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As hefore, the minimal relation byloga; + ... +b,loga, = 0 has coefficients

by = 19", and these satisfy

B, > A{n)n Ve

FEk

justifying our earlier assertions.
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On the diophantine equation y*-}-D™ = p”
by

o

Mass0 Toxoroumr (Tokyo)

1. Introduction. Tet [} be a positive square free integer grenter
than 1 and let » = 3(mod4) be a prime number not dividing I. Let
further @ be the order of a prime ideal divisor of {p) in the ideal clags group
of the quadratic field Q(¥ — D). In the present paper we comsider the
diophantine equation
(1) y2+D??l :pn

in positive integers y, m, n. The aim of this paper iz to prove the following
two theorems,

THEOREM 1. Assume D =1, 2{modd) and p?—D is a square. Then
the equation (1) implies that m = 1 unless {p, D) = (3, 2).

THEOREM 2. The only posilive integer solutions of the equation

() PRI LR,

are given by (y, m,n) = (1,1,1), (6,1,3), (1,3,2), (7,3, 4).

‘We shall complete the proof of the above theorems by using the
techniques of [2].

2. Proof of some lemmas. _

Lrnmaa 1. Let & and D be as in Theorem 1. Assume thei s s a fived
positive integer and D 5= 0(mod3). If the equation '

(3) y2+D23+1 — :pn
s imteger solutions for y and n, then the equation
yg_]_Dz(s—l)+1 — Pn

has also integer solutions for y and n.

Proof. Since p— D is 2 square, — D is a quadratie residue modulo p.
Then from the theory of quadratic fields, it follows that (p) = PP’, where
P and P’ are distinct eonjugabe prime ideals in the quadratic field ¢ (l/_:l_)).
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Henee, from (3), we obtain the ideal equation
(y+D°V — D)y — DY — D) =P"P™.
Sinee the factors on the left are relatively prime, we have either

= (y+DV—D) or " = (y— DV — D).

We may assume that
= (y+D°V —D).

Then P* is o principal ideal, and so n = dw for some positive integer w.
By our assumption, we can pubt p° = a*+4D for some positive integer a.
Thus we have either

P =(a+V~D) or P'=(a—V—D).
Therefore we get
(4) y+DV—D = L{aty —D)?

sinee the only units of the imaginary quadratic field Q(V —D) are +1.
From this we obtain

D¢ = +{wa™ '+ DK)

for some integer K. Since (a,i)) =1, we see that w = 0(mod D), say,
w = Db. Hence from (4), we have

(5) gL DVD = LoV "D,

where 4 and » are rational integers. From this we obtain
' ] D—1 D D—3
(6) : D = :I:Dv(u ——(3)1(, vH—DM),

where M is a rational integer. Since (u, D) = (3, D) = 1, from (6.), we geb
Dy = 4-D%, and 80 v = L£D* " Therefare from (3) and (5), we have

H

(ﬂ2+D2(s—1)+1)D =-,pbd1)
which gives
R 4 DAL — g
This eompletes the proof.
CororrARY 1. Let & and D be as in Lemma 1. If the positive integers
y and % satisfy the equation

y2+D3 P pn,
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then
2D if D =1{mod4d),
D if D =2{mod4}.

1=

Proof. From the proof of Lemma 1, we have # = Dbd for some posi-
tive integer b. When D = 1{mod4}, we find that 4 is even since p®—D
is a square. So we get 4= 2. Then we can eagily obtain our assertion.

Leavwa 2. Let d and D be as in Theorem 1. Assume that 8 is a fixed
positive integer and I = 0(mod3), say D = 3K. If the equation

(7) y+E“D =yp"
has infeger solutions for y and n, then the equation
y2+E2(S_1)D — -,pn

has also integer solutions for y and #.

Proof. Put p% = a?-+ D, where ¢ is a rational infeger. Using the same
argument ag in the proof of Lemma 1, we have

(8) g+ BV_D = +(a=V_D),

where # = dw and w is a positive integer. From this we see that w
= ({mod B), say w = Eb. Then from (8), we get

(9) g+ BV —D = L{ut+oV —DF,
where % and v are rational integers. So we know that
= J-Bo(uF '+ EK)

for some integer K. Since (#,E) =1, we have By = LF°, and sow
= + F~L. Therefore - from (7) and (9), we obtain

ﬂ2+E2[s_1}_D —_ pbd_

This completes the proof.

CororrARY 2. Let d, D and B be as in Lemma 2. If the positive integers
Yy and n satisfy the equcmon

then L ‘.
' (2F  if D =1(modd),
n =
E 4f D =2(mod4).
The proof i similar to that ef Corollary 1. So we ormit b
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LmvMA 3. Let d, D and B be as in Lemma 2. Assume that s is o fived
positive integer. If the equation

(10) P+ DR =gt

has integer solutions for y and n, then either the equation
yg_!_DZ(s—l)-H = p"

or the eguaiion
y2+E2(s«1)_D = p"

has also integer soluiions for y and n.

Proof. Using the same argument as in the proof of Lemmas 1 and 2,
we see that # = Dbd for some positive integer b and

(11) y+DV—D = t{utoV —DYP,

where « and o arc rational integers. Then from this, we obtain
3 | D—% ‘D D—3
DP = L Dolu""— 3% 2 DI

for some integer K. Since (%, D) =1 and D = 3F, we have either
p= D1 or o=LF"N
It » — =D, then from (10) and (11), we get
w2 DI gbd,
If 9 = L B, then from (10) and (11), we have
w0 = g2,

This completes the prooi. :
CoBOLTARY 3. Let & and D be as in Lemma 2. If the positive integers
y and n satisfy the equation
yi+D? = p",
then
2D if D =1(mod4d),
D if D =2(mod4).
The proof is similar to that of Corollary 1. 8o we omit it.

LeMmA 4. Let d and D = 1(mod 4) be as in Theorem 1. Then the equa-
tion

(12) Y D5 = g

has no solutions in positive integers y and n.

n=
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Proof. Taking the equation (12) modulo 4, we find that n it even,
say n =2k Then we have (p®+9)(p"—y) = D°, which gives p*< D%

On the other hand, from Corollaries 1 and 3, we have % = 2D. There-
fore wo obtain p? < D*. But, the inequality is impossible, since D=5
and p = 3. This completes the proot.

Tramaas 5. Let d ond D = 2(mod4) be us in Theorem 1. Then the equa-
tion
(13) yr4L D ="

has no solutions in positive integers y and » if either D=6 or p = 1.
Proof. Taking the equation (13) modulo 4, we sec that n i3 even,
say i = 2k Then from (13), we know that p* < D
On the other hand, from Corollaries 1 and 3, we get #n = D. Hence
we have

(14) PP < D5

I p = 7 and D> 6, then the inequality {14) is impossible.
If p>= 7 and D = 2, then from (13) we have

(0* — ) (" +9) = 2°.
So we get
pr—y =2 and pty =4,
which jimplies p = 3. This is a contradiction.

I p = 3 and D > 22, then the inequality (14) is impossible. Moreover,
it it easy to see that neither the equation

yr148 = 3°
nor the equation
yi+108 =3

has positive integer solutions for y and n.

Thus we have completed the proof of Lemma 5.

LEmMA 6. Let d, B and D = 1(mod4) be as in Lemma 2. Then the
equation
(15) Y +ED =p"

Fas no solutions in positive integers y and n.

Proof, Taking the equation (13) modulo 4, we find that » is even,
say % = 2k Then from (15), we can easily deduce that p* < B*D.

On the other hand, from Corellary 2, we get n'= 2F, and so

(16) ' p"<E'D.
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We note that B> 7, since D = 38 =1(mod4) and D is a square
" {ree positive integer. Then the inequality (16) is impossible. This completes
the proof. _
Leya 7, Let d, B and D = 2(mod4) be as in Lemma 2. Then the
egquation
17) Y+ ED = g

has no inleger solutions for y and n unless D = 6,

Prooi. Taking the equation (17) modulo 4, we see that » is even,
5ay % = 2%, Then we get p* < B°D.
On the other hand, from Corollary 2, we have » = B, and 5o

(18) PP BD? = OFF.

It E>>10, then the inequality (18) is impossible, sinee p > 7. This
completes the proof.

Lmama 8. Neither the equation

(19 PEHG-2 =T
nor the equation ' .
20) Syt =

Las integer solutions for y and n.

Prootf. Taking the equation (19) modulo 4, we find that = is even,
s&y n == 2%, Then from (19) we have

(TF—y) (T 4y} = 6-2¢.
Thus we have either
T—y =2 and Tty =23-24
or .
-y =23 and 74y =21,
which give either
*F=5 or TF=11.

But both cases are impossible.

By using the same way as before, we readily find that the equatmn
(90) has no mteger solutions. 8o we emit the proof

LEMMA 9. _Let p and D =6 be as in Theorem 1. Then t?_w‘ equation
@y Y26 — g |
has no solutions in positive integers y, m, n.
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Proof. In the case of m = 1, it follows from Lemma & that the equa-
tion (21) has no integer solutions for 4y and w. By using the same way as
in the proof of Lemma 8, we see that the equation y*4-6-22 = p® implies
p =T, sineep == 3(mod4). Thus the lemma follows immediately from Lem-
mag 2, 3 and 8.

3. Proof of Theorem 1. On taking the equation (1) modulo p, we find
that m is odd.

In the cage D = 0(mod3), our assertion follows immediately from
Lemmas 1, 4 and 5 '

In the case D = 0(mod3), onr asserfion follows immediately from
Lemmasg 2, 8, 4, b, 6, 7 and 9.

4. Proof of Theorem 2. On taking the equation (2) modulo 3, we see
that m is 0dd, say m = 2s+1. Then the equation (2) becomes

(22) yrp o = gn

In the case of s = 0, from the result of R. Apéry [1], we know that
the only positive integer solutions of (22) are given by (y,n) = (1, 1),
5,3).
o ])By an argument similar to the one used in the proof of Lemma 8,
we deduce that if s = 1, then the positive infeger solution of (22} is given
by (4, n) = (1, 2) and if s = 2, then that of (22) is given by (y, #) = (T, 4).
Moreover, if ¢ = 3, then the equation (22) has no integer golutions for
4 and n. We note here that Lemma 1 holds in the case of D = 2, Thus the
theorem follows immediately from Lemma 1.
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