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Part III. BP-sets
by

John P. Burgess™* (Princeton, N. J.)
and
Richard A. Lockhart** (Burnaby, B. C)

Abstract. The Borel programmable or BP-sets recently introduced by Blackwell [29] are
shown to lie strictly the C-sets and the R-sets. Iteration of the operation that takes one from the
Borel sets to the BP-sets produces a family which is shown to coincide with the R-sets.

Chapter F. Set-theoretic programming

§ 13. Generalities.

(a) Intreductory. In a paper [29] recent in date but classical in spirit, D. Blackwell
has introduced a new family of Lebesgue measurable sets of reals, obtained by
enlarging the Borel family through a process he calls programming. This new family,
the Borel-programmable or BP-sets, can itself be further enlarged by iterating the
programming process, to produce the programmable or P-sets. In a review [34],
B. V. Rao & A. Maitra raise “a whole spectrum” of problems about BP- and P-sets,
the most pressing being to determine the relationship between these two new families
and the older families of C-sets and R-sets studied in Parts I and II of this series.
Some partial results on this last problem have been presented in [32]. As the Abstract
indicates, we now possess a complete solution:

C-sets & BP-sets & R-sets = P-sets .

The proof will be presented below, along with some conjectures and suggestions for
further research.
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(b) Definitions. Let I be the set w of natural numbers or some other denumerable
set, and give the power set 2(I) its usual topology, making it a standard space
(uncountable Polish space). A Borel function e from any space 4 to 2(I) will be
called an encoder. A program is a function p: #(I) — #(I) such that x<p(x) for
all x. For ordinal « we define the ath iterate p, by:

Pox) =%, pp(®) =p(pp(x)),  pul) =ﬁL<J Py(x) at limits .

Cardinality considerations reveal that at & — first uncountable ordinal — we reach
the ultimate iterate of p. Indeed, for each particular x there is some « <@ depending
on x such that py(x) = p,(x) for all >« A Borel function d from 2(I) to any
space ¥ will be called a decoder. For encoder e, program p, and decoder d, # (e, p, d)
denotes the composition dpge.

Let s =2 (I) be a uniform family, i.e. a o-field containing the Borel sets and
stable under inverse image by #-measurable functions. A function f: & — & will
be called 3#-programmable iff it is of form (e, p, d) where the program p is
H -measurable. A set ASZ will be called #-programmable iff its characteristic
function is, or equivalently iff its revised characteristic function Qa: & = 2() is,
where ¢4(x) = I if xe4 and = & otherwise. When % = 2(I) we can iterate:

HP° = o,
HPFY = (#PP)-programmable sets,
H'P* = smallest uniform family containing ) #P* at limits a<@Q,
<a
HP? = ) P~ ’
a<Q
(¢) below implies that these form an increasing sequence of uniform families,
culminating in a family that cannot be further enlarged by programming; also, that
the notion of #P*set can be transferred from spaces of form #(I) to arbitrary

standard spaces, making use of Borel isomorphisms. When 3¢ = Borel we write
BP-sets = BP, P-sets = BP%,

(0) UnrorRMITY LEMMA. Let 3# be a uniform Jamily of subsets of P(I),
A = S -programmable sets. Then A is a uniform family containing #, and A" -mea-
surable functions = H-programmable functions.

Proof. For s# = Borel the main contentions of (c) (expressed in slightly dif-
ferent terminology) are elegantly proved in [29]; as the arguments there are in fact
valid for general #, they need not be repeated here. B

Beyond the Uniformity Lemma, [29] contains two main results: (i) that the
BP-sets are Lebesgue measurable (and measurable w.r.t. many other measures);

(i) that the BP-sets (are stable under operation &/ and hence) contain the C-sets.
Both admit of considerable generalization.
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For any o-field & of subsets of 2(I), let #* denote the set of Fe % such that

* every subset of F belongs to #. E.g. if & is the family of Lebesgue measurable sets,

F* = sets of Lebesgue measure zero; while if & is the family of alrhost open (Baire
property) sets, #* = meager (1st category) sets: & will be called a regularity class
iff every uncountable family of pairwise disjoint elements of % contains an el-
ement of #*. Both examples have this property. (d) below can be applied to the family
of universally measurable sets (those measurable w.r.t. .any o-finite complete
measure) and to the family of universally almost open (those 4 such that f~[A] is
almost open for all Borel f) to show that these families cannot be enlarged by pro-
gramming.

(d) REGULARITY LEMMA ([32,15.1]). Let & be a regularity class, 3 a uniform
Sfamily, of subsets of P(I). If H<F, then #H-programmable sets =F as well.
Proof. Let 4 be an # -programmable set, o, = # (e, p, d) with p #-measur-
able. It is readily seen that & = {B: e™*[B] e #} is a regularity class containing #,
and that for a<Q, D, = {x: d(p,(x)) = I} and p = {x: 1€ p,s,(X)—p,(x)} belong
to s and hence to &. Now since for any o, A can be written as e~ *[D, U N] where
Ne U Pl viz. N = {x: d(pa(x)) = I &pa(x) # pu()}, it suffices to show that for
iel

some o each P! belongs to &*. Well, if this were not the case, for each o there would
be some i for which PL ¢ £*. But then some one i would have to work for uncountably
many «. Since the P for the same i and different « are disjoint, this contradicts the
fact that & is a regularity class. B

Recall that Q(J) = finite sequences from I, Q*(I) = finite sequences of even
length, #s = code number of s for se Q(w). The notions of H# -operation and
of R-transform were introduced in §§ 2(c), 9(b) respectively. The following implies
RFF1c BPP*1 for all B< 2 and R-setsSP-sets:

(e) TRANSFORM LEMMA ([32, V 2.11). Let # be a uniform family of subsets
of #(I), ® an 3 -operation, H = H -programmable sets, ¥ = RD. Then ¥ is
a A -operation. )

Proof. We may assume that J =  and that ¢ acts on w-indexed systems.
Let B be the truth table of . A coded version of the truth table of R® is:

B = {ycw: 3Sc{se Q(w): #sey}()eS&VieS{i: idieS}eBl}.
Translated, the inductive analysis of § 9(b) shows gp = #(e,p, d) for:

‘ e(x) = o—x,
_Jo if #() ¢z
@) = {@ otherwise.
p() =y {#: {i: #0d)éy} ¢ B}

(f) Preview. In the next section we show that C-sets g BP-sets. The proof gen-
eralizes to show: (i) #° "1 ¢ BPP*1 for all f<Q; (ii) for no operation I' is the family
of BP-sets the smallest uniform family stable under I'.
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In the following section we show that BP-sets & % by showing them bi-primitive
R-sets (and one could improve this to a strict inclusion). This generalizes to show
BPP+io P+ for all f<Q. Hence BP* = %" at limits and P-sets = R-sets. This
also shows that the BP* are all distinct, since the #* are known to be; a fact which
can also be shown directly by a universal set argument (as<n [32, III)).

§ 14. First inclusion. We wish to prove that for any standard space &, the
C-sets are properly included in the BP-sets. We begin by adapting the construction
of § 5(b) to produce an Z*-set universal for the C-subsets of Z. Let B & x ®
be an open set universal for the open subsets of &. Let D consist of all triples
(*,¢,T) e X x0”xP(0*Q(w))) such that T'is a wellfounded Q(w)-tree and:

(@) 3 ea®VnpeoVijew®Imyew A¢, Yu, Ve Amy ...
Vklo = (%olno, Lolmo, ...)|2k terminal for T — (x, n(#t0, £)) € B]
where we assume some suitable assignment of code numbers #o to ¢ € Q*(Q(w))
has been introduced. The arguments of § 5(b) show D is universal for the C-sets
(and itself an %2%-set); we wish to show it is a BP-set. To that end we restate the
kind of inductive analysis of the set of wellfounded trees and of D used in § 5(b) in
slightly different language. For any Q(w)-tree T and any Wg 0*(Q(w)) define:
To = {0: o terminal for T}, Wy =T,n W,
Tﬂ+1 = Tﬂ v {G’: VS, tU@S@tGTp},
Wiey = Wy U {o: BV AmodEn@llm e W,},
To=UT,, W,=U W, at limits.
B<a f<a

We then have for W = {o: (x, n(%0,&) e B}:

(i) T is wellfounded « ( )eTy,
(1) above holds « ( )& Wy,

T,n WocW,.
In view of (ii), to achieve our goal it will suffice to produce a Borel encoder e,
program p, and decoder d such that f = #(e, p, d) satisfies:
(i) V wellfounded tree TV W[/ (T, W) = (T, W,) for the least o with ( ) e T,].
To this end we consider the functions used in passing from 8 to f+1:
g(T)=Tu{o: Vs, 1t cOsPte T},
W) = Wu{c: 3EYnYaAm o@¢ln+lime w}.

The former-is Borel, the latter only C-measurable. But as we have already seen that
C-measurable functions are BP, we may set / = F (e, p',d’) where p’ is a Borel
function #(w) — 2(w).
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We now let I = 0*(Q(w)) and let J be the disjoint union of:

two copies of I called the primary registers,

a copy of w for each oel, called the o-auxiliary register,

Thus any y = J consists of several parts which we call the entries of y in the various
registers. T'(y), W(y) will denote the entries in the primary registers. R(s, y) will
depote entry in the ¢-auxiliary register. Define the Borel encoder e by:

T, W) =To, W@, W) =W,, R(s,e, W) =@.
Define the 901"‘31 decoder d simply by:
d(y) = (T(»), ().
Call y acceptable if () ¢ T(y) and g(T(3))~T(y) # @; for acceptable y let o(y)
be the clement ¢ of the latter set for which #¢ is least.

The Borel program p: #(J) — 2(J) will be defined by cases. In each case,
for z = p(y), any register of z not explicitly mentioned agrees with y:

Case y unacceptable: Let z = y.

Case y acceptable, R(o(y),y) = @: Let R(o(y),2) = (W)

Case y acceptable, R(0(3), ) # @, p'(R(s(3), ») # R(0(»), y):

Let R(5(3), 2) = p'(R(s(2). ).

Case y acceptable, R(a(»),) # B, p'(R(c(3),)) = R(o'(y), ):

Let T(z) = g(T(y)), W(z) = d'(R(e(), »)).

If T is a wellfounded tree, what is the effect of iterated application of p to
e(T, W)? Well, we pass through a sequence of y, < J with T'( Vo) =Ty, W(p,) = W,.
b cannot take us directly from y, to y4..q, but it takes us there through a sequence
of zj during which the computations needed to compute W4y from W)y are carried
out in an auxiliary register. So long as ( ) ¢ T, Tp41—Tp will be nonempty and an
appropriate blank auxiliary register will be available for these computations. When
we reach an o with ( ) € T,,, p halts and d prints out (T, W,). Thus (iii) is satisfied,
completing the construction. B

§ 15. Second inclusion, We wish to prove that for any standard space the BP-sets
are included among what we called in § 9(b) the bi-primitive R-sets, and hence are
properly included in %2, The problem quickly reduces to showing that for any Borel
program p: #(w) - #(w) the inverse image (py)~*[U] is a coprimitive R-set
for all U in some basis % for 2 (w).

As U we choose the family of all U(s) = {ySw: Vi <length s (ke y < s (k) = D}
for se Q({0, I}, For Ve let Y(V) = {xcw: p(x) eV}, Z() = Y(¥) n
N {x: p(x) = x}. As these sets are Borel, we can certainly represent them in the form:
0 re¥YW) « Jayew Vbyewda, Yby .. Vnly e ¥(V, (aq, by, ..)|20)] ,

) zeZ(¥) « Aay Voo Ta, Vb, ... Yz e Z(V, (@, by, .)|2n)]

where the ¥(V,s) and Z(V,s) come from %.
Using (i) and (ii) we will associate to each Ue % and xSw a game G, and prove
that PRO has a winning strategy in this game iff po(x) & U. Since G will have, modulo
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some tedious but routine coding, the form of the game associated with x being a mem-
ber of I'(W) where I' is the operation co-(R(co-%)) and each W(o)e % u {0},
this will show that. (pg) t[U] is indead a co-primitive set.

(2) The auxiliary game. G is best thought of as consisting of a potentially infinite
sequence of subgames, each of length w+1. At the end of each subgame, PRO has
an opportunity to win the whole game G. If he does, the game ends at that point.
If not, the players go on to the next subgame. If CON manages to get through all
the subgames without PRO winning, this counts as a win for her.

0-subgame: PRO and CON alternately choose cf, dp € w for k € w; recalling
that m(i,j) = 2Qj+1)~1, we let af) = clup, bi) = doy . CON then chooses
nyew, and we let W, be the intersection of all Z(U, (4, b, a?l,bf’l..A)IZj) for
n(i,j)<ny. If x € W, PRO wins at this point; otherwise, the players proceed to the
next subgame.

m-subgame, m>0: PRO and CON alternately choose cf,dy giving rise to
aj;, bi;. CON then chooses n,. Let W, be the intersection of all

Y(VVm—la (a;r(t)a ?E)a aﬂv ;'i: )]2])
for n(i,j)y<n,. If x € W,,, PRO wins at this point; otherwise the players proceed
to the next subgame.

(b) Who wins?

CLaM. If po(x) € U, PRO has a winning strategy in G.

Proof. Assuming po(x) € U, let PRO play as follows in G: Let £(0) be the least «
such that p,(x) = po(x). PRO has a winning strategy ¢, for (i) with z = P50y,
V = U. Let PRO choose his cf in the 0-subgame so that for each | the sequence
(dio; bio, afy, by, ..) constitutes a play agreeing with po. Then no matter what r,
CON chooses, we will have pg)(x) € W,. If it happens that 8 (0) = 0, this means
that PRO wins already at the end of the 0-subgame.

Suppose the players have reached the beginning of the m-subgame, m>0,
without PRO having won yet, and that we have Ppim-1)(X) € W,,—;. Then for some
B(m)<B(m—1) we have pyomy.1(x) € W,,_,. This means that PRO has a winning
strategy ¢, for (i) with y = py(x), ¥ = W,,_,. Let PRO choose his ¢ in the
m-subgame so that for each i, (afy, bjy, a7, B, ...) agrees with @ Then no matter
what n,, CON chooses, pym) € W,,. Since when PRO plays this way the decreasing
sequence S(0)>pB(1)>B(2)>... must soon reach an m with f(m) = 0and x e W,,
the strategy just described is a winning one for PRO as recuired. B

Cramt. If po(x) ¢ U, CON has a winning strategy in G.

Proof. Assuming po(x) ¢ U, let CON play as follows in G: Let & be least such
that p(x) = po(x), and let (8(i): i€ w) enumerate the ordinals <a, with B(0) = a.
It is immediately seen that Ppiy(x) ¢ Z(U) for all i. Hence CON has awinning strat-
egy Y for (ii) with z = py(x), ¥ = U. Let CON choose her d¢ in the 0-subgame
so that for each i, (aj, b, afy, bY, ...) agrees with 2. We then have:

*) Vi3j pay(x) ¢ Z(U(ay, bYy, oy, b, LD127).
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Using this fact we define inductively certain i(m), j(m), X (m):
i(0) =0,
J(m) = least j such that (x) holds for i = i(m) and j,
X(m) ’“'",Qm)‘;u' nZ(U, (”?(m).m b?(m),O: llﬁm),l, l??(,,.m s )27 (m))),

i(m-+1) = the i such that (i) = sup {B: py(x) e X(m)) if this set is nonempty;
i(m-1) undefined if this set is empty.

Remark. IC 8 is a limit and X e %, then whether Pg(x) € X or not depends on
the answer to the question, “Is k € py(x)?” for finitely many k. But for each of these k
there is a 6,<f such that for all y with §,<y<f the answer to the question, “Is
ke py(x)? is the same. If § is the sup of these &y, then for all y with s<y<p the
answer to the question whether p,(x) € X or not is the same.

In view of the foregoing remark, if i(m--1) is defined, then Ppam+1p(x) € X(m).
In the decreasing sequence f(#(0))> B(i(1))> f(#(2))>... we must soon reach an m, for
which i(n1,) is undefined. If CON chooses 1y so that n(i(m), j(m))<n, for all m<m,
then we will have py(x) ¢ W, for all f. If in the subsequent subgames CON plays
the same way, but with ¥ in place of Z, we will have py(x) ¢ W,, for all f and a fortiori
x ¢ W,. Thus the strategy described is a winning one for CON as required. H

Chapter G, Marginalia

§ 16. Regularity. The measurability of BP-sets follows from their inclusion in
the R-scts, and more cconomically from the lemma of § 13(d). S. Shreve [35] has
asked whether his Measure Duality Theorem (cf. § 6(b)) holds for BP-sets. We will
sketch an affirmative answer, omitting purely measure-theoretic details and con-
centrating on programming aspects of the problem.

We recall from § 6 that for any standard space 4 the sct of complete regular
probability measures on & can be made into a standard space ., and that if
[ %~ % is Borel, so is f* M - M defined by f*@)(U) = u(f~{U)). The
problem of proviug the Measure Duality Theorem for BP-sets quickly reduces (by
a purely analytic argument) to showing for & = & (w) that if p: #(0) - P (w) is
a Borel program, then (pg)* is BP,

Two observations about this situation will be useful. First, note that for a finite
{0, 1}-sequence ending in a1, @1, whenever ySw belongs to the basic clopen set
U(s@1), then by the definition of program, p(y)e U(s) implies p(y) € U(s®1).
It follows that if p*(u)(U (1)) = p(U(1)) for all 1< s, then p* () (U (s@ D)z p(Us@D).
Second, writing S for the characteristic function of (p,)”*[U(s)], note that by the
Remark of the preceding section, for a limit a, x5 = lim x3. Since (p)*(1) = (U(s)

pra
= [ x3dy, it follows by Lebesgue’s Theorem that (p)*(e) (U(s)) = ’1,11’11 (ep*((U)).
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Now the topology on the space . of measures on & (w) is such that we may
safely identify pe.# with its signature, the element of [0, 1]° whose ith term is
p(Us@1)) where #s = i. Introducing an enumeration (r;: € @) of the rationals
in [0, 1), we may identify a real ¢ in [0, 1] with the set of i for which r;<g. These
identifications and the two foregoing observations reduce the original problem of
proving the Measure Duality Theorem for BP-sets to that of proving Theorem (a)
below.

Define the lexicographic and termwise partial orders on ({ﬁ‘ (w))* by sctting,
for x = (x(}): iew), y = (y(i): iew):

2oy © Vi(x@)Sy0) - J<ixO er@)
xSy > Yi(x()Sp0).
Given x* = (x(i): 1€ w) for B<e, define the limes superior by:
lim sup »* = (x(i): few)
f<a

where

kex() & Vy<ady<f<akex’().
Call p: (P (w))” — (P ()" a pseudo-program iff x< ., p(x) for all x. Define iterates
for pseudo-programs as for programs, at limits setting:

Px) = lim sup py(x) .
B<w

(a) PSEUDO-PROGRAMMING THEOREM. If p is a Borel pscudo-program, then
the ultimate iterate pg is BP.

As a start on the proof, let Y; be the set of y = (y(/): j & (w) € (#(w))” such
that y(j} is a singleton or @ for j</, and is @ for j>i. Let Yy(x) = {ye ¥}: V< grm¥h
Let ¥ = (JY;. In this notation we state:

i

(b) COMBINATORIAL LEMMA. If p is a pseudo-program and Sfor some «, x, i it
is true that i is least such that p,.,(x)(i) # p,(x)(i), then there exists an element of
H{(pys1(x)) not belonging to H{pyx)) for any f<e.

Proof of Lemma. By induction on i, the case i = 0 being trivial. Suppose
true for j<i, and p, a, x being as in the statenient of the lemma, fix n & P () (0)~
—Px)(i). Let B be least such that for all j<i, Pax) () = polx)(f) (= Dot 1(¥)().
We comnsider the case § a limit (treatment of the opposite case being even casier).
Let y*<f and j*<i be such that:

@ Vi<*¥y*<y<p py(x)(j) = pfx) (),
(i) T <BVY <y<B py(x) (%) = py(x) ().
Since py(x) = lirrvl<s,}1pp,,(x) there is a §*< B such that for all TRy <f, 1 py(x).

Apply (ii) above to max(y*, %) to obtain a y with Y 0¥ <y<f and pyoy(x) (Y
# Py(x)(i*). By (i), the lemma applies to this y and J*toyield a certain z & H, e Dy 1(x)).
Now let () = z()) for j<i, y(i) = {n}, y(j) = & for j>i. Then y & Hy(p,((¥))
is readily verified to satisfy the condition of the lemma, B
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Proof of Theorem modulo Lemma. Given our Borel pseudo-program p,
we need to find Borel encoder e, program ¢, and decoder d with #(e, q,d) = pq.
To this end let J be the union of:

one copy of H?, called the order register,

a copy of @?* for each ye H, called the y-auxiliary register,
For K< J, the entry of K in the order register is a binary relation R(K) whose field
is a subset D(K) of H. We call K acceptable iff R(X) is a linear order on D(K),
and the y-auxiliary register is blank for y ¢ D(X). For acceptable K and y e D(K),
let P(K,p) e (@ ()" be the z with 2(i) = {j: (i, J) & y-auxiliary register of K.
Let y; be the degencrate sequence, yo(i) = & for all 7.

We define Borel encoder ¢: (#(w))® — 2 (J) and decoder d: #(J) — (P ()
by:

Die(x)) = {yo}, R("'(x)) = {(¥5, ¥0)},
P(c'(x), yo) = x, p-auxiliary register of e(x) blank for y s Yo»

A = N U P&,y

yaIXK) (,p') & R(K)
(= P(K, ) if there is an R(K)-largest y e D(K)).

It remains to define a Borel program q: #(J) ~ 2(J) satisfying d(g(e (1)) = p.(x)
for all o including €.

Intuitively, the idea is that iterated application of ¢ to e(x) results in Ppa1(X)
for larger and lurger values of f being recorded in various auxiliary registers, The
order register keeps track of the sequence in which the auxiliary registers were
filled. The Combinatorial Lemma guarantees the existence of blank auxiliary registers
for recording purposcs.

Formally, let ¢(K) == K unless K is acceptable, p(d(K)) # d(K), and there
existajew and a y e Hp(d(K))) = D(K). In that case, take the least j and first y
(in some wellordering of /) and let ¢(K) = L where:

D(L) = D(K) u {p},
1"(14, y) w ((/(I‘T‘)) )

Alittle thought shows that this formal definition docs what it should according to the
informal deseription above, B

Of the results established for Csets in Chapter C we have now seen that those
pertaining to measure carry over to BP-sets (and indeed, they carry over to all BP%).
What of the material on category and selections? Here we have only partial results,
with many questions still open, We cite:

(¢) Conacrrurs, The “Hard® Selection Theorem of § 8(F) holds for BP-sets.

RL) = R(K) v {(y, 1)1 ¥ e DY},
y'-auxiliary registers of K and L agree for p' 5 y.

§ 17. Effectivity, Logicians will have noticed that set-theoretic programming
is merely the topological or “boldface” side of a subject whose recursion-theoretic
or “lightface” side is the theory of (nonmonotone) inductive definitions surveyed
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in [28]. In view of the connection we have established between programming and the
R-transform it should be noted that there is an effective theory of the latter as well,
developed by P. Hinman [31]. No doubt a thorough-going application of the methods
and results of definability theory to the class of sets we have been considering
(R-sets = (Gj, N F,;)-game sets = P-sets) would yield much information. Here
we will offer but a sample of what can be expected.

We restrict our attention to Z(w). For a ficld # of subsets of that space, we
define a map f from the space to itself to be 52 -measurable iff the inverse image of
any clopen set belongs to . For o-fields this agrees with the definition we have
been using throughout. We let #”’ be the class of sets whose (revised) characteristic
functions are of form dpge for d and e o -measurable and p an #-measurable
program. Define fields #* by: #° = clopen sets, #'*! = (Fy, #* = () #!

f<a
at limits.

(a) PROPOSITION. (i) F! = field generated by open sets,

(i) analytic sets=F>2,

(ili) primitive R-sets< %>,

(iv) #? = P-sets = R-sets.

(b) PROPOSITION. #2Co-field generated by analytic sets.

Proof. (a) will be left as an exercise. For (b) we make use of a result attributed
to Gandy in [28], plus a result from Miller’s thesis [33].

Let p be an #'-measurable program. By (i) of (a), for any n, p~* [{xcw: nex}]
is an F, set. Translating from the language of programming to the language of
inductive definability, p is a 55 boldface inductive definition. Let it be 9 lightface
in parameter r=w. Gandy’s result is:

closure ordinal of Z5-in-¢ inductive definitions

= closure ordinal of I19-in-¢ inductive definitions

= least ordinal not recursive in .

Translating back into the language of programming, we have po(x) = pj(x)
where A(x) = least ordinal not recursive in ¢ and x.

Let L be a vocabulary containing the binary predicate & of the language of set
theory, two constants 7 and X, and a binary predicate P, For our fixed parameter ¢
and any x= o, let ¢(x) be the sentence of the infinitary logic L(w,, @) which is the
conjunction of (i) the Kripke-Platek axioms for admissible sets, (ii) the statement
that “the natural numbers are standard”, (ii) complete descriptions of ¢ and x
(i.e. all statements to the effect that ne T for n e 4, n ¢ 7 for n¢ ¢, and similarly for x),
(iv) the statement that P (o, #) holds iff « is an ordinal and n is a natural number
and # € p,(x) (written out using the name % for x, the name ¥ for ¢, and the X3-in-¢
definition of p). Miller’s result is a selection. theorem implying:

there exists a Borel function assigning‘ each xS a binary relation R(x) on o
such that (@, R(x)) is 2 model of ¢ (x).

Now it is a well-known fact (“Ville’s Lemma”) that the wellfounded part of
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a model of the Kripke-Platek axioms is again a model of those axioms; hence the
wellfounded part of (w, R(x)) is a model of o(x). Since {(R,k): k & wellfounded
part of (@, R)} is a co-analytic subset of #(0?)xw, we see:
there exists a function measurable w.r.t. the o-field generated by analytic sets,
assigning cach x&w a binary relation Q(x) on @ such that (w, 0 (x)) is a well-
founded model of ¢ (x).
Now when, a welllounded model of ¢(x) is replaced by the isomorphic “admissible
set”, the latter contains all ordinals recursive in ¢ and x. Hence we have n & pj(x)

= | pa) il (o, Q(x)) is a model of the statement that JoP(x, n). Since the class
@< A(x) .
of models of the latter is a Borel set, we see putting everything together that the

inverse image under p of {x: nex} is the inverse image under Q of a Borel set,
completing the proof. H

The following suggests itself, but lacking sufficient knowledge of inductive
definability theory the authors have been unable to settle it:

(¢) ConvrcTurg, 3 Ssmallest o-field stable under operation of and containing
the primitive R-sels. :

§18. A glimpse beyond. We consider what looks at first glance like a slight
modification of the pseudo-programming of §16. Let & = (2 (w))®®. For x,ye &
define:

X > Vs(T(x)ey(s) - 3t As(xOsr®)).

Define a meta-program to be a p: & — & satisfying x<ep(x) for all x. Define
iterates of p by treating limits as follows:

N Lp) pp0)(s) if
<g yefi<a

PoX)(8) = yayla Vi, Bt <ts &t # 5 &y<f<a— pylt) = py(t))
@ otherwise.

A function is Borel-meta-programmable (BMP) iff it is of form dpge for some B.orel' e
and d and some Borel meta-program p. A set is BMP iff its characteristic function is.
We state without proof: .

(1) PrOPOSITION, The class of BMP sets is stable under (plain) programming.

(b) PROPOSITION. R-sets = P-sets G BMP-sets.

We guess:

(6} CONTECTURE. BMP-sets G (Fops N Gaas)-game sets.

We have considercd the following classes, in order of size: (i) the C-sets of
Selivanovskii; (ii) the Borel-programmable or BP-sets of Blftckwellg (lif) th? R-sets
of Kolmogorov; (iv) the Borel-game sets of Vaught, w‘hlch1 (by Martin’s Borel
Determinateness Theorem) are included in: (v) the absolutcly.Az sets f)f Solovay [30].
It is worth remarking that if I' is an absolutely A} operation, so is RI'. Also (as
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D. Normann has pointed out to one of the anthors) it is not hard to see that the
absolutely A3 sets cannot be enlarged by programming; the same is true of meta-
programming.

Postscript

All of the results presented above are illuminated, and some were anticipated, by developments
in effective descriptive set theory. Under this heading should be listed the work of: Aczel on so-
called next-quantifiers, Cenzer on monotone vs. nonmonotone Z;-induction, Harrington & Kechris
on’'monotone vs. nonmonotone 4; -induction, Harrington on the R-transform and the first strongly
admissible or nonproiectible ordinal, John on winning strategies for Xj-games, Moschovakis on
the preservation of the prewellordering and other properties by game-quantifiers, and Solovay
on Z}-induction and winning strategies for £;-games. Unfortunately, most of the most relevant
material was unpublished and unavailable to us while we were engaged in the work reported above.
Now some of it has at last appeared in the long-awaited volume: Y. N. Moschovakis, Descriptive
Set Theory, North Holland, Amsterdam 1980. See especially parts 6E and 7C.
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Sur les classes de Baire des fonctions
de deux variables

par

Zbigniew Grande (Bydgoszcz)

Résumé. Dans cet article on introduit la définition de certaines propriétés d’une famille de
fonctions d’une variable réelle qui sont les propriétés bien connues d’une fonction (“&tre mesu-

rable”, “étre de classe 1 de. Baire”, “étre ponctuellement discontinue” et “avoir la propriété de

Baire”) de la méme fagon pour toute fonction de la famille considérée et on démontre quelques
théorémes sur les fonctions de deux variables dont les sections par rapport & I'une de deux variables
ont 'une des propriétés considérées.

Dans cet article j’introduis la définition suivante:

DirmirionN 1. Soient R I'espace des nombres réels et 7' un ensemble d’indices.
On dit que Ja famille de fonctions f,: R~ R (teT) a la propriété:

(A,) lorsque, quels que soient le nombre >0 et I'ensemble mesurable (au sens
de Lebesgue) 4 de mesure positive, il existe un ensemble mesurable B< A tel que
m(B)>0 (m désigne la mesure de Lebesgue dans R) et oscf,<¢ pour tout t e T;

B

(A,) lorsqu’il existe pour tout ensemble fermé, non vide AR un point x, € 4
tel que les fonctions partielles f,/4 (t€ T) sont équicontinues au point x,; c’est-
a-dire qu’il existe pour tout nombre £>0 un nombre §>0 tel que | £,(x)—f,(x)] <&
pour tout x € 4 N (xg—0, xo+6) et pour tout e T; .

(A3) lorsque, quel que soit I'intervalle ouvert J& R, il existe un point Xg€lJ
auquel les fonctions f; (t € T) sont équicontinues; et

(A4 lorsque, quels que soient le nombre 6>0 et ensemble A=R ayant la
propriété de Baire et étant de deuxidme catégorie, il existe un ensemble B A4 de
deuxiéme catégoric, ayant la propriété de Baire et tel que oscf,< e pour tout ¢ e T.

B

Je démontre ensuite quelques théorémes sur les fonctions de deux variables
dont les sections par rapport & I'une de deux variables ont I'une des propriétés
(A (¢ = 1,2, ..., 4). En particulier, je donne dans cet article la résolution négative
du probléme suivant:

PropLiME (Probléme 2, [1]). Existe-t-il une fonction f: Xx ¥ — R qui n’est
Ppas de premiére classe de Baire et dont les coupes f” sont de premidre classe de Baire
et les coupes £, sont semi-équicontinues supérieurement? (X et ¥ étant ici des espaces
métriques, séparables et complets).
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