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1. In this paper we shall be concerned with some quantitative aspects
of the theory of factorization in algebraic number fields.

The method applied is of a wmore general character and probably
can alse be applied to other problems.

If A is a set of algebraic integers belonging to the field K, then, for

>1, A(x) denotes the number of integers a e 4 such that |Ngi(e) < &
and from each set of associated integers only one is counted.

Let K be an algebraic number field with class number / and class group
H(K) ={X, =F,X,, ..., X;}. Denote by Ry its ring of integers and
let M be the set of all irreducible elements of Egr. Further, let F,
k=1,2,..., be the set of all elements of R, which have at most & dis-
tinet factorizations into irreducibles.

Similarly, let @, be the set of all elements of Rz which have at most
% such.-factorizations of distinet lengths.

We denote further ¥), = F;nZ and G, = G ,nZ. "'

According to the definition of A(z) the mea,nmg of M(x), Fy(x),
G, (x), Fr(x) and Gy(x) is clear.

Our firgt theorem refers to irreducible mtegem in the field K.

J. P. Rémond proved see [20] and also [19], [167) that for » tendmv

—1

to infinity
2 (loglogx)?
3 ~ 22T
(1) L(a) ~ € —— =
where ¢ = ((XK) is a positive constant and D = D (H (K)) is the Davenport
constant of the class group H(K) (see [16]).
‘We shall prove the following improvement of this resulf.

TeEOREM 1. For 26 and 0< qgcol/_logz_, geZ we have
loglogz
' . w \' W.(logloga) ., ( . loglogm)D)
02 MO = fog s Gagay O\ hogay )
<
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where ¢, and ¢, denote positive constants depending on K, W, () e C[x]
(polynomials with complex coefficients), degW () = D—1 and degW ,(z)
<D for p=1.

Our second theorem refers to the sets Gy.

Tet > 3. The asymptotic formula for Gi(x) (as well as for Gy (z))
was obtained by J. Sliwa in [23]. His result for Gy(z) is as follows:

z(loglogz)®
(logz)*

{1.3) Gy(z) ~C for z—o0,
where 4, B, € are positive constants depending on K and &.
We shall prove the following theorem:
THEOREM 2. Let > 3. For =% k=1 we have

=W (loglog ) (m(loglog *)" )
(loga)® "\ (loga)*+r0 |’

ahere W) eClal, ¢ =¢c(k,E)>0, A=AF,K)>0 and v

A A 1 cs?ﬁr)}
“mm{f’ﬁ- h

Our method leads also to & much stronger but more complicated
estimate for Gy (z) than (1.4). We restrict ourselves here only to the simplest
case. ‘

Our third theorem refers to natural numbers which have a unique
factorization in K.

Let b > 1. The asymptotic formula for F,(«) was obtained by W. Nar-
kiewiez in [14] and [16] for normal fields of prime degree and by R. W. K.
Odoni in [187 in the general case. Odoni’s result is as follows:

B
(1.5) F;(w) — M (A+O (__}_)),

(logz)© loglog®

(1.4) Grle) =

where 4, B, ¢ depend upon K and are positive.
Our method permits us to obtain the following stronger estimate:

Viogs
TEEOREM 3. Let h>1. For x> e® and 0 < g<ec 3——g——,quwe
p logloga;
have
, @ % P”(loglogm) " ac(logloaa')°4 )
(1.6) (@) = (loga)® D<%<q Hoga)" 01{(esq) (logz)C e+t 3

where P, (x) € Clx] and C, ¢, ¢, depend on K and are positive.

Ags regards other functions connected with the uniqueness of factor-
ization, S. Allen in [1] gave an upper bound for Fy(z), k> 1, and J. Sliwa
in [24] obtained an asymptotic formula for these functions.
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W. Narkiewicz in [153] deduced certain asymptotics for F ().

Using our Main Lemma we can easily improve also those results.

It seems of importance to mention the constants appearing in (1.1)-
(1.6). The constants in the exponents (also the degrees of the polynomials
appearing there) usually depend on the structure of the group of ideal
classes or on the structure of other groups, for instance on the Galois
group Gal(Kg/Q), where K, is the Hilbert class field of K, the normal
hull o‘f I/Q (see [147, [15], [18], [23]).

Tf we want to determine these constants explicitly, we meet difficulties
of combinatorial nature (see [17]). Hence the preeise values of these con-
stants are known only in some special cases.

It would also be interesting to determine explicitly the coefficients
of the polynomials appearing in the above asymptotic formulas and to
estimate the constants implied by the O-notation.

These constants depend on many parameters of the field, such as

‘degree, diseriminant, fundamental units, ete.

Estimating the constants in the remainder terms of (1.2), (1.4), (1.6)
requires the application of an effective zero free region for the Hecke zeta
function (compare [8]).

2. The Main Lemma. The bagic role in the proofs of the theorems
stated in 1 will be played by a lemma on the asymptotic behaviour of
the coefficient sum of the series

(2.1) f(s) = Z a,n"*, § =o-1it, a,>0,
n=1
satisfying certain regularity conditions.

To make the formulation of the Main Lemma simpler we introduce
a class o of functions represented by Dirichlet’s series (2.1) having the
following properties:

(i) For 1< <y,
(2.2) > a,< (y—a)logsy +0(y"),

TERKY

where ¢; > 0, 6§ <1 are constants depending on f.
From (i)'it follows that the series (2.1) is convergent in the half-plane
o> 1.

(ii) For ¢ > 1,

(2.3) f(s) = 2 ("”' 5) log? 1 +Gr4(8),

1 w
oj<r
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where k;>0, j =0,...,7 are integers, w; = u;+1iv;, j=20,...,r are
complex numbers whose real parts are non-negative, the functions g;(s),
§ =0,1,...,7+1 are regular for ¢ > 1 and can be continued analytically
to regular and single-valued functions in the region .

Cq
log(It/+2)’
Condition (ii) secures analytic continuation of f(s) to the left of the
line ¢ = 1.
(ifi) In the region (2.4)
(2.3) lg;(8)] < (18] +2)"91og™ ([t] +3).
(iv) In (2.3) w, is a real number, w, > %, > ... > 4, and, moreover,
it u; = w, for certain j, 0 <j < r, then w; is also real.
It is convenient to distinguish the following two cases.
Case I. All w; are ecqual to zero. In this case we assume that %,
>Ry > ... >k, and gy(1) #0. ) ]
Case II. Not all w; vanish. If in this case w, = w;, = ... = w, for
certain 7, < 7 then we assume that ky >k, > ... > Lk, and go(1) # 0.
We can now formulate the
MarN Lena. Let f(s) € of. Then for the summatory function

S@) = Y a,

AN

(2.4) c>1 s> 0.

-

of (2.1), for @ = e® and any integer g satisfying 0 < q < ¢q Vioga we have
the following estimates: logloga
in case T : oo
W : @ - P, (loglog») z(loglogx)®
2.6 S{z) = kogo(l o N Lk -+ @ V2 =l
0 S b g 3 S S 0 (t0or Xt )

where P, (x) € C[x], degP,(x) <maxk;, degP,(x) = ky—1 and its leading
coefficient is equal To 1;

in case IL
@1 Sy =20 2 X1 @ leelogy) |
Ilwy) (logz)~ £Lu  (logz)*
us_‘u‘q )
) g E(logloga)©e
TO((OQQ) (10g.‘l¢)q+2_w0 b

where Q,(x) e Clx], degQ,(z) < maxk;, degQ,(v) =k, and ils leading
coefficient is equal to 1. .
M, denotes the finite set of complex numbers u lying in the strip 0 < Rew

< q+1 which arve of the form p = v+ wy—w;, veZ, 0 < v < q.
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The constants implied by O-notation and the constants ey, cy depend
on f and do wot depend on x and q. '

The palyﬂ:omiasls P, (x) and Q,(x) depend on wy, ..., w,, koy..., k. and

I(wg) .

P, () = W (x
0 2

1
_—W =
kogu(l) u(w)’ Qﬂ(w)

where

TV/L(“") = 2 2 2 Aj,Bjx,,il‘-x.

0iSr 0<vkg 0Crshy
V+wu—wj=,u

The nunibers A;, are the coefficients of the Taylor expansion of (1]s)g;(s)
in the neighbourhood of s = 1, and B,,, are given by

cs—n LAY " sy cr—ot
B, = (—1)% (;) 5 J e* 2" (log )" dz
%

1]

where €, denotes the curve of integration consisting of the segment [ —oc, —11
of the lower side of the real awis, the circumference C(0,1) and the segment
[—1, —oo] of the upper side of the real axis.

The ideas leading us to the Main Lemma can be found in many papers
([31, [41, [8]-[11], [18], [21], [22]) and the method of the proof of this
lemma is classical.

A similar result has been obtained by E. J. Scourfield [21].

She assumes about the functions (2.1) that for o> 1

(2.8) F(8) = {L(s)} " {logL(s)}"H (s) D (s)

where 0 < A< 1, u is a non-negative integer and H(s) is & product of
powers of Dirichlet L-functions associated with non-principal characters,
which are non-negative powers of the logarithm of such functions, and
%(s) is a function holemorphic for o> 1/2 and bounded for ¢ >1/2-+6
(6>0). ‘

Then she estimates S (z), making various assumptions about 3 and
u. For instance, assuming that 0 < f <1, v =1, she proves

HIRA) o(logloga) 2 {loglogz)**
+0 3 .
rii—-p  log's log"@

Tt follows that the assertion in E. J. Scourfield’s theorem is weaker
than the agsertion of our lemma. On the other hand, it is easily seen that
if f(s) satisties (2.8) then it satisfies conditions (ii)—{iv) in the definition
of the class . It can be shown that in the case where h(s) is an absolutely
convergent Dirichlet series (which mostly takes place in applications)
then condition (i) is also a consequence of (2.8).

S(x) =
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Conditions (i)~(iv) ecould be modified. Namely we could replace (i)
by the following weaker condition:

(i) For any fixed constant ¢, > 0 there exists a constant ¢;; > 0
such that for a sufficiently large =

a, < wexp(—cnl/logm).
r<n<z+wexp(~cyy) logz)

It seems very probable that condition (i) can be completely eliminated.
‘However, since this condition is easy to verify in most applications,
we prefer to discuss this problem on another occasion.

Condition (iv) could be completely omitted, however, the formu-
Jation of the Main Lemma would then become more complicated.

We could also consider ¢ as a function of z. Then the number of terms
in the asymptotic formula would depend on  and the remainder would
Jbe of the magnitude

<L zexp(—e¢ Vlogw) .

In this case we might also assume in (ii) that the functions could
‘be continued analytically to larger regions and by the modification of
{iii) we could get much smaller remainders (compare [9]).

3. Proof of the Main Lemma. The constants e¢is, ¢y, ... will depend
apon f.
Let 6:= 1/logz. Consider the following arcs:

%1 0 =1 —cpflog(ltj+2), t< —0, 0 <y < cqy
@y 1= —3, 1—(op/log(8+2)) < o<1,
@3 s =1+367, —n/2< < )2,

43.1) %4t =0, 1—(egoflog(d+2)) < o<1,

= 1— (essflog(|t]+2)), t> 6,

%t = —6, o <1—(ey,/log(6+2)),

%yt =0, 0 <1—(en/log(d+2)).

S
Q

TFinally denote
¥ =CUE,UFUELUE; and ¢ =FUFUT,U%U Y%,.
From (ii) it follows that for se®
log™ % for {11,

3.2 s
3.2) If(s)l < log™(jt|+2) for [f>1.
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Using the Perron summation formula with weights log(«/n), we obtain
for > e°
34400

s 1 X
(3.3) T(w)::Z anlog% - [ Z fsras = e fa; F(s)ds.

oni _J g2 o) 8
nEr 2~ z
We have
8 —
(3.4) f——__,—f(s)ds < wexp(— ¢y Viogz).
1V §
Indeed
S W5
-””—zf(s)dsigz‘ f“ #(s)ds|
s s e, 8 i
1 exp(lf{?ﬁ) o0 z°
<([+ [ + [ ) sonas:
5 i oz z Is}*
exp(Vlogz)

By the nse of (3.2) these integrals are easy to estimate and (3.4) follows.
Now choose &:= wexp(—c;sVloge), 0 < 655< Oy
Then
T(w+ £)—T(2) =log{l+(&/a)) 8 (a)+H

and by (i)

G5 H= ) alg T <alog (1+ 5) exp(— 13V Ioga),

&

n
<<+
whenece ‘
1 z -+ &) —a°
8(x) = log™* (1 + E) _ o+~ Z f(s)ds+
x ) 2wi J 8
G UEgUCy

+Ofzexp(— oy, Vioga)).
Since

log™! (1+ é) =i§— +0(1) and (248 —a° = sk I+ 0(Fa),
@

it follows that

Sa) = — % F(8)ds+0 fwexp (s Vioga)).



6O J. Kaezorowski

Applying (ii), we find that

3.6) M@= Y - [ 95 jogi L sy,

L 270 ) s{s—1)% s—1
o<i=<r A
1 a° —
R — Grpa(s)ds+ O {wexp(— ey l/logm)) .

27
Foulauty
If 5 > 0 is ‘such that K, = {s| {s—1| <y} is contained in the region
(2.4) and containg ¥,U %3 U %, then for any ¢ > 0 and s e K,
1 \' » 2y -+
=) = ) Apls=1y = N Ay ls—1r+0(chls—1H).
= t<r<g

For every j =0,...,7+1 we have the estimate

z(loglogz)°e!

gtl—w Aj
#s—1) ilog (logz)2+2—0

T 05 < (g+1)

FaUT3UTy
and thus
p — v __in ‘ - 7S 1wy k. 1
87 8@ = o J (s 1)~ "ilog" — ds+

27T
oi<r 0<r<g CoUE3UEy

Ar ¥ i z(logl 2
+ 3 [ we-irasto ((czzqﬂ————”“’g o) )

27 (logaz)?+t2—"
o<r<g CoUb Uty

, the error term in (3.6) is smaller than that in

In the above formula we replace the curve of integration by %’;
this involves an error

¢ &{loglogz)°2s
(logmet=w0 "~

Let € =% Vg UBLE, UE, where

<R(m) (€1 9)?

%':1=0, 0<1—0, args = —,
€:s =1+68%, —n<o< —a/2,
% s =1+06%, m)2<p< m,

€ :t=0, 0<1~—34, args =

By Cauchy’s theorem we can take ¢’ in place of ¢’ in (3.7).
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We then make the substitution z = (s—1)logw and write

_— \’7 Ai”m 1 PrET e lg
S(z) = Z ZW?;—E(JE Jlogj( )d + B, (x)

o

o<isr 0<v<g

= Z Z 2 4ﬂ v W (loglogz)*+ K, ()

o<jsr B 0<?<I
v—uj<q—w0+1

@ 2 W, (logloga)
+ Ry (@),

- (logay™™ i (loga)*

where
Woa) = > 3 > A4,Ba"
0<iar 0 <ty
v W — Wy =H
This shows that W,(#) e ([#] and degW ,(s) < maxk;. To compute
degW, (%) we must treat the cases I and II separately.

Case I. Since

Wolw) = 2 2 Ay B 0x”,

0gir Sk
the leading coefficient of this polynomial is
9o(1)

Ay B 00 T 9t
Y
%o

The term a*~' has the coefficient

2 A0 By py-10F Ao Bogg-10 = kogo(l) #0,

0
Iey=lg—

and we see that degW,(2) = k—1. This proves the lemma in this case.
It remains to prove our lemma in case IT.
We have

edz = 0.

Wo(z) = 2 Z AjoBjuo®”

0<j<1'1 0<m<_l.'j
and the leading coefficient is

96l) [ g, _ o)
“rmWody = = 0.
27i fe I(w,)

AOOBOkOO =
%o

Thus degW,(z) = ko and the proof of the Main Lemma is completed.
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4. Dedekind and Hecke zeta function. In what follows by, by, ...
denote positive constants which, as well as the constants implied by the
O-notation, depend only upon X unless their dependence upon other
parameters is indicated.

Let y be an arbitrary Hecke character of finite order. Denote by
f its conductor. The Hecke zeta function is defined for s = o+if, 0> 1
by an absolutely convergent Dirichlet series

x(a)
{r(s,z) = “—u'l W,
the sum being taken over all non-zero ideals of REg.

Taking y = g, (trivial character) and { = Rz, we obtain the Dedekind
zeta function {x(s).

We now list some basic results concerning the zeta-functions which
appear explicitly or implicitly in [13].

I. The functions [z(s,y) can be continued analytically over the
whole complex plane as regular functions except {z(s, y,) Which has a
simple pole at s =1.

II. In the region

b, ()

-1
’ log (jt+2)

Lz (8, x) does not vanish.
III. In the above region for [{}>1 we have

[loglz(s, x)| <;loglog(lt|+e%)
and
log="M (11} 4+2) < |Cx(s, 1) < log®D(j1{+2).

5. The ring Q. Let 2, denote the ring of all Dirichlet series with
abseissas of absolute convergence < 1.

Let 2 be the smallest ring which contains 2, and also all functions
of the form: :

(a) C¥(s), where L runs over all finite extensions of rationals, w is
a complex number, and Re w > 0,

(b) {¥(s, %), where L is as above, w is arbitrary complex number,
and x is » non-principal Hecke character of finite order,

(¢) log®iL(s, %), where L is as above, k is a natural number and y is
a Hecke character of finite order.

From the proof of the well-known Cebotarev density theorem [7]
it follows that

2 (¥p)tel

pes

s o
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for an arbitrary Cebotarev set of prime ideals 2. Note that the set of
prime ideals belonging to a fixed class X from H(K) is a Cebotarev set.

The ring Q defined above contains the most important funetions
which are used in the theory of numbers.

Let A Dbe any set of integral ideals of Ex. To avoid endless repetitions
we adopt the following notation:

Fam)= D1, m=1,2,..,
Na=m
agd

v fa(m)
t(s, 4) =%T’ o>1.
If A = By and 4,:={a| a = aRg, a e 4} then f(s, 4) := {{s, d,)-
It is convenient to prove the following
PROPOSITION 1. If A is a sel of integral ideals of K (or A < Rg) such
that [(s, A) € 2, then I(s, A) satisfies conditions (1)—(iii) of the class o.
Proof. (i) follows from the well-known theorem of Landau, [12],

Dl 1= agnt+ 0@y, 51,
Na<e

where
ag =resip(s) ‘and w = [H:Q].

§=1

Indeed, for 1<a <y

D) fatmy< 3 L=agly~a)+ 0.
asm<y T Nasy
It {(s, A) e Q then {(s, A) is a sum of a finite number of terms of
the form

g [ ez [] tixts, ) [] loghety, (s, ),
L % F% %
where g(s) € 2,, Rew, >0, k,e N and L runs over a finite family of
algebraic number fields, and the second and the third product is taken
over a finite set of Heeke’s characters.
Since
S (G 1270
é.L (8) (8 _1)10]_;
and for y =y,

k?i
4

1 :
log"zCLz(s, %)= Z ( ) log” 1 loghs™ (s —1) SACH IR

o=k,

N



G4 J. Eaczorewski

we have for ¢ > 1

L(s, 4) y 98 )u. log" +gr+1(s)'

0<1<r

From properties I-IIT of the zeta functions, it follows that g;(s) can
be continued analytically to the region

bs

¢6>1—- ——
Tog (i1 +2)’

and in this region
lg;(s)] < (It +2)"log"(Ji] +2).
This completes the proof of (ii) and (iii).

6. Lemmas. For a given natural number 4, 1 < 4 < %, and an arbitrary
integral ideal a = Ry denote by 2;(a) = Qx,(a) the number of prime ideals
of X, dividing a, each counted according to its multiplicity, i.e.,

a) = Zk

pkya
peX;
LeyovaA 1. Let dy, ..., d, denote given non-negative (not all vanishing)
rational integers. Then for the function
F(@,dyy ey dy) = ) 1

Na<ze
2;{0=d;
(E=1,000s0t)

Jor e and geZ with 0<<g<b; Viogz_
mula: loglogw

, 2 R, (loglogw)
Ple, d, ... > !
(@ dyyenny dy) = logw ....../ (logz)* 0 ((b6

we have the following for-

o ©(logloga)Ps
(logm)t**

where R, (¢) e C[2], degR,(z)<d;+ ... +d, for
=dy+ ... Fdy—1.

Proof. Denote by & = F(dy, ..., d;) the set of all ideals of Ry for
which 2,(a) = d; holds for ¢ =1, ..., k.

Then for ¢ > 1 we have

t(s, F) = H_E 7 N L Pi(mas) ... Py(mys)

).
Ry 3| My . ?
1<i<h k=1 mp>1 mp=1 Moy vee My

myFetmg=d;

w=1 and degR,(x)

IXT AsnRT
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where
Pyis) = D (¥p)~eQ,
peX;
and we observe that Lemma 1 follows from Proposition 1 and the Main
Lemma (case I with ky = d+ ... +dp).
LenvA 2. Let h> 1, Yy,..., X, 1 <m <k be given distinet classes
of HE)andlet d; =0 (i =1,...,m) be rational integers such that Y4 ...
. Y% Y1 pelongs to the subgwup of H{K) generated by H(K)\{¥y,...,X,}
Here Y denotes an arbitrary element of H(IK).
Let us put
By dyy oong &) = E 1.
Na<r
el Pl ay=d;
{(i=1,.0, m)
Then for x = ¢ we have

@ § . [ @(loglogx)’s
FI" (;I?., {Il? LA dm) = (logm)m,’h ¥ (IOgIOgI) T log‘x,)m/h x4
1 27
awhere V(x)y e Olz], deg V() = dy+ ... +4d, and y = N (1 W )

Proof (compare [23]). Let Fy = Fr(dy, ..., d,) denote the set
of all ideals of By belonging to ¥ for which 2y (a) = d;holdsfori =1, ...
sy M

From [23] it follows that {(s, F) € £ and for o> 1 we can write

1 Ay Fenatdyy,
)

2’ A9 (s)+

2ed"

L(s, Fy) = (s—1"* (log -

1 1\
+{s =11 g, (log po ) + Z (s—1)W g, (log _s—_l)’

28T

where T denotes a certain set of characters of H(K), y, €7 and @, and
&, are polynomials over the ring of all functions regnlar for ¢ > 1. The

i funetlons AP (s) and the coefficients of @, and @, are of the same type

as the functions g;(s) in conditions (ii) and (iii) of class &,

1
b =7 > (T

1<isim
and, for y ¢ T, —Reb(y) <1—m/h.
Since for every class Y, z(Y,;) is a hth root of unity, we can write
for v ¢T
—Reb(y) <1—mf/h—y.

3 — Acta Arithmetica t. 43, z. 1
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Moreover, for y e T, AM(1) > 0.
We see that we can apply case IT of our Main Lemma. Putting ¢ = 0
we obtain

i ' @ V,(loglogs) | _ [ax(logloga)s
Folo,dyy.onydy) = (Toga)™™ 2 (oga)* -r-O( (Tog )™+ )

nedly

- T4 (oglogx) + 0(

- z(loglog )
(IOg.’E)m/h H]

(Iogm)m”‘*"ﬂ

where 9, > 0 is the minimal real number for which there exists y ¢T
such that

vy = 1—mjh+TReb(y).

Thus v, y. Since degT,(x) = &+ ... +d,, this completes the
proof,

Remark. If Th ... T ¥~' does not belong to the subgroup of
H(K) generated by H(E)\{Y,,...,X,}, then Fy(»,d,...,d,) = 0.

7. Proof of Theorem 1. Denote by T the set of all sequences [dj, R
such that

d -,
DL I
equals ¥ and, moreover, the product
Xp . X (0<<e<dy)

is equal to F if and only if either all ¢’s ave zero or e¢; = d; holds for

=1y, 0
Then
M) = M 1= Y Fad,..,d)
[d1seensple?  No<z 1dyseenstdpy]eF
D4(0)=d;

(i=1,...,%)
and application of Lemma 1 ecmpletes the proof ¢f Thecrem 1.

8. Proof of Theorem 2 (compare [23]). For any system (sce [23]),
8 =(U,4A) (4 ={Ax| X e H(E)\T}, 4 positive integers) and 4> 0
let ug put

Ng ={aeRBg| Qx(a) =Ag, (X ¢ U},
Ngl@] ={aeNg| Qy(a)>a, (XeU).

There exists a finite set I of systems such that with suitable in-
tegers dg (8 € L) we have

G, = {SJLNS [dg]l ([23], corollary to Lemma 9).

=22
]
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Moreover, for any system S = (U, 4> and d > 0 we have

r(loglogz)®
I=ITTh+1k

Ngld](@) = Ng(w)-0 (m“

) (compare [23], Lemma 9);
thus by Lemma 2

Ngldj(e) =

2Vs(logloga) [ r(logloga)o )
(logl,)l—lch‘h - (IOgI’)l_lU”'h':""Ol ;

where Vg(a) e C[r].

Let 8;, 8, be twe distinet systems and assume that the sets Nsl, NS:_
are both non-empty.

Of cowrse Ng NN, =0 or Ny NV = Ng, for a certain system
812. The length of 8, is less than the maximal length of 8; and §,.

This implies that

L
SeL

b
Go(r) = E No[d,() = 0 ( x(loglogz)’ )

(1Og£)l—tklh+1/h

_ &W(loglogz) | x(loglogx)h

T ogr) i T (loga) e
where 1, = 1, (K) denotes the maximal length of the systems from L and
the proof of Theorem 2 is completed.

9. Proof of Theorem 3. The proof of Theorem 3 follows mutatis mutan-
dis from [18] if we apply the Main Lemma instead of the analytic argu-
ment used by R.W. XK. Odoni.

We only mention that it is proved in [18], in view of the Cebotarev
density theorem, that {(s, F;) e 2 and that for ¢ > 1

1
d)(log s—l)
(s—1% '

Lis, Fy) =

where @ is a function of the same type as @, in the proof of Lemma 2
of the present paper.
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On the 2-primary part of a conjecture of Birch
and Tate

by
JERZY URBANOWICZ {Warszawa)

o~
1. Introduetion. The conjecture of Birch and Tate states that

B2 Ogl = wplp(—1),

where O is the ring of integers of a totally real number field F, { is the
Dedekind zeta function of ¥, K, is the functor of Milnor, and

wp = 2 H o,

lprime

Here n (1) is the maximal integer 2 > 0 such that F' contains the maximal
real subfield of the cyclotomic field Q ().

The conjecture has recently been proved for abelian fields F by
B. Mazur and A. Wiles [87], up to the 2-primary part. In the present paper
‘we investigate the divisibility of wxz{z(—1) by powers of 2 for real quad-
ratic fields F. It enables us, in view of a paper by J. Browkin and A. Schinzel
[3], to prove the 2-primary part of the conjecture for infinitely many fields.

I wish to express my sincere thanks to J. Browkin and A. Schinzel
for many helpful suggestions and ideas used in this paper.

2. Notation. Let I = Q(l/—ﬁ), where D is a positive square-free
a

integer, and let d be the diseriminant of 7. Denote by (—lf) the Xronecker
symbol, and let Py(z) = a*—a2--1/6 be the second Bernoulli polynomial.

It is easy to see that wy, = 24k, where & = D for D =2 or 5, and
: =1 otherwise.

For a positive number » and a positive integer n let 4 (z, ») be the
number of positive integers < x that are prime to n.

YWe know that

2

man m
1) A (_, n) = g(n),





