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ACTA. ARITHMETICA
XLIT (1883)

Remarks on the arithmetic properties of the values
of hypergeometric functions

by

F. BEURERS (Leiden), T. MATATA-AHO and K. VAINANEN (Ouln)

1. Introduction. The purpose of the present paper is to apply the
classical method of Siegel [10] to a consideration of the arithmetic prop-
erties of the values of certain hypergeometrie funetions

= a(a+1) . a+n—1 1) ...(f+n—1
1) Fla, B, s 2) :% (a+1) ﬂ!( e )ﬁ(fj}—i}z—l)(ﬁ )gn
{y 0, -1,...)
satisgfying '
(2) : g(l—2)y" +y—(1+a+p2)y —afy = 0.

We shall prove the following theorems.

THEOREM 1. If a, §, y are rational numbers, y #0, —~1, -2, ...,
then the functions Fla, 8, v;2) and F'(a, 8, yv; 2) belong to Galochkin’s [8]
class of G-functions {for definition see § 3).

TaEoREM 2. Lef o, f;, v (¢ = 1, ..., m) be rational numbers satisfying
¥ F0, =1,...5 e, f;, Yi— Yy Y ﬂ1’¢z i =1, o) ey i U ﬂi_‘ﬁjr
- ¢4 (¢ 554, 1,5 =1, ..., m); none of the numbevs a; Tﬁt—(aj—i—ﬁj}
(¢ 3, 4,5 =1,...,m) is an even integer. Let xg, 2,9, (1 =1,...,m) be

integers, not oll zero, and let us denote by = max{L, ln), 5.} ¢ =1, ..., m),

m o
H = H]ﬁ. Let & 0<e<1, be given. There then ewist positive constants

A, 0, dependmg only o g m, p and the fmmtwﬂ,s Ty, Bis ¥ zJ (i =1,

., m}, such that

ki3
ERPACH T A y”p/q)*'yll"( ws By vii pl0)| > T HT
Fa=1
Jor any rational number plq # 0 satisfying ¢ > C. In pa.m@ulm-, he numbers
17 (ai? 181) ?17 .It'j/q} G/H,-Cl Fl ﬁzﬁ Vii _'pi/q} ]’ = l -3 Im') are l‘i‘?’bﬂﬂ?']-‘y ’!‘:WZG-
pendent over G for all g > O
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Tueones 3. Let o, f and ¢ (£ 0, —1,...) be rational nwmbers such
that Fla, f,v;2) 18 not an algebraic function end a, §, y—a, y—f ¢ Z.
Let Plag, @) & O be & polynomial in Z [, #,] of degree < l\’ and height < H,
There then erist positive constants ¢, A, depending only on a, § and v, and a
positive consiant C’, depending only on a, B, vy, N, 0, I and 1, such that

I'P(F(ai Byv; 6), Fla, 8, v; 5))1 > (g~ *loshflostost)

12

for any algebraic number 0 of degree <X v and height h(0) < I = &° satisfying
logh = (max{2, ¥N})*loglogh,

0 < 16i < G—Grl\'(logh}?’/'“l(]ogmgh)lf4.

This theorem implies, in particular, the linear independence (over Q)
of the numbers 1, F{a, §,v; 8), F'(a, §, y; §) for all algebraic numbers
6 of degree <7 and helght < I = e® satisfying logh > 16loglogh, 0 < |0}
< e—ar(logh)Sﬂ(mglogh)l!*

TarEorREM 4. Let K denole an algebraic number field of degree x over Q.
Assume that o, § and y satisfy the conditions of Theorem 1, and let L,(x)
=+ 0w =0, L@ =a, w520 be lmear forms with integer coef-
ficients in K sotisfying max{]wlf ]a,z 1< H (for any algebraic
number a the notation [of denotes the maxunum of the absolute values
of the conjugates of a). There then exist positive constants ©, 2, depending
only on a, B and y, and ¢ positive constant U, depending only on K, a, fi, y, 0
and %, such that

- mas {2 (Fla, 8, 73 0), 4La (7 (a, B, 7; O))} > CHostesean

for any 8 € K of height h(8) <\ h == ¢° salisfying
logh>161oglogh, 0 < [f] < g otoshozlen’,

In pariicular, ai least one of the numbers F(a, f, y; 0) and I {(a, 5, y; 9)

does not belong to K for any 0 € K satisfying the above conditions.

Siegel {10] already mentions that his method can be used to obtain
resnlts like the above, in fact he gives an explicit resnlt for the function
F(1/2,1/2,1;2), i.e. that the number F(1/2, 1/2, 1; p/g) is rrational for
all rationals ,!g satisfying

0 < |pjgl < L0~V

where ¢ iz a positive constant. In this special cage our Theorem 4 does not
give.a result as strong as that of Sicgel. We note, however, that in the case
a=f=1/2, 9 =1 we have Theorems 3 and 4 without the term loglogh
in the bounds (see [97).
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Hypergeometric series have subsequently been eonsidered in a number
of papers (see [2], [3], [4], [5], 6], [9]). Chudnovsky [4], [5] (p. 64) pre-
gents results on the arithmetic properties of the walues of F(1/2,
1/2, 1; ), while in [67 he uses Padé approximations to obtain important
irrationality measures e.g. for the numbers F(1/2,1/2,1;1/14) axid F(3/2,
3/2,1; 1/14). It shonld further be noted that Bombieri’s [1] new important
p-adic considerations in connection with Siegel’s method can evidently
be applied to obtain results closely analogous to cur Theorems 3 and 4.

The proof of Theorem 1 requires certain information on the divisibility
properties of the coefficients of the polynomials p, and g, in the expression

1

(1= ) T, B, 752) = pu(D T (e B, 73 ) F @A Fla, 95 9)

obtained from (2). This kind of result, the need of which was already pointed
out by Siegel [10]; is obtained in the main lemms in Section 2 T‘he proof
of the theorems is then completed in Szetion 3.

' 2. Main lemma. First we prove, .
Lmmra 1. Let 8 € Q and let K be the denominator of 8. For any n N

let L, = K™ [] p™P=1. Théen L, (n) is an integer.
B

Proof. Notice that :

5) _ §(6—-1) ... (6—m+1) ‘K nKé(.Ké—K)...(Kﬁ-w(n-—-l)K)
(’"f, o o g} ]

) Let p be a prime not dividing K. The number of factors p in #! equa]s
[w,,/p]+[ﬂ/p2]—~. Notiee that p*|Ks—1K, p*|Ké—mE if and only if
p%m—1, p*| K8—1E. Fuithermore, at least one of the numbers K4, K§—
—K, .., E§—{(p*—1)K iz divisible by »% Consequently, among the
numbers Kb, .uny Eé6—{n—1) K there exist at least ['n/p] divigible by p,
at least [n/p?] divisible by p?, ete. Hence the product Ké . (K& {n-—1) K)

contains at least [#/pl-[n/p2l+ ... facters p. Thus we see thatl (ﬂ) hasg

only prime divisors of K in its denominator.
Let p K. Since n! contains at most [n,’p]+[n/p2]+ < [afp 1]

factors p ‘we see that
& [ piwe-n (5)

is integral, as asserted. -
In the fo]lowmg computations a, § and y denote ratlonal numbers with
y #%=0, -1, . It follows f_rom (2 that

(3) 21— )F‘““’ = [2ntatfil)a—n— ?IF‘”+1’+(ﬂT a)(n+ ) ™.
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This implies

1 ,
:r:(zu—z))“ﬂﬂ) = 2 7'+ 0. F,

where 9,,, g, are poly’nomlals in = with rational eoefficients. The following
lemma gives a bound for the denominators of these rational coefficients,

MAs LEvMA. Lt K be the common denominator of a, §, v and let L, be
as in Lemma 1. Suppose that a = 0, —1, —2, ... Foreachn =1, 2, ﬂm
coefff,meazts of D, 4, are rational '.rmmbers whose dmommators divide Lﬂ__l [l

., n—11En, where [1, ..., n] denotes the least common multiple of 1, ..., 1.

Notation. The :Ea:et that a rational number o hag denominator d will
be denoted by g = Z/d.

Proof of the Main Lemma. Write ¥V,
Then, by (3),
(n+2)(n51) Vysy = [(20+ 0+ p+1)s—n—y1(B+1) Vory +
S ntaynt+pfe(l—=V,
Substitute ¥, = ala+1)... (a+n—1)U,/nl. Then

4) (mt+aetl)U,. .= [(2fn+a—}—ﬁ+1)z‘—.—n—y] Ui H(n-+-f)2(1—2) U,

= (a1 —2)" Fm,

o0
Let U(t) = X U,i" be the generating function of U,. We shall derive an

n=0

expression for U(f). It follows from (4) that
[ (26 —1)B2+s(z— BT — Ty)' — [1_—a;:_((a+,3-1)z+1 )i+
+ﬁz(l—z)t2] (U— Uo) = GU1t+ﬂz(1 __z)t3 UO‘

We solve this differential equation for U-— U, by standard methods.
After division by { — {22 —1)#2-+z(z—1)1# we obtain

' , a—1 f—y-+1 y—a
(U—U,) +[ TR +(1—z) m](U— U,)
z z—1 1
=aU1[1~ﬁt 1+(1— ]+ﬂz(1 Z)U“[l——zt - 1+(1;-z)t]"

Solution of this differential equatlon yxelds

U—U, =G U;+4, Um
where

z z—1
G, = aP? - .
* f[l—wzt 1+(1—z)t]1_)dt’

G, = fels—1)P"! f [1 t 1 ]Pdt

et 1(1—2)t
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and
P =M 1= 14 (L—2) 1)

Tet K be the common denominator of a, 8, 9. I 6 Q and d = Z/K we
know by Lemma 1 that ( ) e Z{L,. Therefore the #th coefficient of the

powerseries expansions in ¢ of the functions (1 —12)*7** and (1 4+ (1 —2)'~°

is a polynomial of degree < n in 2 with coefficients in Z/L,. The same

holds for the product of these two expansions and its inverse. It is now

straightforward to see that the nth coetficient of &, &, is a polynomial
n-1

of degree < n+2 in # having coefficients of the shape 3 a,(a+k)~", where
=0

a; € Z|L, K. The terms {a-+k)~* arise from the integration in the ex-

pregsion for &, 6. This implies that

Un = .fjn UI +§n UN

where §, and §, are polynomials in ¢z having coefficients of the shape
n-1
> apla+k)7, ap € Z|L, K. Finally, we have
paa] :
a+1) ... {a+n—1) "
( - ! Z(l—Z)pn, 4n =

ala+l)... (a-+n—1) i

.p'n- = 'n! -

Let us consider the numbers of the shape

af{a-- ) a-}—fn,—l) 2
at+ ¥’

Notice that

ala+1) ... (e+n -1}
“n!(at+k) )
_ Ba—%—1)! a(a+l). (a—Hu 1) (a-k+1) ... (a+n—1)
n! k! (n—k—1)!
1 iatk-1\{atn-1}
ﬂ.(ﬂ;;'l) ( k& )(ﬂ-—k—'l)

By Lemma 1, the product of the last two binomial coefficients is in
Z(L Ty 1 = Z|L,_,. Thus we conclude that our numbers have denomi-

[(n.-i- 1), . (ﬂ 1)] I, Kh. Tt is a well-known fact that

if a prime power ;pb divides (k)’ then pP<<n. Thls 1mpl1es that [(" 1),

nators div*a' ding
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- (:,:i)] divides [1, ..., »—1] which in turn implies that the coefficients
of p, and g, bhave denominators dividing ZZ_,[1,...,#—1]Kn. This
proves Main Lemma.

3. Proof of the theorems, Let

{3) §1(#)s ++es s (2)

denote analytic fanctions satislying
k)
(6) Y=0u(&)+ X Quledy, (=1,...,9),
§=1

where all Q.. e K(z), K denoting an algebraic mamber field of degree x over
Q. From this, it follows, for all 1 = 0,1, ..., that

g = Qi01(5)+2 Qulddg; (@ =1,...,9),
in

where all Q;(#) € I (z). The functions (5) are said to belong to Galochkin’s
[B] class

G(K, pyy Qo vas Qoy ¥3:Q3Ys Q1> 05 91, vy va, Quy @y = 1,

if thege functions are of the form

gle) = Ya,#  (i=1,..,9,
=0

where all a;, = K, and the following conditions are satisfied:

(1) |“~:u§<')’1Q’1, ('i=1:'--533"’=0117--')5

(i) there exist a sequence {b,} of natural numbers such that b, < 1
(n=0,1,...) and dl the numbers a,b, (i =1,...,8; v =0, 1,..,m
are integers in K; B ‘

(ili) there ewist a sequence {@,} of rational numbers and a polynomial
T'(z) with integer coefficients in K, not all zero, such that t, < 0% (0 =0,
1,...) and all the functions :

d . .
_ZTn(T(z))IQ‘:ﬂ (’b =1, "."S; 1= 0, iy 83 i =07 .--,'ﬂ-)

are polynomials with infeger coefficients in K.
To prove Theorem 1 we show that the functions Fla, g, v;2) and

F_’(-a, ﬁ,?;z) belong. to some class G(Q, y1, Oy va, @y, V3, @a). The con-
ditions (i) and (ii) follow from [2], Lemma 3 (see [9], § 2)

.
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In order to prove eondition (iii) we note that by the Main Lemma. it is
possible to choose for the sequence {4,} the sequence

d, = I2[1, ..., nt 17K,

which clearly satisfies @, < y,QF (n = 0,1, ...) for some constants vs, Qs,
sinee [1, ..., n]< ¢"%". In the case ae{0, —1, —2,...} F and F’ are
polynomials and thus condition (iii) is obvicusly satisfied. Theorem 1 is
thus proved. .

Theorem 2, which improves [2], Theorem 1, iz now an immediate
corollary of Theoremn 1, [2], Lemma 2, and [12], Corollary 1,

In the proof of Theorem 3 we shall need the following result giving
the conditions for the algebraic independence of F(a, 8, y;4) and
F'{a, B, y; ).

TrHBGREM 5. Lef a, § and y (% 0, —1,...) be rationals. If F(a, f, 7; &)

and F'{a, fi,y;2) are algebraically dependent over C(2), then either (2)
has only algebraic solutions or at least one of the numbers a, B, y—a, y—f
€3 integral. '
. Prooi. i F and F’ are algebraically dependent then it follows by
Biegel [11], pp. 60-62, that there exists a solution w = 0 of (2) such that
w'fw iz an algebraic function. In order to study the analytic behavionr
of w throaghout the complex plane we continue w analytically along closed.
loops in €N{0,1} beginning and ending in a point 2, ¢ C ditferent from
0 and 1. After traversing sueh a loop the function will in general change
into a different branch w,. We now digfinguish three cases.

I There exist two other branches wy, w, such that w’fw, w;ju,
and w,fw, are mutually different. Then the difference w’jw—a]jwy
= (w'w, —wwy) flww,) and w'ew, —ww,, which is 2 non-zero multiple of
the Wronskian 2% (1 —2)*7#*177 are algebraic. Therefore wiw, is algebraie.
Analogously wow, and 20,0, are also algebraie, which implies that (2) has
only algebraic solutions.

IT. There are exaetly two branches w, w, such that 0')w 5% w)jw,.
Let Iy, 17, I, be simple loops enclosing 2 = 0, 2 = 1, # = oo respecti-
vely., Suppose I, I, ~ 1, that is, the path I I'\I'; can be contracted
to g, in ON{0, 1}. After traversing such a loop I two things may happen, .
we have either 1) a substitution w->iw,, w,—pw or 2) a substitution
w-slap, wy->pw; (A, g e C). Becanse of I, IyJy ~ 1, the possibility 1)
ocenrs exactly twice. Let vs assume that I, and I are the loops under
consideration. Denote by &; the substitution that w;/w undergoes after
traversing I (¢ = 0, 1). Clearly 8; (¢ = 0, 1) has order two. Since I,1}
~ I, the functions w, w, change into fw, H,w, after traversing I'y Iy,
and since (2) has rational exponents it follows that 0 and 0, are voots of
unity, and thus §,8; has finite order. A group generated by 8,, 8, such
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that §2 = &% = 1 and such that 8,8, has finite order is necessarily finite
and thus w, /20 must be algebraic. By the argument in I we know that wew,
is also algebraic. Thus e and w, are both algebraic and (2} has only alge-
braic solutions.

ITI. Every branch of w is a multiplo of w. Then w’/w &8 a single-valued
algebraic funetion must be rational. This happens only in the case at
least one of the numbers a, §, y— a, ¥ — f is an integer (see [7], Chapter IT).

Becaunse of Theorem 5, Theorems 3 and 4 are immediate corollaries
of the following Theorems A and B, which are proved in [13), and which
slightly improve [9], Theorems 4 and 6.

THEOREM A. Assume that the functions () sabisfying (6) are algebraical-
y independent over C{z) and belong to the dlass G (K, p1, @1y ¥2y @z ¥a: Bs),
and let Py, ...,2,) # 0 be a polynomial with integer coefficients in K
satisfying degP < N, ]coeffPJ < H. There then ewist positive constants
¢, A, depending only on ¢4(2), ..., ¢,(2) and s, and o positive constant C,
depending only on K, ¢,(2), ..., gs( Yy 8, N, 0, b and 7, such thai

Pl . (0} > O

for any algebraic number 0 of height h(0) < k=& satisfying [K(0):0]
<71 (Zx and

6T(6) £ 0, logh = (max {2, N}¥loglegh,

0< 18] < euma(logh)(”é*—f) 23(1oglogh)1fﬂ-?

TREOREM B. Let the functions (5) salisfy the conditions of Theovem A.
Let L{x) =a,+bxw =0 {i=1,...,8) be linear forms with integer coef-
ficients in K satisfying max {{a,), |b,[} < H. There then emist positive constants
1<is
g, 7, depending only on ¢,(2), ...
depending only on K, g,(2),
ma |15y (0))} > Qo Fetososionh
legisse :
Jor any algebraic number 6 of height h(6) < h =
and

s 05(2) and s, and a positive constant J,
s 0,(2) 8, 0, B and 7, such that

e satisfying [IK(0):Q1< =

6T(8) =0, loghz= 2*loglogh,

0 < |6]< e—?:t(lcughku‘z:lm;h)lf2
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