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1. Let % >3 be an odd integer and denote by Fy,,(#) the Eisenstein
series of weight k41, ie.
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The function o, is integer-valued and multiplicative and its arith-
metical properties were investigated in [8], [9], [11]. In this paper we shall
consider the distribution of values of o, (also for even & % 2) in residue
classes (mod N) prime to N, with N being a given integer, and primarily
we shall be interested in those values of N for which this distribution is
uniform, i.e. for which oy, is weakly wniformly distributed (mod V) (WUD
mod N). Sinee o, is polynomial-like, i.e. for any fized m>1 and prime
p we have

O (pm = Vk,m (]7)

where Ty, (2) is a polynomial with rational integral coefficients it is
possible to utilize 2 method given in [2] which permits to decide for a given
value of N whether a given polynomiallike multiplicative function fis
WUD (mod N) or not. In eertain cases this method permits to determine
the set M (f) of all such N’s for which f is WUD (mod ¥), a8 it happened
for the divisor function d(n) or Euler’s function g(n), which were con-
sidered in [2]. However this method does not lead to an algorithm giving
B (f) for arbitrary functions and in particular the treatment of o), presented
certain difficulties. The first case (k = 1) was seftled in [10] and recently
the set M (c,) was determined ([6]). In the general case it was proved by
Fomenko ([1]) that 3(c,) dontains all sufficiently latge primes and the
same Tesult follows also from the main theorem in [4] which implies thatb
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if 7 is multiplieative and for all primes p one has f(») =I‘V( ) x_vvith 2 non-
constant polynomial ¥ (2) which is not of the form ¢W"(z) with a poly-
nomial T (z), & constant ¢ and % > 2, then there is an effectively determined
finite set B of primes with the property that M (f) contains all integers
whieh are not divisible by any member of E.

In this paper we shall establish the existence of an effective algorithm
determining M (f) for a class of polynomial-like multiplicative functions
and then shall prove that all functions o), with & > 3 are contained in thig
class. As an example of an application of this algorithm we shall compute
the set M (o3).

2. Let f be a multiplicative integer-valued function, which is poly-
nomial-like, i.e, for § = 1,2, ... and all primes p one has

1(#%) = Vi(p)
where ¥y, ¥,,... are polynomials over Z. For N > 2 put

By(F,f) = {V;le): [aVi(@), N) =1} (i =1,2,..))

and denote by M (¥, f) the smallest value of § > 1 for which the set B; (¥, f)
is non-void, provided such a value exists. In sequel, when regarding a fixed
function f, we shall suppress the letter f and write simply R;(N)
and M (N). Throughout it will be assumed that f satisfies the following
condition:

(Ay) Not all sets B;(N,f), R.(V,f),... are empty.

If a function f satisfies this condition for.all NV, then we shall say that
f satisfies the condition (A). Note that if f does not satisfy (Ay) then f(n)
can be co-prime with N only if every prime divisor of # divides also N,
thus the number of # <@ with (f(n), N) =1 is O(log'e) with ¢ being
the number of distinet prime factors of .

We shall also utilize the following restrictive condition on f:

(B) None of the polynomials V,, V,, ... is of the form ¢W" where ¢ is
a constant, W a polynomial over Z and r > 2 an integer.

The following necessary and sufficient condition for f to be WUD
(mod &) was established in [2]:

ProrosttioN 1. If f is smultiplicative, polynomial-like amd inieger-
valued, N = 2 and the condition (Ay) is satisfied, then f is WUD (mod V)
if and only if for every mon-principal character y (mod N) which equals
unity on the set Ry (N, f) (where M = M (N, f)) there exists a prime p < 24
such that

(1) 1+ ) x(f(@H)p~F¥ =0.

©
k=1
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This proposition implies in particular thabt if R, (¥, f) generates the
multiplicative group G(N) of residue classes (mod N) prime to N , then
fis WUD (mod ¥), which result in case X = 1 goes back o H. Wirging
[121.

We shall say that f is regularly WUD (mod N) provided the set R, (N, f)
generates G{N) with™ M = M (N, f). This definition is applicable only
to multiplicative and polynomial-like integer-valued functions which
satisfy (A) but it can be also extended to cover those functions f for whieh
WUD (mod ¥) and Dirichlet-WUD (mod N) (see [7] and [2]) coincide,
provided the analogue of the condition (A,) holds.

I f is WUD (mod ) but B, (N, f) does not generate G(N) (which
may happen, as the example f = ¢,, N = 40 (see [6]) shows) then we shall
say that f is irregularly WUD (mod N). A funection f is called regular if
for no N it can be irregularly WUD (mod N). From [2], [10] and [6] it
follows that the funetions (n), d(n) and o(n) are regular, whereas oy(n)
is not. One sees algo easily that the class of regular functions containg
all completely multiplicative polynomial-like integer-valued funections.
It would be interesting to have an infringic characterization of this class.

For a given function f denote by M,(f) the set of all those integers
N for which f is regularly WUD (mod ¥). Denote also by T'(f) the value
sup{M (N, f): N> 2} (which may be infinite). If T(f) is finite then
we shall say that f satisfies the eondition (C).

Using the Theorem TI of [5] we are now able to give a description
of the shape the set M,(f) may have:

PROPOSITION 2. Let f be a polynomial-like integer-valued multiplicative
Junction satisfying the condition (A) and assume that for j = 1,2, ..., T(f).
the polynomial V;(x) s not of the form oW*(x) with a constant ¢, a polynomial
W(o) and k> 2. (This is clearly satisfied if f satisfies the condition (B).)
Then there exist integers Dy, Dy, ..., Dy (with T = T(f)) and finite sets
X1y Xoy ooy Xy of integers such that if we denote by S (X) the set of all positive
integers which are not divisible by any element of X then

il
Mo(f) =H{N: (N, D) %1 for j=1,2,...,k=1; (N, D) =1,
N e 8(X).

Moreover for each fized & the integer Dy, and the set Xy can be effectively
determined.

Proof. Since for coprime a, b the set R, (ab,f) equals the product
of B,(a,f) and R, (b,f) due to the Chinese Remainder Theorem and for
prime p the set R, (p, ) (> 1) is non-empty if and only it R, (p,f) is
non-empty we obtain that R, (¥, f) is non-empty if and only if ¥ has no
prime factor p such that R, (p,f) is empty. Now R, (p,f) will be empty
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if and only if the polynomial #V,,(2) has all its values divisible by p and
this can happen only for finitely many primes p which all may be effectively
found. Denoting by D,, their product we see that M (N, f) = k holds if and
only if for j =1,2,...,k—1 one has (D;, N) # 1 and (N, D;) = 1. From
this and Theorem II of [5] our assertion follows. m

COROLLARY. If f is a polynomial-like, integer-valued, mulliplicative
and regular function saiisfying the conditions (A), (B) and (O) then the sel
M(f) can be found effectively and has the form described in the proposition.

Proof. It suffices to observe that due to the regularity of f we have
the equality M(f) = My(f). m

3. Before we turn to the study of ¢,(n) we prove a result which is
ugeful in establishing the regularity for many multiplicative funections:

PROPOSITION 3. Lét @y, ay, ... be a sequence of integers, let M, N be
two positive integers and let x be a character (mod N) of prime order g with
the property that the sequence x(a;) (§ = 1,2, ...) is periodic. Assume more-
over that for k=1,2,...,qg—1 there exists a prime p = p(k) such that
the sum

1+ ) (e~
=1 .
vanishes. Then p(k) =2 for L =1,2,...,q—1, the character x is real
(4. g =2} and
=1 i M,
xtdy) = {0 otherwise.

Proof. Under the assumption ¢ = 2 this was proved in [6] (Lemma 4)
hence we may assume that ¢ is an odd prime and try to reach a contra-
diction. The same lemma shows that p does not depend on & and equals q.
Let X De one of the characters »* (1 <k < g—1) and write y = ¢"™.
Denoting the period of y(s;) by T (which may be always assumed to
exceed M) and adding the occurring geometrical series we arrive atb

T-1
@) y+ D X(ag )y + X(ag)—1 = 0.
=1

If X (ag) would be equal to 0 or 1 then y would be an algebraic unit
which it is not and it follows that we may write

X(ag) = {3

with 1 < s < ¢—1 and a primitive gth root of unity Z,. Since with a suit-
able unit ¢ we have

g—1
¢ =[Ju-th =gy
j=1
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we geb

T-1
£, = (1—X(ag))™ = ('y""-{— Z X(aT_,)y')q—I.

=1

If now j denotes the smallest index for which X (a,._;) does not vanish
then it does not depend of X but only of y and we may write

T-1
ey = sq = (?/T"r‘ E X(“T—r)i’/r‘l‘X(“T—f)yj)q_l
r=j+1
- 71
=y7(q—])(y1"—]+ Z X(al,_]_)yr—J-i—X(aT—j))q*l.
r=j+1

Since the bracketed term cannot be divisible by a prime ideal of
the ring Zy dividing y (with K = @(,, %)) Wwe obtain
(3) M = j(g-1).

Applying now (2) to X = g, 4%, ..., %" and adding the obtained
equalities we arrive at

0=(¢—)y"+(g-1) D - e
1<r<T—1 1<r<r-1 y—q.
xap—y)=1 ap—p)#0,1

Reducing (mod ¢Z%) and using y™ = g we obtain finally
=97+ > yr=yTy(t+ Yy (mody™).

- Lod
1<r<T'~1 . j<r<T—1
(agr—pN)=1 (ag - N)=1

Since the right-hand side is divisible by 3’ but not by ¥'*/ we obtain now
j = M which in view of ¢ > 3 contradicts (3). m

CoroLLARY. Lei f be a polynomial-like multiplicative integer-valued
function and N > 2 an integer such that the condition (Ay) is satisfied and
for every prime p <2M (with M = M(N,f)) the sequence f(p’)mod N
(§j =1,2,..)) is periodic.

If f 4s irregularly WUD (mod N) then N is even, the set Ry (N) gener-
ates o subgroup of indew 2 in G(N) and the only non-principal character
(mod N) which equals unity on R, (N) satisfies for § =1,2,...

(=1 i M,
X(f(zj))={o ?} ML]j.

Proof. Since f is irregularly WUD (mod ) the Proposition 1 implies
that for every non-principal character y (mod N) which trivializes on
B, (V) there is a prime p < 2% for which the equality (1) holds. If d is the
order of y and ¢ is any prime divisor of d then ¢ = 444 ig 3 character
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of order q and applying to it the Proposition 4 we get p = ¢ =2 and

] —1 i Mj,
x(f@) = {0 i Mi’jj.

If N were odd, then 1 = (f(2")) = —1 a contradiction, thus ¥
must be even. Sinee | f(21)) vanishes for all j not divisible by M hence

]

1+ N z(fEh)z =0

=1

and we see that for all j = 0 (mod M) the equality y(f(29)) = —1 holds.
But for y we can take any non-principal character equal to unity on R, (V)
and the last equality shows that there can be only one of them. This
implies d = 2 and all assertions become evident. m

4. Now we state and prove our results concerning oy.

TaEOREM L. For k = 3 the function oy, is reqular and satisfies ithe con-
ditions (A), (B) and (C).

COROLLARY. For every fized Tt = 3 the set M (o},) can be effectively deter-
mined and has the form given in Proposition 2.

TeEoREM II. M (03) consisis of all odd integers not divisible by T and
all even integers not divisible by 3.

Theorem II has a computer-free proof. Using a computer it is easy
1-;o find B (o) for larger values of %k however this seems to be not very
interesting, since the structure of M(o,) does not seem to follow any
regular pattern, except that given in Proposition 2. Note also that from
Theorem I one can deduce that if % is an odd prime then o is WUD
(mod N) for all odd integers N with exception of multiples of 2%--1
provided this number is a prime congruent to 7 (mod 8) and of mul-
tiples of 3(2k-+1) in case when 2%+1 is a prime = 3(mod 8). It was
conjectured by F. Rayner on the basis of a computer experiment (letter
of 8th October, 1981) that if % is an odd prime and 2k -1 iy composed,
then o, I8 WUD (mod W) if and only if 6+, however our methods seems
to be insufficient to deal with this question. (Added in proof: A further
gomputer search made by F. Rayner revealed that this fails for k = 43
in which ease there is no WUD (mod 2066).)

Proof of Theorem I. First we shall compute the value of T(oy):

]:.:EI\J:ISIA 1. For odd k one has M (N, oy) = L if N is 0dd and M (N, o)
= 2 if N s even. Thus T (o) = 2 for k odd. If however I is even, then T (o)
equals @ —1, where @ = Q(k) is the minimal prime with the property that
k is mot divisible by @ —1.
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Proof. If & is odd there is no problem: for odd N the set By (N, o3)
containg 2 = 1--1% and for N even the set B, (N, o) is empty, but B. (¥, o3)
containg —1 = 1+ (—1)F+(—1)**. Now let k be even. Since ¢ —1 does
not divide %, the primitive root g (mod @) satisfies g* = 1 (mod Q) and
if the set Rq_, (N, o) would be empty, then for a suitable prime divisor
p of ¥ we would have p[Q = 1+1¥ 1%+ ... +1@-1% (hence p = Q)
and for all @ s 0 (mod p) also

a1
Py = 0 (mod p),

thus in particular g2° = 1 (mod @). But this leads to @ —1|kQ and-since
(@,9—1) =1 the divisibility of k¥ by @ —1 results, a contradiction. This
proves that Rg_ (N, o) is non-empty for all choices of N and implies
the inequality

T(op) <Q—L.

To prove the converse inequality observe first that for N even all
sets B;(N, o;) with odd j ave empty and thus it suffices to show that for
¢very even j smaller than ¢ -1 one can find a prime p; # 2 such that
R;(p;, o) is empty since then for the number N = 29,0, ... Po_; We would
have By(N, o) =@ for j = 1,2, ..., @ —2. We can for p; take any prime
divisor of 144, since then, by the definition of Q we have p;—1|k and
p;11+j and this easily implies that the set R;(p;, oy) 18 void. ®

From this lemma it follows immediately that oy satisties the conditions
(A) and (C). Since the truth of the condition (B) is for ¢, evident it suffices
to establish the regularity. For this purpose we shall utilize Proposition 3
but first we have to convinee ourselves that it is applicable in this situation.

LEania 2. Let k be a positive integer and let N = [T p° be an integer
N

satisfying the condition a, < 2k for all primes p dividing N. Then for every

prime q the sequence op(¢y mod N (§ =1,2,...) 48 periodic. :
Proof. It suffices to consider the case N = p® with prime p and

o < 2k, Put

4 = () = (@D -D)](g" 1)

J
and note that for T'>=1

appp—a; = I ~L))(¢"-1).

Tf p = g and ¢° = 1 (mod p) then taking for T the order of q* (mod p%)

we obtain the periodicity of a; (mod p*) with period 7. If p s g and p div-
ides g* -1, then define b by p” ¢ —1 and let T be the ovder of ¢* (mod p**+?).
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Then again a; (mod p®) i§ periodic with period 7. Finally in the case p = ¢
observe that a,,, — a; is divisible by p** and since j > 1 and by assump-
tion @ < 2% it follows that

pa Ip2l.: lpk(‘i+1) [aj+1 . a,j

and thus the sequence a; (mod p“) has period 1. =
Assume now that N is an integer such that o) is irregularly WUD

{mod N); write
N = n Ppe
PN
and define

b = {min(a,,2) if p is odd,
p——lmjn(ap,S) it p =2,

and N, = [T p%. Then obviously o), is WUD (mod N,) and moreover

»IN

it must be irregularly WUD (mod N,). In fact, it X is a non-principal
character (mod N) which equals unity on R, (N, o, then a suitable
power of X has its conductor not divisible by 16 nor by a cube of an odd
prime and fhus is induced by a character (mod N,) which is non-principal
and trivializes on Ry (N, op). (This argument is valid obviously for
arbitrary polynomial-like funetions.)’

Denoting this character by y we obtain from Lemma 2 and the corollary
to Proposition 3 that y is real and so is induced by a character (mod N,),

where N; = 2% [T p. This character we shall also denote by x. Since the
PIN

previous argument shows that oy, is irzegularly WUD (mod N,) we obtain
from the corollary to Proposition 3 that for j =1,2,... the equality
4 ool = (1 i A,

holds with M = M(N, o;). Observe that M 1 since by the same cor-
ollary &V is even and obviously in this case M (N, ;) # L.
Now we prove that (4) leads to a contradiction for % > 3. Write
4 =g () = (@ _1)j2F 1)  (j =1,2,...)
and
N, = 22 AR

where 4 is composed of all prime divisors of N, which divide 2% —1 and B
is the maximal odd divisor of N, prime to 2¥—1. The character y can be
written ag

X =2X2Z4"XB
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where ¥, is a characber (mod 2%), v, a character (mod A) and yza ch?,ra.qter
(mod B), all of them real. Since k> 3 we have ¢; =1 (med 8) and in view
of b, < 3 we obtain

(5) 2e(a;) = 1.
(This is the only place when the agsumption & > 3 is used.) Denote by 7 the

order of 2 (mod B) and let j = nr M be any multiple of rA. Then on one
hand we have

glay) = —1
but on the other hand in view of
' oki+) 1 = 9% —1 (mod B)

we obtain ¢; = 1 (mod B), thus yp(a;) =1 and hence ¥ 4(11].) = —1 must
hold for all j = 0 (mod My). However A divides ok 1, thus y4(a;)
= y4(1+J) and we obtain

1 = g (L) g (oM = g (L+rM2+rH)) = -1,
a contradiction. Thus oy, is for %> 3 regular and the theorem follpws. ]
The corollary follows directly from the theorem and the corollary
to Proposition 2. ,

5. Proof of Theorem IT. Note first that if fis a po'ljmomiall-]ike
multiplieative function which is not WUD (mod N) then it cannot be

‘WUD (mod N,) where
No=(¥,8]]v¥.
PN

This follows from the fact that if y is & non-trivial character (fnf)d N)
trivial on a subgroup H of G(X) then a certa,in‘ power of it is trivial on
H (mod N,) without being equal to the principal character (mod No).
We may thus assume in sequel that N = N,. ‘ '

Observe also that if f is not WUD (mod N) then for every prime p
with p% || N there is a character z, (mod p°») Whioh‘is constant on By (p™,f)
(where M = M(NV, f))} and for at least one prime p the ehara,cte'r In
is non-principal. Lemma 4 of [5] provides an upper bound for such primes
which in the case of o leads to

(6) p < ME(ME+1)

rovided k2> 3.
? In the ;a.se %k =3 Lemma 1 gives M =1 for N odd apd M =2 for
N even. For N odd (6) implies p €{3,5,7, 11} however sinee 5 .a.m}l 11
are congruent to 2 (mod 3) the sets R,(p) and RB,(p?) are oo large in these
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cases to admit the existence of a non-principal character constant on
them. Moreover R,(3) = {2}, R,(3%) = {2} and B,(7) = {2} and in view
of 2% = 1 (mod 7) we see that for odd N o3 is WUD (mod N) except when
N is divisible by 7. For N even (6) gives 2 < p < 41 and after discarding
all primes p > 5, » = 2 (;mod 3) by the same reason as above we are left
with the set {2, 3,7, 13,19, 31, 37}, Here B,(3) = {1} and a dull check
shows that in no ofher case y, can be non-principal. This establishes our
assertion about ¢;. ®m
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