, -1
L T gty et — Pry_y
= (-1
. P, TA-2
. Pm_I'P,.I—I-i-P,.l-—l -.P,.z--l J_P"A—s"l b
— (___1) E 2 2 2 T ) ) ES
We have o
: Py = —1{mod4) fori=2,3,...
Thus B

Pl

B - .
( ) ) — (‘__1)1'!-—2 = (__1)/1.
This ecompletes the proof of Theorem 2. |
If we snbstitute L2 for L in the trinomial #*—VIp+ M we zet the
: an_ﬁn

trinomial @?—V L+ =o*—Ly+M. The number I, w= 7 )
a_——

where ¢ and f are different roots of the trinomial w? Lo+, is. the

2

ath Lucas’™s number connected with the trinomial. We have (f{) =1
T B
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: pi%)
for M odd and (f) =1 2{L If 2| then 4{7% It L = 4+1(mod4)

then IF = 1(mod4) and Théorem 2 implies the following Theorem 2’
on Lmeas numbers I, .

1 7

THEoREM 2. Let L, = , where o and f are different

rools of the trinomial x* —Lu+ M (L > 0 and M are rational integers and
K =L?—4M > 0). Let 2¢nm, (m,n) =1, (L, M) =1, Then

(a) If 2|0, M =1(mod4) fhen (%) = (-{'_?’—)

' m

(by If 2|L, M = —1(mod4) or 4£|M, L = L1(mod4d) then ('—;"—)

m
=1,

L
{e) If 2|, L = J1(mod4d) then (-i_li) = (=1}, where 1 is the
mn
) n 1 1
number of terms in the formula P ki T + ...+ ]T which represents
2 A
the expansion of the rational number % into a simple continued fraction

with .k, > 1.

{P,
2. Applications of Jacobi’s symbal (P—ﬂ
- m
tions comnected with Lehmer’s numbers, Firgt we shall give a new proof

of Chao Ko's theorem (see [1], [2], [B]) according to which the equation
@t—1 = yP, where p is a prime > 3, has no solution in integers @ and ¥
(y #0). : :

Let #2—1 = ¢®, where p is a prime > 3. By a theorem of Nagell (see
{6]) we have pla, 2|y, hence

) to some diophantine equa=

y+1=p0, where 2{n0
and ' ‘
y = p—1{mod4d).

First we consider the case

I. p =4k+3. Then from y = {p—1)(mod4) it follows that y
= 2(mod4). . . o '
Bince p > 3, we have p = 3k+a, where ¢ == 1,2 anfl
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(21)
. :( o ):( ¥+ )=((y3—1+1)’"‘y“+1) m(_ -+l )
yr+y+1 Py 1 yi+y+1 yi+y+1

¥ a=1 then
) - o) -5
Yyl ¥ +y+1 ‘ y+1

and we obtain a contradietion with (21).

If ¢ =2 then

¥ y2+1 2 \(wi2\ g1
e = 3 -] = = = (—-—1) = ——1
v+y+1) Aty A\l gl y/2
and we obtain again a contradiction with (21).

(—y)"—1

II. Suppose that p =4k-+1. Let I, — y—1

and let ¢

be an odd prime number such that (—;‘Z—) = ~1. From y = p —1{mod4)
it follows that y = 0(mod4).

I
By Theorem 2’ we have (—2—’—) = 1,

L,

On the other hand, since ¥y +1 = po, we have

()b -

(Ly = —omm =9 =" (= g)HL = 1414 L 1 = g(modp)).

Thus the equation y¥-+1 = «* has no solution in positive integers
# and y and theorem of Chao Ko is proved. Now let p,,.(n) denote the
greatest prime factor of n and let K = L— 431 > 0.

The following theorems hold '

TseorEM 3. Lef (L,H)=1, K =L—4M>0. If 4L, M
L .
= I(mod4), (?) =1 or L =3(mod4), 4|H, (-I—H—) =1, 2fn #O

4 L
then P, £ .

THEOREM 4. Let Proy (i K = L—4M > 0 for m + 27 Let n 5= 2%,

I
# == 1. If-d-_-EL, M = l(nlo(i4), (Tﬁf) =1 or 4:].1[, L= 3(]330(14:)1 (%) == 1
then P, # 0. .

. THEOREM 3. Let 2fn, n 10, n>1, K = L*—4M > 0. If (L, M)
=1, 2|.L, M =1(mod4) then I, = o.
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TEEOREM 4'. Let n 1, 2%, p (wt K =L —43 >0 for a 2%
If (L, M) =1, 2|L, M =1(mod4) then L, + O. S

Firgt we note that the theorem of G. Terjanian (see [107), stated in
the infroduection is a particular case of Theorem 3°. .

Indeed, if &*?+ y*® =2’ then 2]zy. Without loss of generality we
can assume that 2 [y, Then 4|22 — x%, 24 2z, hence 22* = 1({mod4), 2|22+ «?
and if we put in Theorem 3’ L = 224 5% M = 225% we obtain

(22)P — (22)? 220 __ P
LP = 22— = Py 7 0.
2P gtp
But if #*? 44" = 2", where p{y, then =

This completes the proof of G. Terjanian’s theorem.

Proof of Theorem 3. Let 24w, n = 0. Suppose that P, =o.
P O

By Theorem 2 we have (—TJ—) = (—”) = (——) =1 for overy odd
" P, P,

. On the other hand, for a given odd number n, let m be an odd numbper

such that (—f—) == —1, (Tt is easy to sce that such an odd number m exists.)
m

Then (11:”) = (ﬂ) = —1 and we gebt a contradiction. This completes

the proot of Theorem 3.

Proof of Theorem 4. Let P = Ppo(nf K = K = (c—f)* =L—
—4M > 0, pi|n.

I. Let 24¢#n. Then

[T 4

1<iln
1P lge<l
where

Q. :—“n (a'i__ﬁi)#(kﬁ) — H (a_cq;zﬁ),

ik {m,E)=1

& is the Mobius function, £, is a primitive kth root of uni-ty.
Tirst we prove that (@, @) =1 for 1<i|m, & P 1<,

j=1,2,... Indeed, we have (Q;, Qy) =1 or (@, @y} = greatest prime

factor of the number ip’. In the latter case, since ¢ = Pmax (), WO would
have p|Q;, P|@,i, ¢ 7 9% #|n But this is impossible, because the only
numbers §,, which can be divisible by p in this cage are

@y pz,Qpa, ... (see Lehmer [4])-

i
P
]
8
i
1
3
i
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Thus . .
o, ] @)=1 ana (0,0,..9, H Q) =
i#plﬂjugigt ‘i#p .1&84)5
II. Let 2|n 2% Then
a®— ,B
Bo= s = % Oy ﬂ Qs
i#Ep ,‘f£3<t
where also
(00 0: [ @)=1
o
But from pt K ={a—f§)* it follows that
1:«]’(910@?2 ...pr and (Qpe, Qp,) = for ¢ & #

(see [4]). .
aﬁ' o ﬁ.’P

Thus, if. P, =0 in both cases we should have

but this by Theorem 3 is imrpossible.
IIL Let n = 2°% Then

<a=+ﬂ2) T L@ Y.

I L =3(modd), M —O(mod-:L) thenP =¥+ p? = L—3M = 3(mod4),
Hence P, 5= o and since (o + %, o' 4 ,8”) =1 forq ;ég we have P, # 0.
Now let 4{L. Then 2o +p% fori =1, 2, ...

If P, = o then

a?+ B2 = 2m,

hence

a22+ﬁ22 — zm, e -)276— +ﬁq2k-1 — 2D,

P

= 221:—-1'3 =

?
which is impossible.

This completes the proof of Theorem 4.
TEEOREM 5. Lef a and B be different roots of the trinomial £2 —

where K = I,—4M >0, (L, JI) =1 If 4|, L =1(mod4), («%ﬁ) = 1,

' L
or 4|L, M = —1{mod4), (1—{—) =1, p is an odd prime nuwmber then P,

O‘.p'— ¥

= P ¥ p O,

=[j’

l/fm—}-M,
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Proof of Theorem. 5. By the identity of Kummer (see [3]) we have

I b‘i’b _
(22) =2 . (ab)* ' qa(aib)*‘*abu{-”{” 8
b 1-2
- — k1) (n—F—2) ... (n—2%+1)
BYS g2 e P(n
R s (R 12...% X
X(a:tb)n—zk—l akbk_[_ (?1}‘“"”’247,(&2;)(”—1”1,
Hence
o__pe
{23) aa_g = (@a— p)2A+ gD,

where 4 is some rational integer and ¢ an odd number.

Now let ¢ =1(mod4) be a prime number such that (%) = —1.

Then aiso (—g—) == —0,
»

2 _ Ar
Ipr=i‘-‘——ﬁ‘—-

a—
mula (23} we have

=pno then p|P,, hence p|(a—f)? and by for-

(24) P, = g% (mod p).

By Lemma 1 we have P, = 1{mod4). By Theorem 2 we have (}51—'*) i
q

=1 : l
ap__.ﬁP . i

= po then i
a— . !

(52 - () 8- (- (4576

which is impossible. Thus P, # p o and Theorem 5 is proved.

TeoReM 5. Let K = L —4M >0, (L, M) =1, a and § be different
roots of the trinomial #*— Lye+M, where 24L;, 4|M or 2|L,, M
= —1(mod4) and let p de an odd prime. Then

— B
L, = pry

Proof of Theorem 5. Put in Theorem 5: L = If.

It P, =

#pa.

Then L
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' o I
= 1{mecd4), 4| H, (—.E?) =1 or 4|L, M = fl(modéc), (ﬁf =1 and
by Theorem & we have L, # po. ' :
TamorEM 5. Let © and y be rational imtegers, (m,y) =1, wy =0 or

3(mod4). If n>1 is odd we have

PR
¢ y :,ﬁ’nD.
Ly
Proof. Assume that
mn__,yu
(25) Y = g0
z—y

and lei; p be the least prime factor of n. We have

™ ﬁy"
@ —y

= HQI;("E} y)r

1<Zkn

(26)

where @, is defined in the proof of Theorem 4. Since g is the least prime

faetor of n, it follows from (25) and (26) that piz—y and
o -y '_ -5

(27) = pgigs® ... AT ... T
2y

where g;[n (i =1,2,...,%) and (g, n) =1 (j =1,2,...,7). We have

(@2, ), Q(2, )1 the greatest prime factor of 4jjn,

hence in- view of (25) and (26) it follows that §; = 0(mod?2) for ¢ =1,
2, ..., 7. Further ¢,]Q;(z,y) if and only it j = pgi, ! =0,1,2,... Leb

(28) Va6 =1,2,..,1).
Then _ :
' 0 W20, (25 919 0 (25 4} @ i, 9)
hence
e =Y
gaptven o ¥
gy oy

and from (25) and {28} it follows that a; = 0(mod2) for i = 1,2,..,%
Thus by (27)

a —yf
#—y —pH
whieh is impossible by Theorem 5°.
The special case of Theorem 5" withe = af, y = —yl has been proved

earlier by Professor (. Terjanian,
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Let 20 M, L =1{modd), K =L—4M >0, (L, M) =1, (_ﬂ_%[.) =1.
Suppose that

aﬂ_ﬁﬁ
{29) - P, = pyy = po.
By Lemma 1 we have P, = —1(mod4). Thus it mustbe p = 3(mod4).
Let ¢ be an odd namber = 1(mod4). Let ? = cl—l—i_l-l 4. +l_ﬂ’ where
q 23 G

6, > 1. By formula (23) we have

g __ pd
aa g = (a—B)2F 4 ¢M" V2 where F' is a rational integer.
From pl|P, it follows that p|(a—p)® and P, EQM(Q‘M(modp). By

Theorem. 2 we have

-3 ) ) 395 -

Now, if we can find an odd number g such that (—1 ——ﬂ(-i‘%-) the im-

poseibility of (29) would follow.
But that is possible (see [7]). If p—1 = 21, where lsl(modé),

I >1, then alhn = 24—-&—1,'2 = 2 and for g = I we have
LA [ ) . 1—r2l) =1 = (—1Y.
P 2141 l ‘
I p—1=2I, where I=23(mod4) then 2i—1 =p—-2 =8k+5,
P 1| 1]
—— =14 A =23 andfor ¢ = p—2 we have
p—2 " Tp-mE |2’ =7

(%) (ppz) (pp2) (1@2—2)=(_1)1'

Thus the following theorem holds. _
TEEOREM 6. Let o and § be different rools of the trinomial ©® — YLz +-M,
M
where B = L—4M >0, (L, M) =1. If 2|M, L =1(mod4), ("j;—)=1
then
— ﬁia
—p
In the same way as Theorem 5 implies Theorem 5" Theorem 6 im-
plies the following

g
Pp=aa Fpo.
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TEEORENM 6°. Let @, y be rational integers, (z, y) = 1, 2oy, If n> 1is
not divisible by 3 then

oy

“_#L = N
&—y
PROBLEMS

(a) Let p >3, #
number g such that (—1)* = (%) and

9, he a given odd number. Does there exist an odd

2, Ay LA
EX

where ¢ > 1.
R D

(b) Let ¥ (p) and N (p) denote the number of positive integers » suck

that (q—b) = (—1¥, n<p and (—Z—) e= (—1)P"" n < p respectively, where
D

» 1] 4

—=di and d, > 1.

T AT g T T e Y

Find the lower and upper bound for the functions ¥ (p) and N (_'p).'

() Is it frue that lim ———- ¥ =1%

Preo N (2)

The affirmative answer to the questions (a) and (¢) is strongly sup-
ported by the results of numerical computations.
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