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We shall assume the notation and conventions of [11

The method of proof used in Theorem 2 of [1] is not correet. There
we asserted that if M,nM, =M, L = MM, then N->M,N defines
an injection from the lattice of intermediate fields of & over A to the
lattice of intermediate fields of L over M,. To see that this is false let
915 Jenote the real Toob of o®—2 and £y a primitive 35th root of unity.
Teb M, = Q(2Y%, &g, L+, My = Q(£529%). It Is easy to see that
M, nM, = M =Q({:2*5) and [M,:0] = 354-3, [M;:Q1 =358, L
= Q Ly, 2V/%5), Let Ny = M(27), N, = MY, & oh, Thus [V, : €]
=35, [N,:Q] =353, so N, =N, and N, M, =N, M,. Now N, M,
= (50 2V, £,2%5, 2M7), so N M, = M,(f) and Lo b7t & Ny M, thus
Ny M, = N,M,, so N—M,N does not preserve the aforementioned in-
jeetion. ' '

In $he following we provide a correct proof of Theorem 2. . o

TruRoREM 2. Let F(a)= K = F,EnF(L,) = F(8),1 =min {i:i{m
and ¢ e}, r =max{i:ijm and Pld) o K} Then K =T(0,d) iff
{8,8) == (8, 7)- L ‘

Proof. The following result will be nsed often in the prooi: Tt Ly, L,
be fields sach that I, is finite and notmal over Ly Iy, then [LiLy: L]
= [L,: I;n Ly, and thus [Ly: I,nD,Y = [LyLy: I;d. See [2], page 196
for a proof.

Since F(£,) is normal over F(HNF(L,), we have that

LF(a)s B () P ()] = [B(sh G (L] = [PUa 0 (O]

ginee F(0) i3 4 subiield of F(L,) containing F()nF(E,). Hence,
K =F(0,d) if [E:F(0)] = [F(a"):F(a‘)nE(Cn)]. Thus, the theovem
will be proven provided we can verify this last equality.
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Itis eé.sy to see that F(a¥) - F(d’) = F(a*P). To study the intersection
of such fields we need the following claim:
Crama A: If 1)s and F(d") is normal over Fld)nF{a), then

F(aF)nF(d) = F (D) [F(d): F(o®N)] = [k, 11/k.

Proof of Claim A: Since 1]s, (I, k)]s we have by Theorem 1 of [1]
that 1 = [F(a): F(d)] and (1, ) = [F(a): F(a®®)], thus [F(a™¥): F(d)]
= 1)1, k). Clearly, F(a*7) is contained in both F(« ) and F(o*), thus

and

[F(o¥): Fla*)nF ("] < [k, 1}/k. However, since F(o ) is mnormal over

F(dYnF (") by assumption, we have thab
[F{R): P(ah] =1/ (L, k) = [F(d"): F(a*)nF ()] < [k, L1k

But I, &) = [k, 11k, so [F(a*): Fld)nF(d)] = [T, k]/k, thus F(a*)n
NF () = F(a™") and the claim is proven.

Sinee F(Z,) = F(«®) and K-F(L,) > F(L,), we have that K-F(L,)
= F(a®), where w = [F{a): X-F(£,)] and w|s, by Theorem 1 of [11
By definition, F(«') 2o K, so F(a") o F(d“)nF(c") > K and since
F(«®)/E is normal, we have that F(a®)F(a”)nF(d) is normal, thus
by Claim A, F{c*)nF(d") = F{d™") > K. However, r was maximal
with this property, hence r = [r, ], 50 w|r and we have that F(«")
= F(d) > K, thus F{a®) = F(a")-F(Z,) = F(d"?), since F(Z,) = F(a),
and we have that w = (r, s)..

With I=¢ and % =1, we have by Claim A that F(d)nF(L,)
= F(a*Yy and [F{o): F(al"N] = [, s1/t = 8/(i, 8). We also have that

[E: EnF(E,)] = [K-F{L): F(L,)] = sfw = sir, s}.
Thus
[E: XnF(L, )]—[F( o):

and the theorem is proven.

Remark: Note that in the proof only the fact that F({,) is of the
form F(ef) and that F{{,}/F iz normal is nsged and F(I,)/F abelian was
not necessary. Thus, if we replace F(Z,) by a field F(a%), gls, such that
F{uD[F is normal and replace s by g, then the result is still valid.

FYnFL)] # (53) = (r,),
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