

On directional cluster sets

by

Jan Jastrzebski (Gdańsk)

Abstract. Let f be a function from the open upper half plane H into a second countable topological space W. Let $\psi \in (0, \pi)$ be a fixed direction and let $\theta(x)$ denote the set of all directions $\theta \in (0, \pi)$ in which the directional cluster set ψ of f at x in direction θ does not contain the qualitative directional cluster set of f at x in direction. Let $\Delta(x)$ denote the set of all directions $\theta \in (0, \pi)$ in which the directional cluster set of f at x in direction ψ does not contain the qualitative directional cluster set of f at x in direction θ does not contain the qualitative directional cluster set of f at x in direction θ . It is shown that if f has the Baire property, then $\theta(x)$ and $\Delta(x)$ are sets of the first category for every $x \in R$ except a set of the first category.

1. Let H denote the open upper half plane and let z denote a point of H. Let x denote a point on the real line R. For each $x \in R$ and h>0 let

$$S(x,h) = \{z \colon z \in H, |z-x| < h\} .$$

and for each direction θ , $0 < \theta < \pi$, let

$$L_{\theta}(x) = \{z \colon z \in H, \arg(z - x) = \theta\}$$

and

$$L_{\theta}(x, h) = S(x, h) \cap L_{\theta}(x)$$
.

Let $E \subset H$. Then a point $x \in R$ is called a second category point of E if and only if for every h > 0 the set $S(x, h) \cap E$ is of the second category in H. A point $x \in R$ is called a first category point of E if and only if it is not a second category point of E. The set of all first (second) category points of E will be denoted by $E_I(E_{II}$ respectively).

A point $x \in R$ is called a directional second category point of E in the direction θ if and only if for every h>0 the set $L_{\theta}(x,h)\cap E$ is of the second category as a linear set. A point $x \in R$ is called a directional first category point of E in the direction θ if and only if it is not a directional second category point of E in the direction θ . The set of all directional first (second) category points of E in the direction θ will be denoted by $E_{\rm I}(\theta)$ ($E_{\rm II}(\theta)$ respectively).

Let $f\colon H\to W$, where W is a topological space. The directional cluster set $C(f,x,\theta)$ of f at x in the direction θ is the set of all $w\in W$ such that for every open set U in W containing w we have $x\in f^{-1}(U)\cap L_{\theta}(x)$. The essential cluster set $C_{e}(f,x,\theta)$ of f at x in the direction θ is the set of all $w\in W$ such that for every open set U containing w the set $f^{-1}(U)\cap L_{\theta}(x)$ has positive upper density at x.

The following definition has been introduced in [3]. The qualitative directional cluster set $C_q(f,x,\theta)$ of f at x in the direction θ is the set of all $w \in W$ such that for every open set U in W containing w we have $x \in [f^{-1}(U)]_{\Pi}(\theta)$.

2. It is known [1] that if f is a continuous function from H to a topological space with a countable basis W and $\psi \in (0, \pi)$ is a fixed direction, then for every $x \in R$ except a first category set of measure zero on R the set

$$\{\theta: 0 < \theta < \pi, C_e(f, x, \psi) \not\subset C(f, x, \theta)\}$$

is of the first category. If f is measurable and $\psi \in (0, \pi)$ is a fixed direction, then, except a set of measure zero on R, the set

$$\{\theta \colon 0 < \theta < \pi, C_e(f, x, \theta) \neq C(f, x, \psi)\}$$

is of measure zero.

In the present paper we prove in Theorem 1 and Theorem 2 that if f has the Baire property and $\psi \in (0, \pi)$ is a fixed direction, then the sets

$$\{\theta \colon 0 < \theta < \pi, C_q(f, x, \psi) \neq C(f, x, \theta)\},\\ \{\theta \colon 0 < \theta < \pi, C_q(f, x, \theta) \neq C(f, x, \psi)\},$$

are of the first category, except for a set of points of the first category in R.

3. Let $E \subset H$ and $x \in R$. Let

$$\theta(E, x) = \{\theta \colon 0 < \theta < \pi, x \notin \overline{E \cap L_{\theta}(x)}\}\$$

For a fixed positive integer n and rationals $r, s, 0 < r < s < \pi$, we also define

$$\mathcal{O}_n(E,x) = \{\theta \colon 0 < \theta < \pi, E \cap L_{\theta}(x,n^{-1}) = \emptyset\}$$

and

$$\mathcal{O}_{nrs}(E, x) = \mathcal{O}_n(E, x) \cap (r, s)$$
.

Then, clearly

$$\mathcal{O}(E, x) = \bigcup_{n} \bigcup_{r} \bigcup_{s} \mathcal{O}_{nrs}(E, x)$$
.

We now prove

LEMMA 1. If $E \subset H$ is open and $\psi \in (0, \pi)$ is a fixed direction, then the set

$$B = \{x : x \in E_{\mathrm{II}}(\psi), \emptyset(E, x) \text{ is of the second category in } (0, \pi)\}$$

is of the first category.

Proof. For positive integers n and rationals $r, s, 0 < r < s < \pi$, let

$$B_{nrs} = \{x: x \in E_{II}(\psi), \mathcal{O}_{nrs}(E, x) \text{ is dense in } (r, s)\}.$$

Then, clearly

$$(1) B \subset \bigcup_{n} \bigcup_{n} \bigcup_{n} B_{nrs}.$$

We shall prove that the sets B_{nrs} are nowhere dense in R for all n, r and s. We assume that for some n, r and s the set B_{nrs} is dense in an open interval $I(x_0)$, where $x_0 \in B_{nrs}$ is the centre of $I(x_0)$. Let $x \in B_{nrs}$. Since E is open and $\theta_{nrs}(E, x)$ is dense in (r, s), we have $\theta_{nrs}(E, x) = (r, s)$. Let $\gamma = \frac{1}{2}(r+s)$. Then, clearly, $L_{\gamma}(x, n^{-1}) \cap E = \emptyset$ for $x \in B_{nrs}$. Again, B_{nrs} is dense in $I(x_0)$ and E is open; therefore

(2)
$$L(x, n^{-1}) \cap E = \emptyset \quad \text{for all } x \in I(x_0).$$

Let

$$C = \bigcup_{x \in I(x_0)} L_{\gamma}(x, n^{-1}).$$

Then, by (2),

$$(3) C \cap E = \emptyset.$$

Since $x_0 \in B_{nrs}$, we have $x_0 \in E_{\Pi}(\psi)$, and hence $L_{\psi}(x_0, h) \cap E \neq \emptyset$ for all h > 0. Since $x_0 \in I(x_0)$, there is an h_0 such that $L^{\mathcal{F}}_{\psi}(x_0, h_0) \cap E \subset C$, which implies $C \cap E \neq \emptyset$. But this contradicts (3). Hence B_{nrs} is nowhere dense in R for all n, r, s, and so, by (1), B is a set of the first category. The proof is complete.

We quote below the Kuratowski-Ulam theorem in polar coordinates.

THEOREM P. If $E \subset H$ is a plane set of the first category, then for a fixed point $x \in R$ $L_{\theta}(x) \cap E$ is a linear set of the first category for all directions θ except a set of the first category in $(0, \pi)$.

LEMMA 2. If $G \subset H$ is open and $P \subset H$ is a set of the first category, then for every $x \in R$ there exists a set of the first category $Q(x) \subset (0, \pi)$ such that

$$\mathcal{O}(G\Delta P, x) \subset \mathcal{O}(G, x) \cup \mathcal{O}(x)$$
.

Proof. Let

$$Q(x) = \{\theta \colon 0 < \theta < \pi, P \cap L_{\theta}(x) \text{ is of the second category in } L_{\theta}(x) \}.$$

Hence, in virtue of Theorem P, it follows that Q(x) is of the first category in $(0, \pi)$. Let $\theta \in \mathcal{O}(G\Delta P, x) \setminus Q(x)$. Then there exists a positive integer n such that

(4)
$$L_{\theta}(x, n^{-1}) \cap (G\Delta P) = \emptyset$$

(5) $P \cap L_{\theta}(x)$ is of the first category in $L_{\theta}(x)$.

In virtue of (4) and (5) and using the fact that G is open, we have

$$L_0(x,n^{-1})\cap G=\emptyset.$$

Hence $\theta \in \mathcal{O}(G, x)$ and

$$\mathcal{O}(G\Delta P, x) \backslash Q(x) \subset \mathcal{O}(G, x)$$
.

LEMMA 3. If the set $E \subset H$ has the Baire property and $\psi \in (0, \pi)$ is a fixed direction, then the set

$$B = \{x: x \in E_{\Pi}(\psi), \mathcal{O}(E, x) \text{ is of the second category in } (0, \pi)\}$$

is of the first category in R.

1*

and

Proof. Let $E = G\Delta P$, where G is open and P is of the first category. Clearly

(6)
$$E_{\mathrm{II}}(\psi) \subset G_{\mathrm{II}}(\psi) \cup P_{\mathrm{II}}(\psi) .$$

From Lemma 2 it follows that for every $x \in R$ there exists a set of the first category $Q(x) = (0, \pi)$ such that

(7)
$$\mathcal{O}(E,x) \subset \mathcal{O}(G,x) \cup \mathcal{Q}(x)$$

Let

$$A = \{x : x \in G_{\mathrm{II}}(\psi), \mathcal{O}(G, x) \text{ is of the second category in } (0, \pi)\}.$$

Let $x \in B$. Then $\mathcal{O}(E, x)$ is of the second category in $(0, \pi)$. Hence we infer by (7) that $\mathcal{O}(G, x)$ is of the second category. By (6), $x \in G_{\mathrm{H}}(\psi)$ or $x \in P_{\mathrm{H}}(\psi)$. In the first case $x \in A$. Thus

$$B \subset A \cup P_{\Pi}(\psi)$$
.

The set A is of the first category by Lemma 1. The set $P_{II}(\psi)$ is of the first category in virtue of the Kuratowski-Ulam theorem ([2], p. 56). Hence the set B is of the first category.

Let W be a second countable topological space and let $\psi \in (0, \pi)$ be a fixed direction.

Theorem 1. If $f: H \to W$ has the Baire property, then, for every $x \in R$ except a set of the first category in R, the set

$$\mathcal{O}(x) = \{\theta \colon 0 < \theta < \pi, C_q(f, x, \psi) \neq C(f, x, \theta)\}$$

is of the first category.

Proof. Let $\{V_n\}$ be a countable basis for the topology of W. Let

$$E_n = f^{-1}(V_n) .$$

Every set E_n has the Baire property. Let $\mathcal{O}(E_n,x,\psi)=\mathcal{O}(E_n,x)$ if $x\in E_{n\Pi}(\psi)$ and $\mathcal{O}(E_n,x,\psi)=\emptyset$ if $x\notin E_{n\Pi}(\psi)$. Let $\theta_0\in\mathcal{O}(x)$. Then $C_q(f,x,\psi)\not\subset C(f,x,\theta_0)$. So there is a $w\in C_q(f,x,\psi)\smallsetminus C(f,x,\theta_0)$ and hence there exists a V_{n_0} containing a w such that $x\in E_{n_0\Pi}(\psi)$ and $x\notin \overline{L_{\theta_0}(x)\cap E_{n_0}}$. Clearly $\theta_0\in\mathcal{O}(E_{n_0},x,\psi)$. Thus

(8)
$$\mathcal{O}(x) \subset \bigcup \mathcal{O}(E_n, x, \psi).$$

Let

$$B_n = \{x : x \in E_{nH}(\psi), \mathcal{O}(E_n, x) \text{ is of the second category in } (0, \pi)\}$$

and

$$D = \{x : \mathcal{O}(x) \text{ is of the second category in } (0, \pi)\}.$$

So, if $x_0 \in D$, then by (8) there is at last one n_0 such that $\mathcal{O}(E_{n_0}, x, \psi)$ is a second category set, and so, by the definition of $\mathcal{O}(E_{n_0}, x_0, \psi)$ $x_0 \in E_{n_0 \Pi}(\psi)$ and the set $\mathcal{O}(E_{n_0}, x_0)$ is of the second category. Therefore $x_0 \in B_{n_0}$. Hence

$$D \subset \bigcup_n B_n$$
.

Since the set B_n is of the first category for all n by Lemma 3, the set D is of the first category, which proves the theorem.

Let $E \subset H$ and $\psi \in (0, \pi)$. Let

$$\Gamma(E, \psi) = \{x \in R : x \notin \overline{L_{\psi}(x) \cap E}\}.$$

LEMMA 4. If $G \subset H$ is open and $P \subset H$ is of the first category, then for a fixed direction $\psi \in (0, \pi)$ there exists a set of the first category $Q(\psi) \subset R$ such that

(9)
$$\Gamma(G\Delta P, \psi) \subset \Gamma(G, \psi) \cup Q(\psi).$$

Proof. Let

$$Q(\psi) = \{x \in R: L_{\psi}(x) \cap P \text{ is of the second category in } L_{\psi}(x)\}.$$

Hence in virtue of the Kuratowski-Ulam theorem ([2], p. 56) it follows that $Q(\psi)$ is of the first category in R. Let $x \in \Gamma(G\Delta P, \psi) \setminus Q(\psi)$. Then there exists a positive integer n such that

(10)
$$L_{\psi}(x, n^{-1}) \cap (G\Delta P) = \emptyset$$

and

(11) $P \cap L_{\psi}(x)$ is of the first category in $L_{\psi}(x)$.

In virtue of (10) and (11) and using the fact that G is open, we have

$$L_{\psi}(x, n^{-1}) \cap G = \emptyset$$
.

Hence

$$x \in \Gamma(G, \psi)$$

and

$$\Gamma(G\Delta P, \psi) \backslash Q(\psi) \subset \Gamma(G, \psi)$$
.

Let $E \subset H$ and $x \in R$. Let

$$\mathcal{K}(E,x) = \left\{\theta \colon 0 {<} \theta {<} \pi, x \in E_{\mathrm{II}}(\theta) \right\}.$$

LEMMA 5. If the set $E \subset H$ has the Baire property and $\psi \in (0, \pi)$ is a fixed direction, then the set

$$S = \{x : x \notin \overline{L_{\psi}(x) \cap E}, \mathcal{K}(E, x) \text{ is of the second category in } (0, \pi)\}$$

is of the first category in R.

Proof. Let $E = G\Delta P$, where G is open and P is of the first category. We will consider two cases:

Case I: $P = \emptyset$. For a positive integer m, let

$$S_m = \{x: L_{\psi}(x, m^{-1}) \cap E = \emptyset, \mathcal{K}(E, x) \text{ is of the second category in } (0, \pi)\}.$$

Then, clearly

$$(12) S \subset \bigcup S_m.$$

We shall prove that the sets S_m are nowhere dense in R for all m. If it is possible, for a certain m let the set S_m be dense in an open interval $I(x_0)$, where $x_0 \in S_m$ is the centre of $I(x_0)$. Since for $x \in S_m$

$$(13) L_{\psi}(x, m^{-1}) \cap E = \emptyset$$

 S_m is dense in $I(x_0)$ and E is open, property (13) holds for all $x \in I(x_0)$. Let

$$A = \bigcup_{x \in I(x_0)} L_{\psi}(x, m^{-1}).$$

Then

$$(14) A \cap E = \emptyset.$$

So, there is an $h_0>0$ such that $S(x_0,h_0)\subset A$. Therefore $\mathscr{K}(E,x_0)=\varnothing$. But this contradicts the definitions of S_m . Hence S_m is nowhere dense in R for all m, and so, by (12), S is of the first category.

Case II: $P \neq \emptyset$. Clearly

(15)
$$\mathscr{K}(G\Delta P, x) \subset \mathscr{K}(G, x) \cup \mathscr{K}(P, x) .$$

In virtue of Lemma 4 it follows that there exists a set of the first category $Q(\psi) \subset R$ such that

(16)
$$\Gamma(E, \psi) \subset \Gamma(G, \psi) \cup Q(\psi).$$

Let

$$K = \{x : x \notin \overline{L_{\psi}(x) \cap G}, \mathcal{K}(G, x) \text{ is of the second category in } (0, \pi)\}.$$

In virtue of Theorem P, $\mathcal{K}(P, x)$ is of the first category. Then, by (15), $\mathcal{K}(G, x)$ is of the second category for $x \in S$. Let $x_0 \in S$. Then $x_0 \notin \overline{L_{\psi}(x_0) \cap E}$. By (16), $x_0 \in \Gamma(G, \psi)$ or $x_0 \in Q(\psi)$.

In the first case $x_0 \in K$. Therefore

$$S \subset K \cup Q(\psi)$$
.

In virtue of case I the set K is of the first category. The set $Q(\psi)$ is of the first category, and therefore the set S is of the first category.

Let W be a second countable topological space and let $\psi \in (0, \pi)$ be a fixed direction.

Theorem 2. If $f \colon H \to W$ has the Baire property, then for every $x \in R$ except a set of the first category in R the set

$$\Delta(x) = \{\theta \colon 0 < \theta < \pi, C_q(f, x, \theta) \neq C(f, x, \psi)\}\$$

is of the first category

Proof. Let $\{V_n\}$ be countable basis for the topology of W. Let $E_n = f^{-1}(V_n)$. Every set E_n has the Baire property. Let $\mathscr{K}(E_n, x, \psi) = \mathscr{K}(E_n, x)$ if $x \notin \overline{L_{\psi}(x) \cap E_n}$ and $\mathscr{K}(E_n, x, \psi) = \emptyset$ if $x \in \overline{L_{\psi}(x) \cap E_n}$. Let $\theta_0 \in \Delta(x)$. Then $C_q(f, x, \theta_0) \not\subset C(f, x, \psi)$. So there is a $w \in C_q(f, x, \theta_0) \setminus C(f, x, \psi)$ and hence there is a V_{n_0}

containing w such that $x \in E_{n_0 \text{II}}(\theta_0)$ and $x \notin L_{\psi}(x) \cap E_{n_0}$. Clearly $\theta_0 \in \mathcal{K}(E_{n_0}, x, \psi)$. Thus

(17)
$$\Delta(x) \subset \bigcup_{n} \mathscr{K}(E_n, x, \psi).$$

Let

and

$$S_n = \{x: x \notin \widehat{L_{\psi}(x) \cap E_n}, \mathcal{K}(E_n, x) \text{ is of the second category in } (0, \pi)\}$$

$$T = \{x : \Delta(x) \text{ is of the second category in } (0, \pi)\}$$
.

So, if $x_0 \in T$ then $\Delta(x_0)$ is of the second category in $(0, \pi)$. Hence, by (17), there is at least one n_0 such that $\mathcal{K}(E_{n_0}, x_0, \psi)$ is of the second category, and so, by the definition of $\mathcal{K}(E_{n_0}, x_0, \psi)$, $x_0 \notin \overline{L_{\psi}(x_0) \cap E_{n_0}}$ and $\mathcal{K}(E_{n_0}, x_0)$ is of the second category. Therefore $x_0 \in S_{n_0}$. Hence

$$T\subset \bigcup_{n}S_{n}$$
.

Since the sets S_n are of the first category for all n by Lemma 5, the set T is of the first category. This proves the theorem.

References

- A. K. Layek and S. N. Mukhopadhyay, On directional essential cluster sets, J. London Math. Soc. 15 (2) (1977), pp. 489-496.
- [2] J. C. Oxtoby, Measure and category, Springer-Verlag, New York-Heidelberg-Berlin 1971.
- [3] W. Wilczyński, Qualitative cluster sets, Colloq. Math. 32 (1974), pp. 113-118.

Accepté par la Rédaction 3, 3, 1980