# Correction to the paper "Structure theorems for radical extensions of fields", Acta Arith. 38(1980), pp. 111-115

by

WILLIAM YSLAS VÉLEZ (Tucson, Ariz.)

We shall assume the notation and conventions of [1].

The method of proof used in Theorem 2 of [1] is not correct. There we asserted that if  $M_1 \cap M_2 = M$ ,  $L = M_1 M_2$ , then  $N \rightarrow M_2 N$  defines an injection from the lattice of intermediate fields of  $M_1$  over M to the lattice of intermediate fields of L over  $M_2$ . To see that this is false let  $2^{1/35}$  denote the real root of  $x^{35}-2$  and  $\zeta_{35}$  a primitive 35th root of unity. Let  $M_1 = Q(2^{1/35}, \zeta_5, \zeta_7 + \zeta_7^{-1})$ ,  $M_2 = Q(\zeta_{35}2^{1/35})$ . It is easy to see that  $M_1 \cap M_2 = M = Q(\zeta_52^{1/5})$  and  $[M_1:Q] = 35 \cdot 4 \cdot 3$ ,  $[M_2:Q] = 35$ ,  $L = Q(\zeta_{35}, 2^{1/35})$ . Let  $N_1 = M(2^{1/7})$ ,  $N_2 = M(2^{1/7}, \zeta_7 + \zeta_7^{-1})$ . Thus  $[N_1:Q] = 35$ ,  $[N_2:Q] = 35 \cdot 3$ , so  $N_1 \neq N_2$  and  $N_1 M_2 \subset N_2 M_2$ . Now  $N_1 M_2 = Q(\zeta_{35}2^{1/35}, \zeta_52^{1/5}, 2^{1/7})$ , so  $N_1 M_2 = M_2(\zeta_7)$  and  $\zeta_7 + \zeta_7^{-1} \in N_1 M_2$ , thus  $N_1 M_2 = N_2 M_2$ , so  $N \rightarrow M_2 N$  does not preserve the aforementioned injection.

In the following we provide a correct proof of Theorem 2.

THEOREM 2. Let  $F(a) \supset K \supset F$ ,  $K \cap F(\zeta_n) = F(\theta)$ ,  $t = \min$   $\{i: i \mid m \text{ and } a^i \in K\}$ ,  $r = \max\{i: i \mid m \text{ and } F(a^i) \supset K\}$ . Then  $K = F(\theta, a^i)$  iff (s, t) = (s, r).

Proof. The following result will be used often in the proof: Let  $L_1$ ,  $L_2$  be fields such that  $L_1$  is finite and normal over  $L_1 \cap L_2$ , then  $[L_1 L_2 : L_2] = [L_1 : L_1 \cap L_2]$ , and thus  $[L_2 : L_1 \cap L_2] = [L_1 L_2 : L_1]$ . See [2], page 196 for a proof.

Since  $F(\zeta_n)$  is normal over  $F(a^t) \cap F(\zeta_n)$ , we have that

$$[F(a^t)\colon F(a^t)\cap F(\zeta_n)]=[F(a^t,\zeta_n)\colon F(\zeta_n)]=[F(a^t,\theta)\colon F(\theta)]$$

since  $F(\theta)$  is a subfield of  $F(\zeta_n)$  containing  $F(a^t) \cap F(\zeta_n)$ . Hence,  $K = F(\theta, a^t)$  if  $[K: F(\theta)] = [F(a^t): F(a^t) \cap F(\zeta_n)]$ . Thus, the theorem will be proven provided we can verify this last equality.

cm

It is easy to see that  $F(a^k) \cdot F(a^l) = F(a^{(k,l)})$ . To study the intersection of such fields we need the following claim:

CLAIM A: If  $l \mid s$  and  $F(a^l)$  is normal over  $F(a^k) \cap F(a^l)$ , then

$$F(a^k) \cap F(a^l) = F(a^{[k,l]})$$
 and  $[F(a^k): F(a^{[k,l]})] = [k, l]/k$ .

Proof of Claim A: Since l|s, (l,k)|s we have by Theorem 1 of [1] that  $l = [F(a): F(a^l)]$  and  $(l,k) = [F(a): F(a^{(l,k)})]$ , thus  $[F(a^{(l,k)}): F(a^l)] = l/(l,k)$ . Clearly,  $F(a^{[k,l]})$  is contained in both  $F(a^l)$  and  $F(a^k)$ , thus  $[F(a^k): F(a^k) \cap F(a^l)] \leq [k,l]/k$ . However, since  $F(a^l)$  is normal over  $F(a^l) \cap F(a^k)$  by assumption, we have that

$$[F(a^{(l,k)}): F(a^l)] = l/(l,k) = [F(a^k): F(a^k) \cap F(a^l)] \leqslant [k,l]/k.$$

But l/(l, k) = [k, l]/k, so  $[F(a^k): F(a^k) \cap F(a^l)] = [l, k]/k$ , thus  $F(a^k) \cap F(a^l) = F(a^{[l,k]})$  and the claim is proven.

Since  $F(\zeta_n) = F(a^s)$  and  $K \cdot F(\zeta_n) \supset F(\zeta_n)$ , we have that  $K \cdot F(\zeta_n) = F(a^w)$ , where  $w = [F(a) \colon K \cdot F(\zeta_n)]$  and  $w \mid s$ , by Theorem 1 of [1]. By definition,  $F(a^r) \supset K$ , so  $F(a^w) \supset F(a^w) \cap F(a^r) \supset K$  and since  $F(a^w) \mid K$  is normal, we have that  $F(a^w) \mid F(a^w) \cap F(a^r)$  is normal, thus by Claim A,  $F(a^w) \cap F(a^r) = F(a^{[w,r]}) \supset K$ . However, r was maximal with this property, hence r = [r, w], so  $w \mid r$  and we have that  $F(a^w) \supset F(a^r) \supset K$ , thus  $F(a^w) = F(a^r) \cdot F(\zeta_n) = F(a^{(r,s)})$ , since  $F(\zeta_n) = F(a^s)$ , and we have that w = (r, s).

With l=s and k=t, we have by Claim A that  $F(\alpha^t) \cap F(\zeta_n) = F(\alpha^{[t,s]})$  and  $[F(\alpha^{[t,s]})] = [t,s]/t = s/(t,s)$ . We also have that

$$[K: K \cap F(\zeta_n)] = [K \cdot F(\zeta_n): F(\zeta_n)] = s/w = s/(r, s).$$

Thus

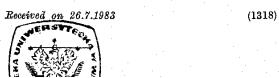
$$[K:K\cap F(\zeta_n)]=[F(\alpha^t):F(\alpha^t)\cap F(\zeta_n)]\quad \text{iff}\quad (t,s)=(r,s),$$

and the theorem is proven.

Remark: Note that in the proof only the fact that  $F(\zeta_n)$  is of the form  $F(a^s)$  and that  $F(\zeta_n)/F$  is normal is used and  $F(\zeta_n)/F$  abelian was not necessary. Thus, if we replace  $F(\zeta_n)$  by a field  $F(a^q)$ , q|s, such that  $F(a^q)/F$  is normal and replace s by q, then the result is still valid.

#### References

- M. J. Norris and W. Yslas Vélez, Structure theorems for radical extensions of fields, Acta Arith. 38(1980), pp. 111-115.
- [2] S. Lang, Algebra, Addison-Wesley Publishing Co., Reading, Mass., 1969.



Les volumes IV Volumes from IV Die Bände IV und Томы IV и спедуet suivants sont on are available folgende sind zu ющие можно полуà obtenir chez at beziehen durch чить через

### Ars Polona, Krakowskie Przedmieście 7, 00-068 Warszawa

Les volumes I-III Volumes I-III Die Bände I-III sind Томы I-III можно sont à obtenir chez are available at zu beziehen durch получить через

Johnson Reprint Corporation, 111 Fifth Ave., New York, N. Y.

# BOOKS PUBLISHED BY THE POLISH ACADEMY OF SCIENCES INSTITUTE OF MATHEMATICS

- S. Banach, Oeuvres, vol. II, 1978, 470 pp.
- S. Mazurkiewicz, Travaux de topologie et ses applications, 1969, 380 pp.
- W. Sierpiński, Oeuvres choisies, vol. I, 1974, 300 pp.; vol. II, 1975, 780 pp.; vol. III, 1976, 688 pp.
- J. P. Schauder, Oeuvres, 1978, 487 pp.
- H. Steinhaus, Selected papers, in press.
- K. Borsuk, Collected papers, Parts I, II, 1983, xxiv+1357 pp.

Proceedings of the Symposium to honour Jerzy Neyman, 1977, 349 pp. Proceedings of the International Conference on Geometric Topology, 1981, 469 pp.

## MONOGRAFIE MATEMATYCZNE

- 43. J. Szarski, Differential inequalities, 2nd ed., 1967, 256 pp.
- 50. K. Borsuk, Multidimensional analytic geometry, 1969, 443 pp.
- 51. R. Sikorski, Advanced calculus. Functions of several variables, 1969, 460 pp.
- 58. C. Bessaga and A. Pelezyński, Selected topics in infinite-dimensional topology, 1975, 353 pp.
- 59. K. Borsuk, Theory of shape, 1975, 379 pp.
- 60. R. Engelking, General topology, 1977, 626 pp.
- 61. J. Dugundji and A. Granas, Fixed point theory, vol. I, 1982, 209 pp.

### BANACH CENTER PUBLICATIONS

- Vol. 1. Mathematical control theory, 1976, 166 pp.
- Vol. 5. Probability theory, 1979, 289 pp.
- Vol. 6. Mathematical statistics, 1980, 376 pp.
- Vol. 7. Discrete mathematics, 1982, 224 pp.
- Vol. 8. Spectral theory, 1982, 603 pp.
- Vol. 9. Universal algebra and applications, 1982, 454 pp.
- Vol. 10. Partial differential equations, 1983, 422 pp.
- Vol. 11. Complex analysis, 1983, 362 pp.