Remarks on the arithmetic properties of the values of hypergeometric functions

Ъ

- F. BEUKERS (Leiden), T. MATALA-AHO and K. VÄÄNÄNEN (Ouln)
- 1. Introduction. The purpose of the present paper is to apply the classical method of Siegel [10] to a consideration of the arithmetic properties of the values of certain hypergeometric functions

$$(1) \qquad F(\alpha,\beta,\gamma;z) = \sum_{n=0}^{\infty} \frac{a(\alpha+1)\dots(\alpha+n-1)\beta(\beta+1)\dots(\beta+n-1)}{n!\gamma(\gamma+1)\dots(\gamma+n-1)} z^n$$

$$(\gamma \neq 0, -1, \dots)$$

satisfying

(2)
$$z(1-z)y'' + (\gamma - (1+a+\beta)z)y' - \alpha\beta y = 0.$$

We shall prove the following theorems.

THEOREM 1. If α , β , γ are rational numbers, $\gamma \neq 0, -1, -2, ...$, then the functions $F(\alpha, \beta, \gamma; z)$ and $F'(\alpha, \beta, \gamma; z)$ belong to Galochkin's [8] class of G-functions (for definition see § 3).

THEOREM 2. Let a_i , β_i , γ_i ($i=1,\ldots,m$) be rational numbers satisfying $\gamma_i \neq 0$, $-1,\ldots;$ a_i , β_i , $\gamma_i - a_i$, $\gamma_i - \beta_i \notin \mathbb{Z}$ ($i=1,\ldots,m$); $a_i - a_j$, $\beta_i - \beta_j$, $a_i - \beta_j \notin \mathbb{Z}$ ($i \neq j, i, j = 1, \ldots, m$); none of the numbers $a_i + \beta_i - (a_j + \beta_j)$ ($i \neq j, i, j = 1, \ldots, m$) is an even integer. Let x_0, x_i, y_i ($i = 1, \ldots, m$) be integers, not all zero, and let us denote $h_i = \max\{1, |x_i|, |y_i|\}$ ($i = 1, \ldots, m$), $H = \prod_{i=1}^m h_i^2$. Let ε , $0 < \varepsilon < 1$, be given. There then exist positive constants λ , C, depending only on ε , m, p and the functions $F(a_i, \beta_i, \gamma_i; z)$ ($i = 1, \ldots, m$), such that

$$\Big|\,x_0+\sum_{i=1}^m \big(x_iF(\alpha_i,\,\beta_i,\,\gamma_i;\,p/q)+y_iF'(\alpha_i,\,\beta_i,\,\gamma_i;\,p/q)\big)\Big|>q^{-\lambda}H^{-1-\varepsilon}$$

for any rational number $p/q \neq 0$ satisfying q > C. In particular, the numbers 1, $F(a_i, \beta_i, \gamma_i; p/q)$ and $F'(a_i, \beta_i, \gamma_i; p/q)$ (i = 1, ..., m) are linearly independent over Q for all q > C.

283

THEOREM 3. Let α , β and γ (\neq 0, -1, ...) be rational numbers such that $F(\alpha, \beta, \gamma; z)$ is not an algebraic function and α , β , $\gamma - \alpha$, $\gamma - \beta \notin \mathbb{Z}$. Let $P(x_1, x_2) \neq 0$ be a polynomial in $\mathbb{Z}[x_1, x_2]$ of degree $\leqslant N$ and height $\leqslant H$. There then exist positive constants c, λ , depending only on α , β and γ , and a positive constant C, depending only on α , β , γ , N, θ , h and τ , such that

$$|P(F(a,\beta,\gamma;\theta),F'(a,\beta,\gamma;\theta))| > CH^{-\lambda \tau(\log h/\log\log h)^{1/2}}$$

for any algebraic number θ of degree $\leqslant \tau$ and height $h(\theta) \leqslant h \geqslant e^e$ satisfying

$$\log h \geqslant (\max\{2, N\})^4 \log \log h,$$

$$0 < |\theta| < e^{-\operatorname{cr} N(\log h)^{3/4}(\log \log h)^{1/4}}.$$

This theorem implies, in particular, the linear independence (over Q) of the numbers 1, $F(\alpha, \beta, \gamma; \theta)$, $F'(\alpha, \beta, \gamma; \theta)$ for all algebraic numbers θ of degree $\leq \tau$ and height $\leq h \geq e^{\epsilon}$ satisfying $\log h > 16 \log \log h$, $0 < |\theta| < e^{-c\tau(\log h)^{3/4}(\log \log h)^{1/4}}$.

Theorem 4. Let K denote an algebraic number field of degree \varkappa over Q. Assume that α , β and γ satisfy the conditions of Theorem 1, and let $L_1(x) = a_1 + b_1 x \not\equiv 0$, $L_2(x) = a_2 + b_2 x \not\equiv 0$ be linear forms with integer coefficients in K satisfying $\max\{|a_1|, |a_2|, |\overline{b_1}|, |\overline{b_2}|\} \leqslant H$ (for any algebraic number α the notation $|\overline{a}|$ denotes the maximum of the absolute values of the conjugates of a). There then exist positive constants \overline{c} , $\overline{\lambda}$, depending only on a, β and γ , and a positive constant \overline{C} , depending only on K, a, β , γ , θ and h, such that

$$-\max\{|L_1(F(\alpha,\beta,\gamma;\theta))|,|L_2(F'(\alpha,\beta,\gamma;\theta))|\}> \bar{C}H^{-\bar{\lambda}\varkappa(\log h/\log\log h)^{1/2}}$$

for any $\theta \in K$ of height $h(\theta) \leqslant h \geqslant e^e$ satisfying

$$\log h \geqslant 16 \log \log h$$
, $0 < |\theta| < e^{-c \times (\log h \log \log h)^{1/2}}$.

In particular, at least one of the numbers $F(\alpha, \beta, \gamma; \theta)$ and $F'(\alpha, \beta, \gamma; \theta)$ does not belong to K for any $\theta \in K$ satisfying the above conditions.

Siegel [10] already mentions that his method can be used to obtain results like the above, in fact he gives an explicit result for the function F(1/2, 1/2, 1; z), i.e. that the number F(1/2, 1/2, 1; p/q) is irrational for all rationals p/q satisfying

$$0 < |p/q| < c10^{-\sqrt{\log|q|}},$$

where c is a positive constant. In this special case our Theorem 4 does not give a result as strong as that of Siegel. We note, however, that in the case $\alpha = \beta = 1/2$, $\gamma = 1$ we have Theorems 3 and 4 without the term $\log \log h$ in the bounds (see [9]).

Hypergeometric series have subsequently been considered in a number of papers (see [2], [3], [4], [5], [6], [9]). Chudnovsky [4], [5] (p. 64) presents results on the arithmetic properties of the values of F(1/2, 1/2, 1; z), while in [6] he uses Padé approximations to obtain important irrationality measures e.g. for the numbers F(1/2, 1/2, 1; 1/14) and F(3/2, 3/2, 1; 1/14). It should further be noted that Bombieri's [1] new important p-adic considerations in connection with Siegel's method can evidently be applied to obtain results closely analogous to our Theorems 3 and 4.

The proof of Theorem 1 requires certain information on the divisibility properties of the coefficients of the polynomials p_n and q_n in the expression

$$\frac{1}{n!} (z(1-z))^n F^{(n)}(\alpha,\beta,\gamma;z) = p_n(z) F'(\alpha,\beta,\gamma;z) + q_n(z) F(\alpha,\beta,\gamma;z)$$

obtained from (2). This kind of result, the need of which was already pointed out by Siegel [10], is obtained in the main lemma in Section 2. The proof of the theorems is then completed in Section 3.

2. Main lemma. First we prove,

LEMMA 1. Let $\delta \in Q$ and let K be the denominator of δ . For any $n \in N$ let $L_n = K^n \prod_{p \mid K} p^{\lfloor n/p-1 \rfloor}$. Then $L_n {\delta \choose n}$ is an integer.

Proof. Notice that

$$\binom{\delta}{n} = \frac{\delta(\delta-1)\dots(\delta-n+1)}{n!} = K^{-n} \frac{K\delta(K\delta-K)\dots(K\delta-(n-1)K)}{n!}.$$

Let p be a prime not dividing K. The number of factors p in n! equals $\lfloor n/p \rfloor + \lfloor n/p^2 \rfloor + \ldots$ Notice that $p^a | K\delta - lK$, $p^a | K\delta - mK$ if and only if $p^a | m - l$, $p^a | K\delta - lK$. Furthermore, at least one of the numbers $K\delta$, $K\delta - K\delta$, at least $K\delta$, $K\delta$ divisible by $K\delta$, at least $K\delta$, $K\delta$ divisible by $K\delta$, at least $K\delta$, $K\delta$ divisible by $K\delta$, at least $K\delta$, $K\delta$ divisible by $K\delta$. Thus we see that $K\delta$ divisible by $K\delta$ divisible by $K\delta$ divisible by $K\delta$. Thus we see that $K\delta$ divisible prime divisors of $K\delta$ in its denominator.

Let $p \mid K$. Since n! contains at most $\lfloor n/p \rfloor + \lfloor n/p^2 \rfloor + \ldots \leq \lfloor n/p-1 \rfloor$ factors p we see that

$$K^n \prod_{n \mid K} p^{\lfloor n/p-1 \rfloor} \binom{\delta}{n}$$

is integral, as asserted.

In the following computations a, β and γ denote rational numbers with $\gamma \neq 0, -1, -2, \ldots$ It follows from (2) that

(3)
$$z(1-z)F^{(n+2)} = [(2n+\alpha+\beta+1)z-n-\gamma]F^{(n+1)} + (n+\alpha)(n+\beta)F^{(n)}$$
.

5 - Acta Arithmetica XLII.3

This implies

$$\frac{1}{n!} (z(1-z))^n F^{(n)} = p_n F' + q_n F,$$

where p_n , q_n are polynomials in z with rational coefficients. The following lemma gives a bound for the denominators of these rational coefficients.

MAIN LEMMA. Let K be the common denominator of a, β , γ and let L_n be as in Lemma 1. Suppose that $a \neq 0, -1, -2, \ldots$ For each $n = 1, 2, \ldots$ the coefficients of p_n, q_n are rational numbers whose denominators divide $L_{n-1}^2[1, \ldots, n-1]Kn$, where $[1, \ldots, n]$ denotes the least common multiple of $1, \ldots, n$.

Notation. The fact that a rational number ϱ has denominator d will be denoted by $\varrho \in \mathbb{Z}/d$.

Proof of the Main Lemma. Write $V_n = (n!)^{-1} (z(1-z))^n F^{(n)}$. Then, by (3),

$$\begin{split} (n+2) \, (n+1) \, V_{n+2} &= [(2n+\alpha+\beta+1)z - n - \gamma] (n+1) \, V_{n+1} + \\ &\quad + (n+\alpha)(n+\beta)z (1-z) \, V_n. \end{split}$$

Substitute $V_n = \alpha(a+1) \dots (a+n-1) U_n/n!$. Then

(4)
$$(n+\alpha+1)U_{n+2} = [(2n+\alpha+\beta+1)z-n-\gamma]U_{n+1} + (n+\beta)z(1-z)U_n$$

Let $U(t) = \sum_{n=0}^{\infty} U_n t^n$ be the generating function of U_n . We shall derive an expression for U(t). It follows from (4) that

$$\begin{split} [t-(2z-1)t^2+z(z-1)t^3](U-U_0)'-\big[1-a+\big((a+\beta-1)z+1-\gamma\big)t+\\ +\beta z(1-z)t^2\big](U-U_0)&=aU_1t+\beta z(1-z)t^2\,U_0. \end{split}$$

We solve this differential equation for $U-U_0$ by standard methods. After division by $t-(2z-1)t^2+z(z-1)t^3$ we obtain

$$\begin{split} &(U-U_0)' + \left[\frac{a-1}{t} - z \, \frac{\beta - \gamma + 1}{1-zt} + (1-z) \, \frac{\gamma - a}{1+(1-z)t}\right] (U-U_0) \\ &= a \, U_1 \left[\frac{z}{1-zt} - \frac{z-1}{1+(1-z)t}\right] + \beta z (1-z) \, U_0 \left[\frac{1}{1-zt} - \frac{1}{1+(1-z)t}\right]. \end{split}$$

Solution of this differential equation yields

$$U-U_0=G_1U_1+G_0U_0,$$

where

$$G_{1} = aP^{-1} \int \left[\frac{z}{1-zt} - \frac{z-1}{1+(1-z)t} \right] P dt,$$

$$G_{0} = \beta z (z-1)P^{-1} \int \left[\frac{1}{1-zt} - \frac{1}{1+(1-z)t} \right] P dt$$

and

$$P = t^{a-1} (1-zt)^{\beta-\gamma+1} (1+(1-z)t)^{\gamma-a}.$$

Let K be the common denominator of α , β , γ . If $\delta \in Q$ and $\delta \in Z/K$ we know by Lemma 1 that $\binom{\delta}{n} \in Z/L_n$. Therefore the nth coefficient of the powerseries expansions in t of the functions $(1-tz)^{\beta-\gamma+1}$ and $(1+(1-z)t)^{\gamma-\alpha}$ is a polynomial of degree $\leqslant n$ in z with coefficients in Z/L_n . The same holds for the product of these two expansions and its inverse. It is now straightforward to see that the nth coefficient of G_0 , G_1 is a polynomial of degree $\leqslant n+2$ in z having coefficients of the shape $\sum_{k=0}^{n-1} a_k (a+k)^{-1}$, where $a_k \in Z/L_{n-1}K$. The terms $(\alpha+k)^{-1}$ arise from the integration in the expression for G_0 , G_1 . This implies that

$$U_n = \tilde{p}_n U_1 + \tilde{q}_n U_0,$$

where \tilde{p}_n and \tilde{q}_n are polynomials in z having coefficients of the shape $\sum_{k=0}^{n-1} a_k (a+k)^{-1}$, $a_k \in \mathbb{Z}/L_{n-1}K$. Finally, we have

$$p_n = \frac{(\alpha+1)\ldots(\alpha+n-1)}{n!} z(1-z)\tilde{p}_n, \quad q_n = \frac{\alpha(\alpha+1)\ldots(\alpha+n-1)}{n!}\tilde{q}_n.$$

Let us consider the numbers of the shape

$$\frac{a(a+1)\dots(a+n-1)}{n!}\sum_{k=0}^{n-1}\frac{a_k}{a+k}.$$

Notice that

$$\frac{a(a+1)\dots(a+n-1)}{n!(a+k)} = \frac{k!(n-k-1)!}{n!} \frac{a(a+1)\dots(a+k-1)}{k!} \frac{(a+k+1)\dots(a+n-1)!}{(n-k-1)!} = \frac{1}{n\binom{n-1}{k}} \binom{a+k-1}{k} \binom{a+n-1}{n-k-1}.$$

By Lemma 1, the product of the last two binomial coefficients is in $\mathbf{Z}/L_kL_{n-k-1} \subset \mathbf{Z}/L_{n-1}$. Thus we conclude that our numbers have denominators dividing $\binom{n-1}{1}, \ldots, \binom{n-1}{n-1} L_{n-1}^2 Kn$. It is a well-known fact that if a prime power p^b divides $\binom{n}{k}$, then $p^b \leq n$. This implies that $\binom{n-1}{1}, \ldots$

 $\ldots, \binom{n-1}{n-1}$ divides $[1,\ldots,n-1]$ which in turn implies that the coefficients of p_n and q_n have denominators dividing $L_{n-1}^2[1,\ldots,n-1]Kn$. This proves Main Lemma.

3. Proof of the theorems. Let

$$(5) g_1(z), \ldots, g_s(z)$$

denote analytic functions satisfying

(6)
$$y'_i = Q_{i0}(z) + \sum_{j=1}^{s} Q_{ij}(z)y_j \quad (i = 1, ..., s),$$

where all $Q_{ij} \in K(z)$, K denoting an algebraic number field of degree \varkappa over Q. From this, it follows, for all l = 0, 1, ..., that

$$g_i^{(l)} = Q_{i0l}(z) + \sum_{j=1}^s Q_{ijl}(z)g_j \hspace{0.5cm} (i=1,\ldots,s),$$

where all $Q_{ijl}(z) \in K(z)$. The functions (5) are said to belong to Galochkin's [8] class

$$G(K, \gamma_1, Q_1, \gamma_2, Q_2, \gamma_3, Q_3), \quad Q_1 > 0; \gamma_1, \gamma_2, \gamma_3, Q_2, Q_3 \geqslant 1,$$

if these functions are of the form

$$g_i(z) = \sum_{r=0}^{\infty} a_{ir} z^r$$
 $(i = 1, ..., s),$

where all $a_{iv} \in K$, and the following conditions are satisfied:

- (i) $|a_{i\nu}| \leq \gamma_1 Q_1^{\nu}$ $(i = 1, ..., s; \nu = 0, 1, ...);$
- (ii) there exist a sequence $\{b_n\}$ of natural numbers such that $b_n \leqslant \gamma_2 Q_2^n$ $(n=0,1,\ldots)$ and all the numbers a_i,b_n $(i=1,\ldots,s;\ \nu=0,1,\ldots,n)$ are integers in K;
- (iii) there exist a sequence $\{d_n\}$ of rational numbers and a polynomial T(z) with integer coefficients in K, not all zero, such that $d_n \leqslant \gamma_3 Q_3^n$ $(n=0,1,\ldots)$ and all the functions

$$\frac{d_n}{l!} (T(z))^l Q_{ijl} \quad (i = 1, ..., s; j = 0, ..., s; l = 0, ..., n)$$

are polynomials with integer coefficients in K.

To prove Theorem 1 we show that the functions $F(\alpha, \beta, \gamma; z)$ and $F'(\alpha, \beta, \gamma; z)$ belong to some class $G(Q, \gamma_1, Q_1, \gamma_2, Q_2, \gamma_3, Q_3)$. The conditions (i) and (ii) follow from [2], Lemma 3 (see [9], § 2).

In order to prove condition (iii) we note that by the Main Lemma it is possible to choose for the sequence $\{d_n\}$ the sequence

$$d_n = L_n^2[1, ..., n+1]^2K,$$

which clearly satisfies $d_n \leqslant \gamma_3 Q_3^n$ $(n=0,1,\ldots)$ for some constants γ_3 , Q_3 , since $[1,\ldots,n]\leqslant e^{i,04n}$. In the case $\alpha\in\{0,-1,-2,\ldots\}$ F and F' are polynomials and thus condition (iii) is obviously satisfied. Theorem 1 is thus proved.

Theorem 2, which improves [2], Theorem 1, is now an immediate corollary of Theorem 1, [2], Lemma 2, and [12], Corollary 1.

In the proof of Theorem 3 we shall need the following result giving the conditions for the algebraic independence of $F(\alpha, \beta, \gamma; z)$ and $F'(\alpha, \beta, \gamma; z)$.

THEOREM 5. Let α , β and γ (\neq 0, -1, ...) be rationals. If $F(\alpha, \beta, \gamma; z)$ and $F'(\alpha, \beta, \gamma; z)$ are algebraically dependent over C(z), then either (2) has only algebraic solutions or at least one of the numbers α , β , $\gamma - \alpha$, $\gamma - \beta$ is integral.

Proof. If F and F' are algebraically dependent then it follows by Siegel [11], pp. 60–62, that there exists a solution $w \not\equiv 0$ of (2) such that w'/w is an algebraic function. In order to study the analytic behaviour of w throughout the complex plane we continue w analytically along closed loops in $C \setminus \{0,1\}$ beginning and ending in a point $z_0 \in C$ different from 0 and 1. After traversing such a loop the function will in general change into a different branch w_1 . We now distinguish three cases.

I. There exist two other branches w_1 , w_2 such that w'/w, w'_1/w_1 and w'_2/w_2 are mutually different. Then the difference $w'/w - w'_1/w_1 = (w'w_1 - ww'_1)/(ww_1)$ and $w'w_1 - ww'_1$, which is a non-zero multiple of the Wronskian $z^y(1-z)^{a+\beta+1-\gamma}$, are algebraic. Therefore ww_1 is algebraic. Analogously ww_2 and w_1w_2 are also algebraic, which implies that (2) has only algebraic solutions.

II. There are exactly two branches w, w_1 such that $w'/w \neq w'_1/w_1$. Let Γ_0 , Γ_1 , Γ_∞ be simple loops enclosing z=0, z=1, $z=\infty$ respectively. Suppose $\Gamma_\infty \Gamma_0 \Gamma_1 \sim 1$, that is, the path $\Gamma_\infty \Gamma_0 \Gamma_1$ can be contracted to z_0 in $C \setminus \{0, 1\}$. After traversing such a loop Γ_i two things may happen, we have either 1) a substitution $w \to \lambda w_1$, $w_1 \to \mu w$ or 2) a substitution $w \to \lambda w$, $w_1 \to \mu w_1$ (λ , $\mu \in C$). Because of $\Gamma_\infty \Gamma_0 \Gamma_1 \sim 1$, the possibility 1) occurs exactly twice. Let us assume that Γ_0 and Γ_1 are the loops under consideration. Denote by S_i the substitution that w_1/w undergoes after traversing Γ_i (i=0,1). Clearly S_i (i=0,1) has order two. Since $\Gamma_0 \Gamma_1 \sim \Gamma_\infty^{-1}$, the functions w, w_1 change into θw , $\theta_1 w_1$ after traversing $\Gamma_0 \Gamma_1$, and since (2) has rational exponents it follows that θ and θ_1 are roots of unity, and thus $S_0 S_1$ has finite order. A group generated by S_0 , S_1 such

288

that $S_0^2 = S_1^2 = 1$ and such that S_0S_1 has finite order is necessarily finite and thus w_1/w must be algebraic. By the argument in I we know that ww_1 is also algebraic. Thus w and w_1 are both algebraic and (2) has only algebraic solutions.

III. Every branch of w is a multiple of w. Then w'/w as a single-valued algebraic function must be rational. This happens only in the case at least one of the numbers $a, \beta, \gamma - a, \gamma - \beta$ is an integer (see [7], Chapter II).

Because of Theorem 5, Theorems 3 and 4 are immediate corollaries of the following Theorems A and B, which are proved in [13], and which slightly improve [9], Theorems 4 and 6.

THEOREM A. Assume that the functions (5) satisfying (6) are algebraically independent over C(z) and belong to the class $G(K, \gamma_1, Q_1, \gamma_2, Q_2, \gamma_3, Q_3)$, and let $P(x_1, \ldots, x_s) \not\equiv 0$ be a polynomial with integer coefficients in K satisfying $\deg P \leqslant N$, $|\overline{\operatorname{coeff} P}| \leqslant H$. There then exist positive constants c, λ , depending only on $g_1(z), \ldots, g_s(z)$ and s, α and a positive constant C, depending only on $K, g_1(z), \ldots, g_s(z), s, N, \theta, h$ and τ , such that

$$|P(g_1(\theta), \ldots, g_s(\theta))| > CH^{-\lambda r(\log h/\log\log h)^{1/2}}$$

for any algebraic number θ of height $h(\theta) \leqslant h \geqslant e^e$ satisfying $[K(\theta):Q] \leqslant \tau \ (\geqslant \varkappa)$ and

$$egin{aligned} heta T(heta) &
eq 0\,, & \log h \geqslant (\max{\{2,\,N\}})^{2s} \log\log h\,, \\
olimits & 0 < | heta| < e^{-\mathrm{cr} N(\log h)^{(2s-1)/2s} (\log\log h)^{1/2s}}. \end{aligned}$$

Theorem B. Let the functions (5) satisfy the conditions of Theorem A. Let $L_i(x) = a_i + b_i x \not\equiv 0$ (i = 1, ..., s) be linear forms with integer coefficients in ${\bf K}$ satisfying $\max_{1 \leqslant i \leqslant s} \{|\overline{a_i}|, |\overline{b_i}|\} \leqslant H$. There then exist positive constants $\overline{c}, \overline{\lambda}$, depending only on $g_1(z), ..., g_s(z)$ and s, and a positive constant \overline{C} , depending only on ${\bf K}, g_1(z), ..., g_s(z), s, \theta$, h and τ , such that

$$\max_{1\leqslant i\leqslant s}\left\{\left|L_i\big(g_i(\theta)\big)\right|\right\}> \bar{C}e^{-\overline{\lambda}\tau(\log h/\log\log h)^{1/2}}$$

for any algebraic number θ of height $h(\theta) \leqslant h \geqslant e^e$ satisfying $[K(\theta):Q] \leqslant \tau$ and

References

- [1] E. Bombieri, On G-functions, In: Recent Progress in Analytic Number Theory, Vol. II, H. Halberstam and C. Hooley (eds.), Academic Press, 1981.
- [2] V. G. Chirsky, M. S. Nurmagomedov, On arithmetical properties of values of hypergeometrical functions (Russian), Vestnik Moscov. Univ. Ser. I, Mat. Meh. 28 (2) (1973), pp. 38-45.

- [3] V. G. Chirsky, On the arithmetic properties of the values of hypergeometric series with irrational parameters (Russian), ibid. 33 (5) (1978), pp. 3-8.
- [4] G. V. Chudnovsky, Arithmetical properties of values of analytical functions, Lecture given (by M. Waldschmidt and D. Brownswell) at the meeting "Diophantische Approximationen" at Oberwolfach in March 1977.
- [5] Transcendental Numbers, Lecture Notes in Mathematics 751 (1979), pp. 45-69.
- [6] Un système explicite d'approximants de Padé pour les fonctions hypergéométriques généralisées, avec applications à l'arithmétique, C.R. Acad. Sci. Paris, 288, Serie A, (1979), pp. 1001-1004.
- [7] A. Erdélyi, W. Magnus, F. Oberhettinger, F. Tricomi, Higher Transcendental Functions, Vol. 1, McGraw-Hill, New York, Toronto, London 1953.
- [8] A. I. Galochkin, Lower bounds for polynomials of the values of the class of analytic functions (Russian), Mat. Shornik 95 (137) (3) (1974), pp. 396-417.
- [9] T. Matala-aho, K. Väänänen, On the arithmetic properties of certain values of one Gauss hypergeometric function, Acta Univ. Oulu. A 112, Math. 24 (1981).
- [10] C. L. Siegel, Über einige Anwendungen diophantischer Approximationen, Abh. Preuß, Akad. Wiss., Phys.-mat. Kl. No. 1 (1929).
- [11] Transcendental Numbers, Princeton University Press, Princeton 1949.
- [12] K. Väänänen, On linear forms of a certain class of G-functions and p-adic G-functions, Acta Arith. 36 (1980), pp. 273-295.
- [13] On a class of G-functions, Mathematics, University of Oulu 1/81 (1981).

DEPARTMENT OF MATHEMATICS UNIVERSITY OF LEIDEN Leiden, Netherlands UNIVERSITY OF OULU Oulu, Finland

Received on 15. 5. 1981 and in revised form on 16. 2. 1982

(1253)