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The number of metrizable spaces
by

R. E. Hodel (Durham, N, C)

Abstract. The theorems in this paper solve problems of the following sort. Given infinite
cardinals m and » with m <n<m® and a topological property P, find the number of topologically
distinct metrizable spaces having weight s, cardinality n, and property P, The properties considered
include connectedness, local compactness, and Cech completeness.

1. Introduction. Let X be an infinite metrizable space of weight . It is well
known that m and | X| satisfy the inequality m<|X|<m®. This suggests the following
problem. Given infinite cardinals m and » with m<r<m® find the number of
topologically distinct metrizable spaces having weight m and cardinality m. The
main result in this paper, Theorem 4.11 in § 4, states that the number of such spaces
is 2", Lozier and Marty [LM] have proved that for each infinite cardinal m the number
of topologically distinct continua of weight m is 2™ (A continuum is a compact
connected Hausdorfl space; it need not be metrizable.) We obtain analogues of this
result. For example, we show that for each infinite cardinal s the number of topo-
logically distinct connected metrizable spaces of weight m is 2™ and the number of
topologically distinct connected completely metrizable spaces of weight m is 2™,
(See § 4 and § 5.) In § 6 we prove that for each infinite cardinal m the number of
topologically distinct locally compact locally countable metrizable spaces of car-
dinality m is - v(m), where v(m) is the number of cardinals <m. This result can
be regarded as an extension to higher cardinals of the classical result due to Mazur-

kiewicz and Sierpinski [MS] that the number of topologically distinct compact

countable metrizable spaces is ;. In § 7 we show that the number of topologically
distinct locally compact metrizable spaces of cardinality m is w,-v(m) if m<2®
and v(m)** if mz=2% Finally in § 8 we show that for each m>2° the number of
topologically distinct connected paracompact HausdorfI spaces of cardinality m is
the maximum possible, namely 22",

2. Notation, definitions, and known results. We adopt the following set-theoretic
notation: k and » denote natural numbers; e is the first infinite ordinal and also the
set of natural numbers; w, is the first uncountable ordinal; m, n, and p denote car-
dinal numbers and a, f, and y denote ordinal numbers; |E]| is the cardinality of the
set £; the set of real numbers is denoted by R and R" denotes Euclidean n-space.
Regarding separation axioms, we assume that regular, paracompact, lc\cally com-
pact, and compact spaces are always Hausdorff.
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Let m=1, let X be a connected space with more than one point, let p e X.
Then p is a cut point of X of order m if X—{p} has m components. If p is a cut point
of X of order m>1, then p is called a cut point of X; otherwise p is a noncut point
of X, It is clear that it p is a cut point of X of order m, and /4 is a homeomorphism
from X onto Y, then A(p) is a cut point of ¥ of order m.

We shall make frequent use of the sum ?9 X, of a collection {X;: s&S} of

s
topological spaces. The reader is referred to pp. 103~106 in [E] for the definition
and a list of basic properties of @ X,. It is especially useful to remember that if
seS

{X,: se S} is a pairwise djsjoint collection of open sets which covers a topological
space X, then X = @ X,. We adopt the convention that in constructing @ X,
seS saS
one tacitly assumes that the underlying sets for the spaces {X,: se S} are pairwise
disjoint. The discrete space of cardinality ne, denoted D, is the sum of m one-point
spaces. Alexandroff [A] has proved that if X is a locally separable metrizable space,
then X = @ X,, where each X; is separable. (See p. 359 in [E].) It should be noted
seS
@ X for all azl. (Here X® denotes the

that if X = @ X,, then X® =
se§ seS
derived set of X of order a.)

We now discuss a technique for constructing a new connected metrizable space
from a given collection of connected metrizable spaces. (This construction general-
izes the well known hedgehog with m spines.) Let {(X,, 7): s & S} bea collection of
connected metrizable spaces, each having more than one point. We tacitly assume
that {X,: se S} is a pairwise disjoint collection. For each s e S let d; be a metric
on X, compatible with 7, let p,e X, and let ¥, = X,—{p,}. Let p(S) be a point
not in {J X, and let X(S)= (U Y)u {p(S)}. Definc d: X(S)xX(S)— R

seS

seS
as follows: if x,ye ¥, d(x,y) =d{(x,y); if xe¥, ye¥, and ss1
d(x,y) = dyx, p)+ddp, ¥); if xe ¥, dx, p(S)) = d(p($), x) = d(x, p);
d(p(S), p(S)) = 0. One can show that d is a metric on X(S), that ¥, is an open
subset of X(S), and that the function from Xj into X(S) which is the identity on ¥,
and takes p; to p(S) is a homeomorphism from X onto the subspace Y, u {p(S)}
of X(S). We call X(S) the star-space determined by {(X,, d): s& S} and {p,: s& 8},
and p(S) is called the adjunction point of X(S). It should be emphasized that if d,
is replaced by an equivalent metric d; for infinitely many se S, then the two star
spaces obtained meed not be homeomorphic. However, in most applications of
the star-space construction this is unimportant; in such cases we will omit all mention
of the metrics d; and refer to X(S) as a star-space determined by {X;: se §} and
{ps: 58}

For future reference we list some basic properties of the star-space construce
tion. (1) The space X(S) is connected. (2) X(S)—{p(S)} = @ Y,. () If[S] = m=1

seS

and each p, is a noncut point of X, then p(S) is a cut point of X(S) of order m.
(4) Let m>1 and let x € Y, for some s & S. Then x is a cut point of X(S) of order m
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if and only if x is a cut point of X, of order m. (5) If d; is a complete metric on X,
for all s& S, then the star-space determined by {(X,, d): se § }and {p;: s€S}is
a complete metric space. (Thus, if each X, is compact then every star-space determined
by {X.:s5eS} and {p,: seS}is a complete metric space.)

Let |S] = m>w and for se S let X, = [0,1]x{s} and p, = (0, 5). Let d, be
the “natural” metric on X, obtained by using the Euclidean metric on [0, 1]. The
star-space determined by {(X,, d,): se S} and {p,: s€ S} is called the hedgehog
with m spines and is denoted J(m). (See p. 314 in [E] or p. 95 in [N].) Note that
J(m) is a pathwise connected complete metric space of weight m and cardinality m-2°,

3. Constructing topologically distinct spaces. In this section we give several
propositions which will be used in §§ 4 and 5 when constructing large collections of
topologically distinct spaces. Most of these results belong to the folklore or gener-
alize well known arguments. For example, Proposition 3.3 generalizes the argument
given on p. 263 in [K] that the number of topologically distinct subsets of separable
metrizable space of cardinality 2% is 22,

Prorosimion 3.1. Let {X,: se 8} be a collection of topologically distinct con-
nected metrizable spaces, each having more than one point, and let Ps be a noncut point
of X, for cach s e 8. Let Sy, 8,8, and fork = 1,2 let X (Sy) be a star-space deter-
mined by {X;: se S} and {p,: se Si}. If h is a homeomorphism from X (S,) onto
X(S,) which takes the adjunction point p(S,) of X(Sy) to the adjunction point p(S,)
of X(S,), then Sy = S,.

PROPOSITION 3.2. Let A, and A, be two spaces, each dense in itself, let By
and By be scattered spaces. If A, @B, is homeomorphic to A,@®B,, then AxA,
and By~ B,.

PRrOPOSITION 3.3. Let X be a Ty space of weight m, let s be a collection of sub-
sets of X such that |s#|>2"™. Then there is a subcollection of , of f such that | & ol = ||
and no two distinct elements of s, are homeomorphic.

Proof. First note that |X|<2"™ and every subset of X has a dense subset of
cardinality at most m. Define an equivalence relation ~ on «f as follows: A~B if
and only if A is homcomorphic to B. For each 4 € & the number of continuous
functions from A into X is at most (2™)™ = 2"; consequently each equivalence class
of ~ has cardinality at most 2™, Since |w/|>2", it follows that the number of distinct
equivalence classes is |.o7], The desired subcollection &7, of & is obtained by choosing
a representative element from cach equivalence class of ~.

4. ‘The mumber of metrizable spaces. Let m and » satisfy o<m<n<m®. In this
section we show that the number of topologically distinet metrizable spaces having
weight m and cardinality n is 2% 1t is casy to show that the number of such spaces
is at most 2" (see Proposition 4.1), and so the problem reduces to constructing the
required number of spaces. The solution of this problem naturally factors into two
cases: nz2” and n<2® For the case 2" it is convenient to construct connected
metrizable spaces, since connectedness is the key property used in showing the spaces
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non-homeomorphic. For the case n<2® the key tool is the Cantor-Bendixson theorem
and the Mazurkiewicz—Sierpinski result on the number of scattered subsets of R.

PROPOSITION 4.1. The number of topologically distinct metrizable spaces of cardi-
nality n is at most 2".

Proof. Clearly we may assume that > w. Let X be a set with [X]| = n. A metric
on X is a function from X x X into R. Hence the total number of metrics on X is
at most (2°)™* = 2", and so there are at most 2" metrizable topologics on X.

LemMa 4.2. There exist 2° topologically distinct metrizable spaces, each having
these properties: compact, connected, weight ©, cardinality 2°, infinitely many noncut
points, no cut point of order >w.

Proof. For each n2 let B, = {xe R": ||x]|<1}, let p, be the origin of R",
and let d, be the usual Euclidean metric on B,. As is well known, B, is compact,
connected, has no cut points, and B, is not homeomorphic to B, whenever # # k.
For each n>2 let g, be an equivalent metric on B, defined by g,(x, y) = d,(x, y)/2"
Let & = {S: Scw, S infinite and S N {0, 1} = @}, and for each Se & let X(S)
be the star-space determined by {(B,,¢,): ne S} and {p,: ne S}. Then X(S) is
* a connected metrizable space of weight @ and cardinality 2%, p(S) is a cut point
of X(S) of order w, and p(S) is the only cut point of X(S). Moreover, X(S) is

compact since each B, is compact and lim (diameter of (B,, ¢,)) = 0. Finally, let S,
H=* o0

and S, belong to & and suppose there is a homeomorphism /4 from X(S,) onto
X(S,). Then & must take p(Sy) to p(S,) and so S; = S, by Proposition 3.1. Con-
sequently {X(S): Se &} is a collection of 2 topologically distinct spaces, and cach
space has the required properties.

Remark. The technique used by Lozier and Marty also gives a collection of 2®
topologically distinct spaces satisfying all of the conditions in Lemma 4.2. (Sec
p. 273 of [LM].)

Lemma 4.3. Let o <m<2%. Then there exist 2™ topologically distinct connected
completely metrizable spaces of weight m and cardinality 2°, each having infinitely
many noncut points.

Proof. Let {X,: 0<a<2”} be a collection of topologically distinct spaces as
in Lemma 4.2. We may assume that m>w. For each ¢ <2 let Py be a noncut point
of X,. Let &¥ = {S: $§=2° |S| = m}, and for each Se & let X(S) be a star-space
determined by {X,: a € S} and {p,: «e S}. Clearly X(S) is a connected metrizable
space of weight m and cardinality 2° with infinitely many noncut points, and X(S)
is complete since each X, is compact. Since we are assuming that m> cw, it follows
that the adjunction point p(S) is the only point of X(S) which is a cut point of
order m. Hence by Proposition 3.1, X(S,) is not homeomorphic to X(S,) whenever
Sy # ;. Thus {X(5): Se &} is a collection of 2™ topologically distinct spaces,
each having the required properties.

Remark. In § 5 we shall make use of the fact that the spaces constructed in 4.3
are topologically complete.
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LemMa 4.4, Let X and Y be connected spaces, each having more than one point..
Then every point of Xx Y is a noncut point of Xx Y.

LeMMA 4.5. Let m and n be cardinals with 2° <m<n<m®. Then there is a connected’
metrizable space of weight m and cardinality n with no cut points.

Proof. Let J(m) be the hedgehog with m spines and let ¥ be the product of o
copics of J(m). Then Y is a pathwise connected metrizable space of weight m and
cardinality m®. Let pe Y and let S be a subset of ¥ with |S| = n For each xe S
let f; be a continuous function from [0, 1] into ¥ such that £(0) = p and (1) = x,
and let 4, = f([0, 1]). Note that 4, is connected and |4,]<2° Let Z = |J 4,;

xe§
clearly Z is a connected metrizable space of weight <m and cardinality n. Finally,

ZxJ(m) is a connected melrizable space of weight m and cardinality » with no cut
points. (See Lemma 4.4.)

Lemma 4.6. Let m and n be cardinals with 2°<m<n<m®. Then there exist 2™
topologically distinct connected metrizable spaces of weight m and cardinality n, each
having infinitely many noncut points.

Proof. The proof is by induction on m. The case m = 2° follows from
Lemma 4.3. Now let m>2° and assume that the theorem is true for all p with
2°< p<m. Let n be a fixed cardinal with m<n<m®; our objective isto construct 2™
topologically distinct connected metrizable spaces, each having weight m, cardi-
nality », and infinitely many noncut points. For each p with 2°< p<m let &, be
a collection of 2¥ topologically distinct connected metrizable spaces, each having
weight p, cardinality p, and infinitely many noncut points. Let & =

note that no two distinct elements of & are homeomorphic and |&|>m. (If
|| = p<m, then &, o and || = 27 gives a contradiction.) Let {X,: 0<a<m}
be a collection of topologically distinct spaces such that X, € & for a1 and X, is.
a connected metrizable space with weight m, cardinality », and no cut points. For
each o< m let p, be a noncut point of X,. Let & = {S: Scm,0e S and |S| = m},
and for each Se & let X(S) be a star-space determined by {X,: «eS} and
{ps: aeS}. It is clear that each X(S) is a connected metrizable space having
weight m, cardinality n, and infinitely many noncut points. Moreover, the adjunction
point p(S) is the only point of X(S) which is a cut point of X(S) of order m. (Recall
that X, has no cut points and |X,| <m for «>1.) Hence by Proposition 3.1 X(S,} is.
not homeomorphic to X(S;) whenever S, % S,. Thus {X(S5): Se &} is a collec-
tion of 2™ topologically distinct spaces, each having the required properties.

TuroREM 4.7. Let m and n be infinite cardinals with m<n<m® and nz2°. Then
the number of topologically distinct connected metrizable spaces of weight m and
cardinality n is 2",

Proof. By Proposition 4.1 the number of such spaces is at most 2", and so it
remains to prove the existence of 2* such spaces. First assume 2" = 2% If m<2°
then the only allowable value for n is 2° and we are finished by Lemma 4.3. If m>2%
then we are finished by Lemma 4.6.
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Now assume 2™ <2 Let ¥ be a connected metrizable space of weight m and
cardinality n. (If m3>2° use Lemma 4.5; if m<2° use Lemma 4.3.) Let X = ¥'x ¥,
let p be a point of ¥, let 4 = {p} x ¥, and for each y e Y let 4, = ¥x {y}. Finally
for each non-empty subset S of ¥ let X(S) = 4 U ( USAy). It is clear that each X(S)

ye

is a connected metrizable space of weight m and cardinality n, and that
X(S;) # X(S,) whenever S; # S, Let o ={X($): S€Y,S# @}. Then
1] = 2">2™, s0 by 3.3 there is a subset &/ of & with [y = 2" such that no two
distinct elements of &7, are homeomorphic. This completes the proof of the case
2" <2

COROLLARY 4.8. For each cardinal m=w the number of topologically distinct
«connected metrizable spaces of weight m is 2. In particular the number of topologically
distinct connected metrizable spaces of weight o is 22°,

COROLLARY 4.9. For each cardinal n=2® the mumber of topologically distinct
connected metrizable spaces of cardinality m is 2".

LemMa 4.10 (Mazurkiewicz and Sierpifiski). The number of topologically distinct
scattered subsets of R is 2°.

THEOREM 4.11. Let m and n be infinite cardinals with m<n<m®. Then the number
of topologically distinct metrizable spaces of weight m and cardinality n is 2°.

Proof. By 4.1, 2" is an upper bound. By Theorem 4.7 we may assume that n<2,
and by Lemma 4.10 we may assume that n> . (Recall that every scattered subset
of R is countable.) In summary we have w<n<2® and m<n, and we want to con-
struet 2" topologically distinct metrizable spaces, each of weight m and cardinality n.
‘We consider two cases, namely 2% = 2" and 2°<2",

First suppose 2° = 2". We begin by constructing a metrizable space X of
‘weight m and cardinality » which is dense in itself. Let AS R, |4| = n. By the Cantor—
Bendixson theorem, 4 = B u C, where B is dense in itself and C is countable. Since
|4l = n>w, |B| = n. Let X be the sum of m copies of B; clearly X is a metrizable
space of weight m and cardinality » which is dense in itself. Now let {C,: 0ga<2”}
be a collection of 2% topologically distinct scattered subsets of R, and for each a<2°
let X, = X@C,. Clearly each X, is a metrizable space of weight m and cardi-
nality », and from Proposition 3.2 it follows that X, is not homeomorphic to X
for « # B.

Now suppose 2°<2" Let & be all subsets of R of cardinality n; |s#| =
Let Z be all subsets of R of cardinality » which are dense in themselves, and let @
be all countable subsets of R. By the Cantor-Bendixson theorem,

A<{BUC: Bed, Ce®). '
Since || = 2% %] = 2° and 2">2°, it follows that |#| = 2" By Proposition 3.3
there is a subcollection %, = {B,: 0<«<2"} of 4 such that B, is not homeomorphic
to By whenever o # f. For each a<2" let X, = B,@®D,,. Then {X,: 0sa<2"}
is a collection of 2" metrizable spaces, each of weight m and cardinality », and by
Proposition 3.2 X, is not homeomorphic to X, whenever o # f.
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COROLLARY 4.12. For each cardinal n>w the mumber of topologically distinct
metrizable spaces of cardinality n is 2.

5. The number of connected completely metrizable spaces. By Corollary 4.8 we
know that the number of topologically distinct connected metrizable spaces of
weight m is 2™, and Lozier and Marty have proved that the number of topologically
distinct continua of weight m is 2™, In this section we show that the number of
topologically distinct connected completely metrizable spaces of weight m is 2™,
We begin by stating a result due to A. H. Stone [St] on the possible values of |.X|
whenever X is a completely metrizable space of weight m.

PROPOSITION 5.1 (Stone). Let X be an infinite completely metrizable space of
weight m. Then | X| = m or |X| = m®.

PrOPOSITION 5.2. The number of topologically distinct Cech-complete spaces of
weight m is at most 2™.

Proof. Clearly we may assume that m>wm. Let X be a Cech-complete space of
weight m. Then there is a homeomorphism ¢ taking X into I"™. (See p. 115 in [E])

Now ¢(X) is a compactification of X and X is Cech-complete, so ¢(X)—c(X) is

an Fo-set in ¢(X) and hence in I™. Thus the complement of ¢(X) is the union of an
open set (namely " —¢(X)) and an Fo-sct in I". Let ¢ = {G: G=I™; G is the union
of an open set and an Fo-set}. The proof is complete if we can show that |%|<2™
Since the weight of I™ is m, the number of open sets is at most 2™ and the number of
Fo-sets is at most 2™, so |4|<2™

LEMMA 5.3, For each cardinal mz2° there is a connected completely metrizable
space of weight m and cardinality m® with no cut points.

Proof. Such a space can be obtained by taking the product of w copies of J(m),
the hedgehog with e spines.

TueorEM 5.4. For each cardinal mz o the number of topologically distinct con-
nected completely metrizable spaces of weight m is 2. If m<2® each such infinite
space has cardinality 2°; if mz2" each such space has cardinality m or m® and the
number of each type is 2™,

Proof. By Proposition 5.2 we know that 2™ is an upper bound. First suppose
m<2°. The existence of 2™ spaces with the desired properties follows from Lemma 4.3,
Moreover one can casily show that an infinite connected metrizable space of weight
m-<2% has cardinality 2% (Sce p. 433 in [E])

Now assume m3z2" By Proposition 5.1 we know that a completely metrizable
space of weight m nust have cardinality m or m®. The proof is complete if we can
prove the following. Let mz29, let n = m or p = m"; then there exist 2™ topo-
logically distinet connected complctcly metrizable spaces, each having weight m,
cardinality n, and infinitely many noncut points. The proof, which is similar to that
of Lemma 4.6, is by induction on m. For m = 2%, m = m® = 2° and we are finished
by Lemma 4.3. Now let m>2° and assume true for all p with 27< p<m. We shall
construct 2™ topologically distinet connected completely metrizable spaces, each
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having weight m, cardinality m®, and infinitely many noncut points. (The proof for
“cardinality m” is similar but simpler.) For each p with 2”< p<m let o/, be a col-
lection of 27 topologically distinct connected completely metrizable spaces, each
having weight p, cardinality p, and infinitely many mnoncut points, and let
o = \J o, Let{X,: 0<a<m} be a collection of topologically distinet spaces

©oLp<m

such tzhatp;(n‘ e o for o1 and X, is a connected completely metrizable space with
weight m, cardinality m® and no cut points, For each «<m let p, be a noncut point
of X, and let d, be a complete metric on X,. Let & = {S: SSm, 0e Sand |S| = m},
and for each Se & let X(S) be the star-space determined by {(X,, d,): e S} and
{pa: @€ S}. Then {X(S): Se F} is the desired collection of 2 topologically distinct
spaces.

Remark. Theorem 5.4 and the result of Lozier and Marty [LM] suggest the
problem of counting the number of connected locally compact metrizable spaces.
It turns out that such spaces always have weight  and the total number of such
spaces is 2°.

THEOREM 5.5. The number of topologically distinct connected locally compact
metrizable spaces is 2°. Moreover, each such infinite space has weight e and cardi-
nality 2°.

Proof. Let X be an infinite connected locally compact metrizable space. By

Alexandroff’s Theorem X = @ X, where each X, is a locally compact separable
ses N

metrizable space. Since X is connected, |S| = 1 and so X is a locally compact sep-
arable metrizable space. Note that |X| = 2°. By 5.2 the number of topologically
distinct locally compact separable metrizable spaces is at most 2, and the existence
of 2% such spaces which are also connected follows from Lemma 4.2.

6. The number of locally compact locally countable metrizable spaces. In this
section we show that the number of topologically distinct locally compact locally
countable metrizable spaces of cardinality m is , -v(m), whereé v(m) denotes the
number of cardinal numbers < m. There are two reasons for considering this enumer-
ation result. First, it is a reasonable extension to higher cardinals of the classical result
of Mazurkiewicz and Sierpifiski [MS] that the number of topologically distinct
compact countable metrizable spaces is w;. Second, the result is used in § 7 where
we enumerate topologically distinct locally compact metrizable spaces of cardi-
nality m.

The following notation is used in this section. The space consisting of a single
point is denoted by Wy, and for 1< ff<w, Wydenotes the space of all ordinals <o’
with the order topology. Thus each Wj is a compact countable metrizable space.
See Lemma 4.5 in [MP] for a proof that Wi = {&} for > 1; note that W* = @
for a>f. For 0<f<w, and for any cardinal m we let K(f, m) denote the sum of m
copies of Wy. Mazurkiewicz and Sierpifiski [MS] have proved that every compact
countable metrizable space is homeomorphic to K(f, n) for some f<w, and some
natural number n.
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LemMA 6.1. Let X be an infinite locally countable metrizable space. Then the weight
of X and the cardinality of X are the same.

Proof. Let the weight of X be m; it suffices to show that |X|<m. Let & be an
open cover of X, each clement of which is countable. Since the weight of X is m,
there is a subcollection %, of ¥ with |%,|<m such that %, covers X. Hence
|X|<m-w = m.

LemMA 6.2 (Mazurkiewicz and Sierpidski). The number of topologically distinct
compact countuble metrizable spaces is w,. Moreover, each such space is homeomorphic
to the sum of a finite number of copies of some Wy 0<p<w,).

LeMMA 6.3, The number of topologically distinct locally compact countable metri-
zable spaces is wy.

Proof. By Lemma 6.2 it suffices to prove that w, is an upper bound. Let
{X,: 0<a=<w,} be all topologically distinct compact countable metrizable spaces.
For each e <o, let 57, be all subscts of X, obtained by removing at most one point
from X,, and let o = () ,; note that [&/] = w,. Now let X be a locally com-

0K a<my

pact countable metrizable space. To complete the proof it suffices to show that X
is homcomorphic to some element of «/. We may assume that X is not compact.
Let X* be the Alexandrofl one-point compactification of X. Clearly X* is a compact
countable metrizable space, so X*=~ X, for some a<w,. Hence X js homeomorphic
to a subset of X, obtained by removing one point of X,.

Lemma 6.4, Let X be a locally compact locally countable metrizable space of
cardinality mz wy. Then X is homeomorphic to @  K(B, my), where 0<my<m

0€p<0y
for all B and Y !
ogfica

Proof. By Alexandroff’s Theorem X =

my = mi.

@ X, where each X is a separable

se§

metrizable space. By Lemma 6.1 each X is countable. We are going to show that

cach X is the sum of a countable number of spaces, each of which is homeomorphic

to some Wy, The proof is then completed by taking m, to be the total number of

copies of W} as s runges over S. (Since cach Wy iscountableand mzw;, . my=rm)
0 p<m

Fixse Sand let X, = {p,: n<o}. Now X, is zero-dimensional, 5o each point p,

has a neighborhood ¥, which is both open and closed. We may assume that each ¥,

is also compact. Let Uy ==V, and for n>1 let U, = V,— | V,. Clearly
k<n

{U,: n<m) is a pairwise disjoint collection of open sets and X, = U U, so

n<w

X, = @ U,. Now each U, is also closed and hence compact. By Lemma 6.2 U, is

<o

homeomorphic to the sum of a finite number of copies of some Wj.
Lemma 6.5. Let fi<y<w, Then W, = GQH, where GrW; and HxW,.
Proof. Since W, = [0, o"]@(w’, ), it suffices to show that (', W]~ W,.
Recall that
o = of 1<o’ 2< . <ol i< . <ofIg0”.
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Now
(@, 0" = = [0, 0" 1@ (", 0],
so it suffices to show that (wf, w*1]=[0, @"*1]. This easily follows from the fact
that (-1, @ 1+ D]x(0" (+1), o - (2+2)] for all n<w. (See p. 298 in [S])
LevMA 6.6. Let m be an infinite cardinal, let « be an ordinal with 1<a<w,,

let X be a topological space. Suppose there is a subset U of X such that
) X=UaX-U); (2 U~ (—DK([)’ m); 3) X-U= @ X,, where |S|<m and

for each se S there exists ﬁ<a such that X = Wp. Tl1en X ~ @ K(f, m).

(@, o 1@, 0]  and

Proof. Since U~ @ K(B,m), U= @(@ W(B, 1)), whew |T)] = m and

B<a p<a teT
W(B,t)y~W, for each teT. For each f<a let S5 = {s: se S, X,;mW;}; then

X-U= @ (@ X). Since X = U®(X—1U), it easily follows that

f<a seSg

X= @I @ Wwe el GI-) %)

p<a teT
and so X~ @ K(f,m).
B<a
LeMMA 6.7. Let m be a cardinal with m>w,, let « be an ordinal with 1<a< oy,

let {my: 0<P<a} be a sequence of cardinals such that for all f<o, 3 my = m.
psy<a

If X is homeomorphic to @ K(B, my), then X is homeomorphic to & K(§, m).
B<a

Proof. It suffices to construct a subset U of X satisfying (1)-(3) in
Lemma 6.6. We first consider a special case, namely m = w,; and « = w,. Let
X= @ (@ W(B,1), where |Es| = m; and W(B, )~ W, for all te E;. Let

0<p<wy tekp

= {B: 0<f<w,,my #0}; since . m,=0w, for all f<w;, 4 is un-
fsy<oy
countable. Let {4,: 0<f<w,} be a pairwise disjoint collection of subsets of A such
that each 4, has cardinality w, and y € 4, implies y>f. Now let f<w, be fixed.
For each yed; and each tekE, let W(y,t) = G(B,y,)@H(B,y,1), where

G(B,y, )= W; and H(B,y,t)=W,. (Use Lemma 6.5.) Let
=U{GB,y.1): ye 4y teE}.

Then X is the union of a pairwise disjoint collection of w; open sets, cach of which is
homeomorphic to W, and so X;~K(f,w,). Now let U= [J Xj; since
0L <y
{Xp: 0<B<w,} is a pairwise disjoint collection of open sets, and Xy~ K(B, w,)
for all B<w;, Ux @ K(B,w,). It is easy to check that U also satisfies (1)
0<€p<wy

and (3) of Lemma 6.6.

We now construct U under the assumption that a<w,; or m>w Let
X= @ (& W(B,1), where |Ej| =m, and W(B,)mW, for each te K.

0Sp<e teEp

Let 4= {y: 0O<y<o,m,zw}, and for each yed let {E(y, f): 0<p<y} be
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a parutxon of E, such that |E(y, f)| = m, for all f<y. For yed, B<y, and

te E(y, ) let W()',Z)——-G([f V. O@H(B,y,1), where G(B,y,)~W, and
H(B,y, )= W,. Let f§ be fixed, 0<f<a. Let

= {G@B,y,0): ﬁ<y<a,yeA,teE6J,ﬁ)} ,

and let Xj = Y} for ﬁ¢A and Xp = YU ( U W(ﬁ 1)) for fe A. It is clear

that X is the union of a pairwise disjoint col]cctmn of open sets, each of which is
homeomorphic to Wy; we now want to show that the number of spaces in this union
is m. Note that

Y myt Y my=m.

BEy<a
7é4

First suppose a = w,., Then m>w, and

Y m<o; so Y omy=m.
psy<u pEy<a
YEA yed
Next suppose o<@y. Then
“
/;<>"< m<o  so . Y my=m.
[|y<a y<a
YA
Thus in either case
Y my=m
fRy<a
yed

and from this it casily follows that the mumber of copies of Wy is m. Thus

Xy~ K(f, m). Now let U= () Xj; since {X;: 0<f<a}is a pairwise disjoint col-
Osfi<a

lection of open sets and Xy~ K(B,m) for all f<a, Ux @ K(f, m). It is easy to
B<a

check that U also satisfies (1) and (3) of Lemma 6.6,

THEOREM 6.8. For cach cardinal mz w the number of topologically distinet locally
compact locally countable metrizable spaces of cardinality m is o, - v(m), where v(m)
is the number of cardinals <m.

Proof. We begin by showing that for each m>w there exist w, -v(m) topo-
logically distinct locally compact locally countable metrizable spaces of cardinality m.
First supposc , «v(m) = w,. Then {K(B, m): 0<Sf<w,;} is a collection of w;
locally compact locally countable metrizable spaces, each of cardinality m. Moreover
if f<y then (K(B, m)¥*? = @ and (K(. m))#+ 52 @ and so K(B,m) is not
homeomorphic to K(y, m) whenever f<y. Now suppose w-v(m) = v(m). For
each cardinal p<m let X(p) = K(Wy, p)®D,,. Then {X(p): p<m} is a collection
of v(m) locally compact locally countable metrizable spaces, each of cardinality m.
Morcover, if p<n<m then |X(p)?] = p and [X(m)] = n and so X(p) cannot be
homeomorphic to X(m).
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To complete the proof we must show that o, -v(m) is an upper bound. The
proof is by induction on m. If m = o we are finished by Lemma 6.3. Now let m>aw
and assume true for all cardinals p with o< p<m. Let S = {p: o< p<m)}, for
each pe S let o, be all topologically distinct locally compact locally countable
metrizable spaces of cardinality p, and let .of = Us.sz{ - Since [ ,| @y - V(p) Sy -v(m)

P
for all p, it follows that |&/|<|S| @ -v(m) = w;-v(m). Let

V@={ @ KB, med: 1<esw, ded or 4=},
osf<a
It is clear that |#|<w,; v(m) and that each Be 4 is a locally compact locally
countable metrizable space of cardinality m.
Now let X be a locally compact locally countable metrizable space of cardi-
nality m. To complete the proof it suffices to show that X is homeomorphic to some
Be®. By Lemma 64 X~ @ K(f, mp), where Y. my = m. We now consider

0<p<wy 0sf<wt

two cases: (1) Y, m, = m for all f<w,; (2) there is an ordinal &, 1<a<w,,

B<y<oy
such that Y m,=m for all <o and ), m,<m If (1) holds, then
" p<y<a asy<my
X~ @ K(B,m)by Lemma 6.7 and so X~ B for some B e 4. Suppose (2) holds,
0<f<w

and note that X~( @ K(B, mp)®( @ K(B, mp). By Lemma 6.7 @ K(f, my)
B<a as<fi<wp B<o
~ @ K(B,m), and since . my<mit follows that @ K(B, my)~ A for some

p<z eSh<oy wsf<wy

A e . Consequently X~B for some Be 4.

COROLLARY 6.9. The number of topologically distinct locally compact locally
countable metrizable spaces of cardinality w; is ;.

COROLLARY 6.10. The number of topologically distinct locally compact locally
countable metrizable spaces of cardinality %, is w,.

COROLLARY 6.11. For each cardinal mzw the number of topologically distinct
locally compact locally countable metrizable spaces of weight m is w, -v(ni).

Remark. There exist cardinals m for which v(m) = m. Indeed, if m is a fixed
point of the aleph function (i.e., ¥, = m), then v(m) = m.

7. The number of locally compact metrizable spaces. Tn this scction we find the
number of locally compact metrizable spaces of cardinality m and also the number
of locally compact metrizable spaces of weight m. The solution is obtained by con-
sidering two cases, namely m>2° and m<2%. Recall that v(m) is the number of
cardinals <m.

THEOREM 7.1. Let m be an infinite cardinal. The number of topologically distinct
locally compact metrizable spaces of cardinality m is o, -v(m) if m<2® and v(m)**
if m=2°,

Proof. First suppose m<2® By Theorem 6.8 it suffices to show that every
locally compact metrizable space X of cardinality m (where m<2%) is locally
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countable. Let pe X, let K be a compact neighborhood of p. Then |K|<w or
|K| = 2° Since |X| = m<2“, K must be countable.

Now suppose mz2°. Let & be the collection of all functions from 2% into the
set of all cardinal numbers <m. Note that |FF|<v(m)>". First we prove the exis-
tence of v(m)** topologically distinct locally compact metrizable spaces, each of
cardinality m. Let {X,: 0<a<2"} be a collection of 2 topologically distinct compact
connected metrizable spaces, each of cardinality 2. (Use Lemma 4.2.) Let fe &,
for each a<2® let X(f, o) be the sum of f(«) copies of X,, and let

X(f) = (@ X(f, 0))®D,,

%< 29

where D,, is the discrete space of cardinality m. Clearly each X () is a locally compact
metrizable space of cardinality m. Moreover, if f # g then X(f) is not homeomor-
phic to X(g). (Let f % ¢, say f (o) >g(«) for some 2 <2%, and suppose X(f)~X(g).
Each copy of X, in the sum defining X(f) must map homeomorphically onto
a copy of X, in the sum defining X(g). Since f()>g() this is impossible.)

Next we show that v(m)®® is an upper bound. Let {X,: 0<x<2} be all topo-
logically distinct locally compact separable metrizable spaces. (Use Proposition 5.2.)
For each fe & let X(f) = @ X(/f, @), where X(f, ) is the sum of f () copies

A0

of X,. The cardinality of {X(f): fe %} is v(m)**. Now let X be a locally compact
metrizable space of cardinality m, where m>2°. To complete the proof, it suffices
to show that X is homeomorphic to some X(f). By Alexandroff’s Theorem
X = @ X,, where cach X, is a scparable metrizable space. Note that X; is also

sa§

Jocally compact and |S|<m. For each 0 <2® let S, = {s& S: X,~X,} and let f be
the element of & defined by f () = |S,|. Then X = @ ( @ X,) and so X=X (/).

%< 2% 3cS¢

COROLLARY 7.2. The mumber of topologically distinct locally compact metrizable
spaces of cardinality 2° is 2°°.

COROLLARY 7.3. The number of topologically distinct locally compact metrizable
spaces of cardinality Nyo is 2%°,

LEMMA 7.4, Let X be an infinite locally compact metrizable space of weight m.
If mz2® then |X| = m, and if m<2° then |X| = m or |X| = 2°

Proof, First assume m3z2°, If suffices to show that |X|<m. Let ¢ be an open
cover of X such that for cach Ge®, G is compact. Note that |G|<2% Since the
weight of X is m, there is a subcollection 9y of ¢ with |%|<m which covers X.
Hence |X|<m-2° == m. Now suppose m<2% By Proposition 5.1, |X| = m or
| X| = m® Since wgm<2®, m® = 2°

THEOREM 7.5, Let m be an infinite cardinal. If m>2° the number of topologically
distinet locally compact metrizable spaces of weight m is v(m)**, and each such space
has cardinality m. If m<2® the number of topologically distinct locally compact
metrizuble spaces of weight m is 2", and each such infinite space has cardinality m or 2°.
Moreover the mumber of cardinality m is @, -v(m) and the number of cardinality 2°
is 2™

§ — Fundamenta Mathematicae CXV
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Proof. First suppose m>2% By 7.4 every locally compact metrizable space

of weight m:>2% has cardinality m, and so we are finished by 7.1.

Now assume m <2, It follows from 5.2 that 2™ is an upper bound for the number
of topologically distinct locally compact metrizable spaces of weight n. Moreover
by 7.4 it follows that each such infinite space has cardinality m or 2%, and it follows
from 7.1 that the number of such spaces of cardinality m is @, -v(m). Consequently
the proof is complete if we can construct 2™ topologically distinct locally compact
metrizable spaces, each of weight m and cardinality 2% Let {X,: 0<a<2”} be
a collection of 2% topologically distinct compact connected metrizable spaces, each
of cardinality 2° Let & = {S: S=2% S| =m}, and for cach Se & let
X(S) = @ X,. Clearly {X(S): Se &} is a collection of 2™ locally compact

ze§ )

metrizable spaces, each of weight m and cardinality 2%, and X(S,) is not homeo-
morphic to X(S,) whenever S; # S,.

8. The number of connected paracompact spaces. For each cardinal m>2° the
number of connected compact spaces of cardinality m is 2™ and the number of
connected metrizable spaces of cardinality m is 2™, (See [LM] and § 4.) Each of these
classes of spaces is contained in the class of connected paracompact spaces of cardi-
nality m. Is this latter class larger 7 Yes. More precisely, we show that the number of
spaces in this class is the maximum possible, namely 22", The proof makes use of the
following facts about ultrafilters. Let S be a set with |S| = m2w, let p and q be free
ultrafilters on S. Then p and g are of the same type if there is a permutation = of §
such that ¢ = {n(E): Eep}. It is well known that p and ¢ are of the same type if
and only if the subspaces {p} U S and {g} U § of BS are homeomorphic. Also, there
exist 22" free ultrafilters on S, no two of which are of the same type. (See [R].)

The following result, which is an easy consequence of Lemma 1 in [M], will
be useful.

LemMA 8.1. Let X be a regular space such that X = K U M, where K is compact
and M is metrizable. Then X is paracompact.

TreOREM 8.2. For each cardinal m=2° the manber of topologically distinct con-
nected paracompact spaces of cardinality m is the maximum possible, namely 22",

Proof. Tt suffices to construct 22™ such spaces. Let S be a set with |S] = m.
Foreachse Slet X, = [0, 1]x {s}, let d, be the Euclidean metric on X, It gs=(1,5),
and let %', be a fundamental system of open neighborhoods of 4y, 10 one of which
contains (0,s). Let X($) be the star-space determined by {(X,,d): s S} and
{(0,5): se5}. Let {p,: 0<a<2?"} be a collection of 22™ free ultrafilters on S, no
two of which are of the same type, Now let &< 22" be fixed ; we are going to construct
a connected paracompact space X, of cardinality m. Let Xy = X(8) U {a}, and take
as a base for X, the collection of all open subsets of X' (S) together with all sets of
the form {a} U (SEE W,), where Eep, and W,e %, Note that the subspace

{o} v {g;: 5€ 8} of X, is homeomorphic to the subspace {p,} U S of BS. It is not
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difficult to check that X, is T, regular, connected, and has cardinality m; that X,
is paracompact follows easily from 8.1.

Now suppose & is a homeomorphism from X, onto X,. Then & must take a to
and {g,: s € S} to {g,: se S}. (Note that {g,: se S} U {«} is the set of noncut points
of X, and « is the only point of X, which does not have a countable local base.)
Hence {a} U {g,: se S}~{f} U {g,: €S} and s0 p, and p; are of the same type
and o = f. Consequently {X,: 0<a<2?"} is a collection of 2*" topologically
distinct spaces, each having the desired properties. g

9. Concluding remarks. The results in this paper can be viewed as giving a rough
measure of the “niceness” of a class of topological spaces. For example, the number
of compact manifolds, with or without boundary, is @ (see [CK]); the number of
locally compact connected (separable) metrizable spaces is 2%; the number of con-
nected separable metrizable spaces is 22%. Similarly, for each cardinal m>2 the
pumber of continua of cardinality m is 2™ and the number of connected metrizable
spaces of cardinality m is 2™ but the number of connected paracompact spaces

of cardinality m is 22"
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