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On the shape of pointed compact connected
subsets of E*

by

Andrzej Kadlof (Warszawa)

Abstract. The shape of pointed subcontinua of E? is studied. It is proved that pointed FANR~
spaces in E® have polyhedral shapes. Some characterizations of shapes in E* are given. Decompo-
sitions of a given shape into a one-point union and a Cartesian product are studied.

Introduction. The structure of the shape of plane continua is very simple. 1t is
known (see [2] p. 221) that if (X, x,) = E? is a pointed continuum (or an unpointed
one), then (X, x,) has the shape of a bouquet of 1-spheres. Therefore, the shape of
a plane continuum is uniquely determined by its Betti numbers.

In the space E® the situation is more complicated, but the shape structure of
a pointed continuum (X, x,)=E> is in a sense still simple.

The following theorem will play 2 fundamental role in the theory of the shape of”
compact connected pointed 1-movable subsets of E*:

THEOREM. If (X, xo)<E® is a pointed 1-movable continuum, then there are
pointed continua (¥, y,) and (Z, zg)=E® such that:

(1) Sh(X, xo) = Sh(Y, yo)+Sh(Z, zo),

(i) (Z, zo) is a bouquet of 2-spheres,

@
(i) (¥, 7o) = ) (Yis¥0) where (Yir1,y0)=(Y;, p0)<E* is an aspherical
i=1
polyhedron for every i = 1,2, ..

(We say that a topological space (X, x,) is aspherical if m,(X, x,) = 0 for every
nz2.)

Almost all the results of this paper are fairly simple consequences of the above:
theorem.

In many proofs the techniques applied in the topology of 3-manifolds will be
used. In Section I we will recall and prove some facts concerning 3 -manifolds which
are going to be used later.

In Section II the above basic theorem will be proved.

The main theorem of Section III states that if (X, x,)<E> is a pointed
FANR -space, then there is a polyhedron (P, po) such that Sh(X, xo) = Sh(P, po)-
P. A. Edwards and R. Geoghegan in [11] have constructed a 2-dimensional FANR.
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which is not of polyhedral shape. Our theorem implies the impossibility of realizing
such a construction in E3.

In Section IV some necessary and sufficient conditions are given for two con-
tinna (X, X,), (¥, ¥o) =E? to have the same shape. We also give an algebraic condi-
‘tion for a given continuum (X, xo)<E> to be FANR. In particular, we prove that
(X, xo)cE? is FAR if and only if (X, x,) is pointed 1-movable and the groups
H(X,Z) and Hi(X,Z) are trivial. * .

Section V contains some results concerning the shape of a suspension of the
-continuum (X, xo)<E>.

In Sections VI and VII the decomposition of the shape of (X, x,)<E¥ into
simple and prime shapes is studied.

All spaces in this paper are ‘metric spaces and all the maps are continuous. All
‘the inverse sequences of topological spaces considered in this paper are ANR -se~
.quences. The Cech homology and cohomology groups with coefficients in a:group ¢
are denoted by H,(X, ) and H "(X G) respectively. Bmsuks fundamental group
is denoted by m4(X, xo). By a manifold we mean in this paper a PL-3-manifold.

We assume that the reader is familiar with the shape theory for metric com-
pacta (see [2]), and with the basic concepts of PL-topology (see [25]).

‘1. Auxiliary results. This section contains all the definitions and theorems con-
cerning PL-3-manifolds which will be needed later.

(1.1) CoNveNTION. If X is a subset of E®, then the closure of Lhe union of all
bounded components of E3\X is denoted by bc X. If y ¢ X, then the closure of that
component of E3\X which contains point y is denoted by X(y). The manifold ob-
tained from M by capping off each 2- sphere component of 0M with a 3-cell is
-denoted by M. .

(1.2) DerNITION. Let M, My, M, be connected manifolds (not 11ecessmly
compact). We say that M is a connected sum of M; and M, and we denoted it by
M= M %M, if there are 3-cells B;cintM; (i=1,2) and PL-embeddings
By MNintB; — M such that

hy(M{\int By) O hy(M,NintB,) = M

.and

hy(0By) = hy(0By) = hy(MNintB) N h,(M,N\int B,) .

If M, My, M, are oriented, we require that /; be o‘xientation preserving.

(1.3) DerNITION. We say that a manifold M is prime if M # 5% and
M = M 4% M, implies that either My or M, is a 3-sphere.

The following theorem holds:

(1.4) TreoreM ([13] Theorem 3.15 p. 31 and Theorem 3.21 p. 35). Each compact

-oriented manifold can be expressed as a connected sum of a finite number of prime
Jactors and such a decomposition is unique.
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The uniqueness of decomposition into a connected sum ought to be understood
as follows: if M = M %M%M, = Ny #Ny%.. .#N,, and all M; and N; are
prime, then n = m and ‘there is a bijection o {1,2, ... ,n} > {1,2,.., 1} such
that M, is :PL-homeomorphic with N,(l), ‘and ' such homeomorphlsms preserve
orientation:. - ; FE . :

(1.5) Remark. Let us observe that the operation of a connected: sum does not
depend on the particular choice of cells B;, and hence we can always. assume that
2-spheres S; = cl(M; #...4 M \By) n cl(M;+1\B;;) which realize the decom-
position of M into a connected sum are pairwise digjoint. - o .

(1.6) DEFINITION. -A finite collection of ' 2-spheres {8y, Ss,..., St in the
interior of a compact manifold M < E® is a full system of 2-spheres. in M provided
the following ‘conditions are satisfied: , . .

@) beS;nbeS; =G for i #j, B
.t (i) spheres Sy, S,, ..., S Tealize the decomposition- of M- into a connectcd
sum of prime factors.

(1.7) LEMMA. For every compact manifold M < E3 there is a full system of
2-spheres in M.

- Proof. Let S1 , 8o, ..., Sy be 2-spheres in intM which realize the decomposition
of M into a connected sum of prime factors. By Remark (1.5) we may assume that
these spheres are pairwise disjoint. Let

= {(@i,/): bes; ;cbesS;)
and let us choose a pair (i,/) € 4 such that no sphere S, lies in intbcS\besS;. We

denote the regular neighbourhoods of S; and S;in M by R; and R; respectlvely We
ay assume R; N Ry =@ LetJbe a PL-arc in beS; such that:

intJ cchj\(Ri U Ry,
JNR, #B#JnR;.

Let R be a regular neighbourhood of Jin cl[bcS;N(R; U
{[(beSbeSy) N O(R; U RYINR} v cl[ORN(R; v Ry)]

is & 2-sphere. We denote it by §}. Consider the collection Sy, ..., 81, 7y Sia1reers Sk
of 2-spheres in M. These spheres realize the decomposition of M into a connected
sum of prime factors and the set of pairs (i,j) for which beS;=besS; for
S, ;€ {8y, .., 8j, ..., Sy} contains fewer elements than 4. Hence, after finitely
many modifications of the above type, we obtain a full system of 2-spheres in M.

(1.8) LemMa. Let {S;, Sa, ..., S} be a full system of 2-spheres in a manifold
McE? and let x ¢ M. If there is a 2-sphere S in intM which divides E?® between
the unbounded component of E\X and M(x), then there is an index i such that
M(x)<=besS;.

Proof. Let S be a 2-sphere in intM which divides E?® between M(x) and the
unbounded component of E¥\M, and suppose M(x) n beS; = & fori =1,2,...,k

R)1: 1t is clear that the set
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Then S divides E® between sets N(x) and the unbounded component of E3X\N
k
where N = |J beS; U M. This means that N is not a prime manifold. On the other

i=1
hand, N is homeomorphic with one of the factors of the decomposition of M into
a connected sum of prime factors by spheres Sy, S,, ..., S;. This contradiction
finishes the proof of Lemma (1.8).

(1.9) LeMMA. Let M be a manifold in E® and x ¢ M. Suppose that By, B, are
PL-3-cells in intM such that OBy and 0B, are in general position and
M(x)cbe(By U B,). Then there is a 2-sphere S in intM which divides E® between
M(x) and the unbounded component of E>\M.

Proof. Since 8B, and 8B, are in general position, 0By N 8B, is a finite family
of simple closed curves (see [13] Chapter I). Let p be a point in the unbounded com-
ponent of E3\M and let J be a PL-arc with ends x and y such that J » By = .
Moreover, let us suppose that J meets dB, transversely and that the number of points
of the set J N 3B, is minimal (i.e. that, for any other arc J' in M with ends x, y and
with J' n B, = @, the set J n 8B, does not contain fewer points than J' n dB,
does).

Let pedB, nJ be a point such that pecl (unbounded component of
E3\(B; L B,)) and no point which lies between p and x in J belongs to ¢l (unbounded
component of E3\(B, U B,)).

By C we denote the closure of that component of dB,\dB, which contains
point p. Then C is a disc with wholes. Let us observe that M (x)<bc(C U By). This
follows from the fact that C U B, decomposes E* and the arc J has only one point
common with C U B;.

Let R be a regular neighbourhood of 8B; in M such that p € (C\R), cI(C\R)
is a strong deformation retract of C and R n C is a finite family of closed simple
curves, and J N R = @.

Let D<0R be a disc such that D n C = dD. Let K be a component of C " R
such that 0D< K. Consider the set

[c; =Du(CNK).

C, is a disc with wholes such that 0B, U C, divides E* between M (x) and the
unbounded component of E*\M, J n C, contains only one point and C; n 8B,
contains fewer components than C n 8B, does.

Hence after finitely many steps we obtain a disc C; without wholes such that
C, N 8By is a simple closed curve, and C, U B, divides E® between E3\M and
M(x), and J n C; contains exactly one point.

Let Dy, D, be 2-discs in 0B, such that D, w D, = 9B, and D, n D,
= (N By = 8C;. Let us consider a 2-sphere S =D, U C, or D, u Cy. It is
easy to see that in both cases M (x)cbcS. The proof is completed.

(1.10) DerNiTION. Let N M be a submanifold in a manifold M E3. We
say that N is well embedded in M if the following conditions are satisfied:

icm®
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() if x¢ M and M(x) is bounded set, then N(x) is bounded set;

(i) if x,y ¢ M and there is a 2-sphere S in intM which divides E3 between
M(x) and M(y), then there is a 2-sphere S’ in intN which divides E* between
N(x) and N(»).

(1.11) LemMa. Let N be a well embedded submanifold in a manifold M= E®.
If {Sy, Sy oo, Si} is a full system of 2-spheres in M, then there is a full system
{81,8%, ... Sp} of 2-spheres in N and an isotopy h;: M — M such that

h|OM = idyyy  for every tel
and

S; € {hy(SD), hy(S5), s By (S}

Proof. Let {S7, S5, ..., Sy'} be any full system of 2-spheres in N. Let us observe
that the definition of a full system of 2-spheres and the definition of well embedding
imply that the following condition is satisfied (after a possible change of numbering
of Si):

(1.12) beS; ndMcbeS; for i=1,2,..,k.

First of all let us prove that there is a full system {S7, S3, ..., Sp} of 2-spheres

in N such that the following condition is satisfied:

(1.13) be(beS; UbeS)NnaM =@ for

for every i=1,2,..,k.

i=1,2,.,k.
Suppose there is x ¢ M such that
M(x)c=be(beS; U beSY) .

Lemmas (1.9) and (1.8) imply that there is a j # 1 such that M(x)<bcSj. Let J be
a PL-arc in N which joins S} and the unbounded component of c1(E*\N) such that
intJ n (beS} U beSy) = &. We denote the regular neighbourhood of J in
N\int(beS; U beSy) by R. Let us observe that R U beS; isa 3-cell.

Let p be any point in R'n §(N U beSy') and let R’ be a regular neighbourhood
of p in R\bcSy. The uniqueness of regular neighbourhoods implies that there is an
isotopy

Jfit NubeSy » NubeSy
which is constant outside any given open neighbourhood of R’ and is such that
Rcintfy(R'). It is clear that the family { (SY), ..., f1(S7=1), 87 . 10554 1)s s [1 (S}
forms a full system of 2-spheres in N and the set

be(beS; L be f1(SY)) n oM
contains fewer components than
be(beS; U beSY) N oM .

After finitely many steps we can obtain a new family {S}, ..., Sy} which is a full
system of 2-spheres in N such that

be(be S U beS)) N M = & .
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Suppose that N is well embedded in M and we-are given full systems of 2- sphsﬁ:es
£S5y i Sibs {805, Sipin M and'N respectively. We assume' that these families
satisfy conditions (1.12) and (1.13). Withoutloss of generality we may assume that§;
and Sy are in general position. Then Sy M S is a sum of finitely many simple closed
curves. Suppose that this set has'/n components. Let us-choose a point ¢ & S1\beS;
in such a way that there.is a curve F<Sy S which divides 7 between ¢ and all
the other components of -S; N S5 Let D be a 2-disc.in S7 which contains g and
4D = F. The curve F bounds in 8, two discs Dy and D, such that D; U D, =5,
and D, n D, = F. Consider two 2-spheres, §; = D v D, and S, =Dy D,
Conditions (1.12) and (1.13) imply that beS; or be 3, lies in M. Suppose that
M beS, is a 3-cell. Then there is an isotopy

hye M—>M

such that A, is constant outside any -given open neighbourhood of beS; and
hy(bcS;)=beSy. The spheres Sy and h,(S}) have fewer components of inter.seotim
than Sy N Si. After finitely many steps of the above type we find an isotopy
B, M — M which is constant on oM and such that h1(S{)<:ch1. Since
beS \bch, (S;)c M, there is an isotopy g, M~ M which is constant on dM
and such that f; k,(S7) = S;. In order to finish the construction of the required
isotopy we repet the above construction with respect to manifolds M\intbcsS,
and f; by (N)\intbeS; and so on. After finitely many steps we find an isotopy of M
onto itself which is constant on dM and which satisfies all the conditions of
Lemma (1.11).

(1.14) Dermarion. Let o: [0,1]— M be a PL-embedding such that
(1) € M. Let R, be a regular neighbourhood of w(I) in M and let R, be a regular
neighbourhood of (I) such that 8R;n dR,=0M. Let D be a PL-disc in
int(6R, N 8R,) such that w(l)edD. We denote the component of dR; N dR,
which contains D by D;. Let k: Ry — Ry be a small isotopy such that

Bcl(@R\Dy) U D U () = id,
hy(int Dy\D)<intR, .

By an almost regular neighbourhood of w(I) in M we mean the set R = Iy (Rp).

(1.15) LEMMA. Let M < E? be a manifold. Suppose we have:
Sys Sy wees S — different 2-spheres in OM,
k

Xis Xgs e r X — points in M\ U S; (not necessarily different),
i=1

a point y;€S; for every i =1,2,..,k,
PL-embeddings n;, ;2 I — M such that

(1) = 01) = x;,  10) = 00) = yi,
n(int]) U w(int])cintM ,
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. k K

7(intD) A (U efinth) U U n(intD)) = &
=

for every i =1,2, .., k.

If the embeddings w; and n; are homotopic rel. &I in M, then there is an isotopy
hy: M — M such that h(x) = x for any x€ oM and t el and hyw; = ;.

Proof. The case of k = 1 is proved in [20] p. 1290-1292. Let us observe that,
if I, is an isotopy of M onto itself such that ; w, = #4, then the embeddings /i, ,.
and 7, are homotopic in cl(M\R) where R is a sufficiently small almost regulér

p 3

neighbourhood of #,(Z) disjoint with {J [@/{0, 1)) v 70, 1))]. This follows from
=2

the fact that cl(M\R) is a strong deformation retract of M U F where F is the boun-
ded component of E3\S;. Now the proof of (1.15) may be obtained from the case:
of k=1 by an easy induction. ) -

Now let us define the operation of taking out 2-spheres from a manifold along
the paths. This operation and Lemmas (1.11), (1.18) and (1.17) will play the cruciak
role in the proof of the main theorem, which is formulated in the introduction..

(1.16) DerNITION. Suppose that M is a manifold in E2, Sy = {81, Sz, s Si}
is a finite collection of 2-spheres in intM such that beS; nbeS; = @ for i # j
and beS; N (E3\M) # @ fori = 1,2, ..., k. Suppose that foreveryj = 1,2,..., k
two paths o}, o?: I — M are given such that:

(1) a)§ is a PL-embedding for i=1,2,7=1,2, ..,k
k
(i) o (ntDcintM\ U S;, '
i=1
(i) 0}(0) = 03(0)eS; for j=1,2,..,k%
(iv) w}(1) ebeS; n oM,
() ©3(1) e 3M~cl(unbounded component of E>\M).

Let Q4 = {w}: i=1,2,j=1,2,..,k} Let R; be the union of almost regular-
neighbourhoods of a)}(]), a)?(]) and a regular neighbourhood of S; in M such that R;
is homeomorphic to S?x I for every j = 1,2, .., k and R; 0 R; e {wi (1), oj(1)}
for 7 # j. The set

k k
M(Sy, @) = cl(MN\ U R) U [05(D) v S; U o)
i=1 j=1

will be called a manifold M with 2-spheres Sy, ..., S, taken out along the paths:
W}, ey OF, OF, ..., OF .

The set of 2-spheres Sy, Sy, ..., S; and PL-arcs coj- (i=1,2,j=1,2,..,k
in M which satisfy all the assumption of Definition (1.16) we denote shortly by
(Sa> Qur)-

(1.17) LemMA. Inclusion M(Sy, Q) <=M is a homotopy equivalence.

Proof. One can see that M (S, Q) is a strong deformation retract of M.

(1.18) LemMA. Suppose NcM are manifolds in E®. Let (Sy, 23) (Sy. Qy)-
be sets of spheres and paths in N and M, respectively, which satisfy all the conditions
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of definition (1.16). Suppose Sy = {Sy, Sy s Sifs Sy = {81,825 er Ska ees Subs
Oy = {0k i=1,2,j=1,2,.,k} Qv = (nhi=1,2, j=1,2,..,n}. More
over, let us assume that

715-(0) = a);(O) s i=1,2, j=1,2,...,k

1) = o)1) for
and .
Aiintl) A wlintl) = @ for i=1,2, i=12,...k.

If n}:w}re].ﬁ[ inMforeveryi=1,2andj=1,2,.., k, then there is an embedding

g: N(Sy, Q) = M(Sy, Qu) such that
g(S) = S; for i=1,2,...k,
glS; is homotopically trivial for i>k,
.and the following diagram commutes up to homotopy:

]
M(Sy, u) < N(Sy, Q)

N n
M =3 N

Proof. Let My, My, ..., M, be the closure of the components of

k
M(Sy, 2N U [0} L S; 0 0} (D]
i=1
“We assume that M, n (unbounded component of E3NM) # @. Similarly we define
the sets Ny, Ny, ..., N,. The embedding g we define in the following way:

i=1,2,..,k,
i=1,2, j=1,2,.,k.

gIN, = idy, for
glnid) = i)~ for

k
Let h, be an isotopy of CI(M\.gleSi) onto itself such that hm? = a)ll for

j=1,2, ..,k Such an isotopy exists by Lemma (1.15). Without loss of generality
we may assume that h; maps the almost regular neighbourhoods of 17}([) for
j=1,2,.., k which we use in the operation of taking out 2-spheres from N onto
the almost regular neighbourhoods of w}(] ) which we use in the operation of taking
out 2-spheres from M. So ky|N, maps N, into M,.
For each point #}(1), j = k+1, k+2, ..., n, let us choose a 3-cell B; in M,
such that
B;ndM,
ni(1) € 0B,
B;nB; =@ if

is a 2-disc in M n M, ,

(1) # o5(1) .
Let f,: M, — M, be an isotopy such that f; is constant outside a small neighbour-
n

hood of U B; and fi(intB) n B, = &. We define

i=k+1

gINo = f11yNg
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and

gln®(D L S; U nj(I) = an arbitrary embedding into B; such that

g’ = () for j=k+1,k+2,..,n.
It is obvious that g has all the required properties.

Let us formulate the following version of the well known “sphere theorem”:

(1.19) TrEoreM ([13] Theorem 4.11, p. 50). Let M be an oriented manifold.
If the group m,(M) is non-trivial, then there is a homotopically non-trivial embedding
h: 8% — intM.

This theorem implies the following

(1.20) COROLLARY. Let McE® be a manifold and let Sy = {81,825 s Si}
be a full system of 2-spheres in M. For any collection of paths

Oy ={oh i=1,2,j=1,2,...,k},

such that M(Sy, Qu) is well defined, the closure of every component of
1
M Sy, QN U [0f@) v S; v 07(D)]
i=1

is an aspherical manifold.

In order to prove the next lemma we need the following two facts:

(1.21) TuEoREM ([13] Theorem 8.6, p. 73). If M is a manifold with 7, (M) finitely
generated then there is a compact manifold Q=M with iy: 7(Q) — (M) an iso-
morphism.

(1.22) Tueorem ({24] Lemma 2). If a manifold M is a connected sum M #: M,
where M, is not a homotopy sphere for i = 1, 2, then the embedding i: S% - M %M,
onto clM; n clM, generates a non-trivial element of m,(M). Moreover, if S? embedded
in intM does not separate M, then it generates a non-trivial element of my(M).

(1.23) LemMa. Suppose that M is a compact oriented aspherical manifold. If H is
a finitely generated subgroup of the group (M), then there is a compact aspherical
connected manifold N with n;(N)~H.

Proof. Let L be a covering space over M such that (L)~ H. If the index of H
in 7y(M) is finite, then we set N = L. Suppose that the index of H in 7;(M) is infinite.
Then L is a non compact manifold. From Theorem (1.21) we infer that there is
a compact submanifold N=L such that iy: m(N) — n,(L) is an isomorphism.
Since L is non-compact, we have N # @. In order to finish the proof it is sufficient
to prove that N may be chosen in such a way that 7,(N) = 0. Since L is aspherical,
Theorem (1.22) implies that each 2-sphere S 2 in L bounds a homotopy 3-cell in L
and we may assume that N = N, which means that N does not have any 2-sphere
in 8N. Suppose 7,(N) 5 0. Then by Theorem (1.19) there is 2 2-sphere ScintN
which is niot contractible in N. This means that in the 3-cell B which is bounded by §
in L there is a point which does not belong to N. This implies that B n &N is non-
empty. Since N =N, n,(B n N) is non-trivial. Moreover, i (N) =, (cLV\B))*

2 — Fundamenta Mathematicae CXV
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*m,(B n N). But the inclusion B n N — L induces a trivial homomorphism, which
contradicts the assumption that i: N — L induces the isomorphism of fundamental
groups. )

Let us also formulate the following lemma:

(1.24) Lemma ([13] Lemma 6.7, p. 63). Suppose that M is a compact oriented
manifold. If OM # @, then H (M, Z) is infinite.

II. Basic theorem. In this section we will use the notation introduced in the
preceding chapter. ‘
Let (X7, xo) = im{(X}, xo), fis'} be a pointed continuum forevery i = 1,2, ...

@0

By a bouquet \/ (X}, x,) we mean a pointed continuum (X, x,) defined as follows:
i=1

(X, x0) = Hm {(X,., x0), g57 "}
where

(Xna XO) = (X,}, xO) v (X:’ xo) V..V (Xr':'v ‘XO) ’
g:H]X,fH = Sfl for i=1,2,..,n,
g'ﬁﬂ()ﬂii) = {xo} .
The continua (X, x,) are called the leaves of the bouquet (X, x;).
(2.1) Remark. If we additionally assume that the set X;\{x,} is connected for
everyi= 1,2, ..., then our definition will be equivalent to the definition of a disperse
bouquet introduced by A. Gmurezyk in [12].

The following theorem will play an important role in the shape theory of com-
pact connected pointed 1-movable subsets of E3.

(2.2) THEOREM. Suppose that (X, xp)<E® is a pointed 1-movable continuum.
There are pointed contimia (Y, yo), (Z, zo)<E® such that
() Sh(X, xo) = Sh(¥, yo)+5h(Z, z,),
00
(D (Y, 30) =_ﬂl(Pmp0) where (Py11, po)<(Py, po) < E® is an aspherical poly-
i=
hedron for every n=1,2, ...,
(ifi) (Z, zo) is a bouguet of 2-spheres.
We start from the following lemma:

(2.3) LemMA. Let X E® be a continuum. Then there is a continuum. Y. < E? of

the same unpointed shape and a sequence of manifolds M, in E*.such that the following
conditions are satisfied:

@) YSM,y oM, for eery n=1,2,..,
w
(i) Y= (M,
n=1
(L) My is well embedded in M, for every n=1,2, ...,
(iv) there is a sequence ( finite or not) Sy, S,, ... of 2-spheres in E® and.a sequence

of integers 0<i; <iy<... such that {S,, S,, ..., Sy} is a full system of 2-spheres in M,
for every n = 1,2, ..
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Proof. Let N, be any sequence of manifolds in E3 which satisfies the following
conditions:
XN, ,icN, for n=1,2,..,

X=N,.
n=1
Let N,, be a subsequence of a sequence N, which has the following property:

if x¢ N, and N,(x) is bounded, then N, (x) is a bounded set for every j=>i
or N,(x) lies in the unbounded component of E*\N,,,,.

The existence. of such a sequence follows from the fact that the set E3\N,, has
finitely many components for every n=1,2, ... . ‘

Let F; be the sum of all bounded components of E*\N,, which lay in the
unbounded component of E3\N,,,,- ‘

We define a new sequence N, by setting

N{=N,uF, for i=12, ..

o
Tt is clear that X< N/y, = Ni and that X = [) Ni. Let N., be a subsequence of
i=1
a sequence N, which satisfies the following condition:

if x,y¢ N, and there is a 2-sphere S in intN,, such that N;((x);bFS am;l
N'(3) nbcS = @, then there is no 2-sphere in intN,,, which divides E
;) ,

between N, (x) and Np,.(3), or for every k>n; there is a 2-sphere Sy in
int N, which divides E® between Ni(x) and Ni(3).

We use the sequence Ny, to obtain a new sequence M, defined by induction in the
following way: : )
Let us divide the set {Fy, Fi5 s F,} of components of EB3\N,,, where Fy is
the unbounded component,into disjoint subsets Ci, Cy, ...r Cysuch that Fy, F;eC
if and only if no 2-sphere in intA,, divides E 3 between F; and F;. If no 2-sph§re
in int Ny, divides E? between F; and F; for F;, F € G and[=1,2,.., p, then we'set
Mi =N, .
If in N,, there is a 2-sphere § which divides E3 between F; and F.j for F;, F; e Cp»
then we remove from C; the set F; or the set F; where i # 0 # ] (but only one);
After finitely many steps we can find for every [=1,2, a8 B non-empty subs«g t
€} C such that no 2-sphere in intd,, divides E 3 petween F; and F; for Fy, Fje ()
and I =1,2,..,5.
Now we set

s
M} = N, v {F: Fi¢_UIC£}.
i=
Suppose we have defined manifolds MY, ..., M} such that
' MioN,=>Miyy
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and

for any x, y ¢ M; such that there is a 2-sphere § in int}/; which divides E*
between Mj(x) and Mj(y) there is a 2-sphere in intX, ,, which divides E®

between N,,,.(x) and N, ().

If for every x, y ¢ N, ,, and a 2-sphere in intNV,

Nyt and Ny, (), there is a 2-sphere in intA,,,,
Niwoo®) and Ny, (), then we set

-’ ’r
Miry = N,

.+, Which divides E® between
which divides E® between

K+l *

Otherwise let us divide, as above, the set of all components of E*\N,, ., into disjoint
sets Cy, Cs, ..., C, such that if F;, F; € C, then no 2-sphere in intd,,_,, divides E3
between F; and F; for I =1,2,...,p. Let us observe that

24) if F;, FyeCrand F; nbeM;, # @ # F; n beMy, then there is no 2-sphere
in intNy, ., which divides E* between F; and F;.

K2

For every I =1,2,...,p let us choose a subset C,c C, such that

}'f there is an F; e C; with F; n beMy, # O, then F; € C;; if there is a 2-sphere S
inintNy, ,, which divides E> between F; and F;and F; n beMj = F; 1 beMy = @,
then C; contains exactly one of these sets.

We set

p
My = Nipear Y {Fi: Fi¢UCi}.
i=1

Cwondition (2.4) implies that M;.;>N, oM, for every k = 1,2, ... and hence
kDIM,’c = X. Therefore M; is a sequence of manifolds which satisfies conditions
@i)-(iii) of Lemma (2.3) for ¥ = X.

The sequence M, and the family {S;, S,, ...} of spheres will be defined inducti-
vely as follows:

M, = M and {Sy, S,,..., S} is any full system of 2-spheres in M,. Such
a system exists by Lemma (1.7).

Suppose we have defined M, M,, ..., My, 81,8,,..,8;, such that
.Ml:MZD..A?M,‘, 0<iy <i <<l {81, 83, .00, Sy} s a full system of 2-spheres
In My, My, is well embedded in M;, and there is a homeomorphism k;: M] — M,
such that the diagram

M; o My,

R

M o M,
commutes up to homotopy for every i = 1,2, ..., k—1.

Since My, is well embedded in M, I My.1.1) is well embedded in h(M}) = M, s
Therefore by Lemma (1.11) there is a full system {81, 81, ..., Sty of 2-spheres
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in hy(M},) and an isotopy f;: M, — M, which'is constant onto dM; and such that

fiSp=S; for i=1,2,..,0.
We set
Mysy = [ildMis1)
and
Iewr = fihy,
and

s Ster = Mer 1(Sheas) -

Since £, is an isotopy, the above diagram is commutative up to homotopy, which

Sik+1 = hki-l(St!k—I-l):

W
implies that ¥ = [} M, has the same unpointed shape as X. The proof is finished.
k=1

(2.5.) COROLLARY. A pointed continuum (X,xo)cE® has a non-trivial
pro-7y(X, xo) if and only if Sh(X)=Sh(S™).

Proof. Let ¥ be a pointed continuum such that Sh(Y) = Sh(X) and there is
a sequence M, which satisfies all the conditions given in Lemma (2.3). If (X, xo)
is not approximatively 2-connected, then by the “sphere theorem™ (Theorem 1.18)
the full system of 2-spheres in A, is non-empty for almost all #» and hence Y contains
a 2-sphere S which is a retract of Y. Therefore Sh(X)=Sh(S?).

In the proof of Theorem .(2.2) we will need a characterization of pointed
1-movability in terms of approximative paths (see [18]).

Suppose that X, is a sequence of ANR’s such that X,,,;<=X, for every

ow
n=1,2,.. and let X = () X,. Let x, y € X. By an approximative path from x to y

n=1
we mean a family w = {®,} of maps such that
' @, (1,0, 1) > (X, %,3).,
0,20, 1el0] i Xinmm
for every n,m=1,2, ...
The following theorem is a special case of Theorem 3.1, p. 151 in [18].

(2.6) THEOREM. Let X = 8 X, where X, ., <X, and X, is a connected compact
ANR foreveryn=1,2, ... Th’:mLX is pointed 1 -movable if and only if for every points
x,y € X there is an approximative path from x to y.

We will also need the following result:

(2.7) Teeorem ([8] Proposition, p. 60). If Sh(X) = Sh(Y) and (X,xo) is
pointed 1-movable, then for any y€ Y, the pointed continuum (Y, yo) is pointed
1-movable and Sh(X, xq) = Sh(Y, yo).

Now we are ready to prove Theorem (2.2).

Proof of Theorem (2.2). Let (X, x,)<E? be a pointed 1-movable continuum.
By Theorem (2.7) and Lemma (2.3) we may assume that there is a sequence M, of
manifolds in E® which satisfies conditions (i)—(v) given in Lemma (2.3).
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In each bounded component of E3\X let us choose one point. Let {x;, x5, ...}
be the set of all these points. Let x,, be any point in the unbounded component
of E™X. Let us choose a point y, € X such that the segment \

I, = {ze E*: thereis 7€ [0, 1] such that rx,+(1 —1)y, = z} has only one point
common with X for every n=1,2,...

Let D be a PL-disc in E3\X such that x,, eintD and I, 0 D = {x.}. Let us
consider the continuum

«@
=XuUL,ubul,
n=1

It is clear that X is a strong deformation retract of X' and hence has the same
pointed shape. Moreover, one can see that by adding some PL-3-cells to each M,
we can obtain a sequence M, of manifolds in E 3 such that

NM; =X,
n=1

a sequence M) satisfies conditions ()-(iv) of (2.3),

DcéM, for every m=1,2, ..,
x,€0M, uint M, .

Let Sy, S,, ... be a family of 2-spheres in X and let i</, <... be a sequence
of integers such that {Sy, ..., Sy} is 2 full system of 2-spheres in M.

We choose one point z; € S; for each i = 1,2, ... Since Sh(X) = Sh(X") and
(X Xo) is pointed 1- moxable then by (2.7) (X', A) is pointed 1-movable for any

€ X' and hence we can find approximative paths ®, = {®,}, n, = {#i} such that:

o, is an approximative path from z, to x,,
#, is an approximative path from z, to x,,
for every n = 1,2, ... Without loss of generality we may assume that
o) is a PL-embedding,
oy l) N M| = cun(l) = X,
CD,,(I) n (Dm(] t“'n’:f’
of(intD e M\ U beS;,
i=1

min(k,l)
of~orreldl in Mg\ U1 intbe Sy,

5=
7\ is a PL-embedding,
nN<besS, N M},
ndI) 0 (S, U M) = {Zm xn}:
nheenbrel 81 in Migng sy O beS,,

for every i, k,l,m,n=1,2,..
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Let Sy, = {Si, Sas s 81, ) Qg = {005 s ©F, 14, .., mir}. Then by Lemma
(1.18) there is an embedding

Gt Mo i(Sate s Qarly ) = MulSudls Qual)

such that the following diagram commutes up to homotopy for every n = 1,2, ...

an

Jur'-(SM:n QM,'.) = M1 (Saters QM:“)
N N
M, = My

Hence Sh(X’) = Sh(lim {M}(Sy’, @)> gu})- If we now coniract all wi(l)
to a point X, , then the resulting continuum is, by Lemma (1.18) and Corollary (1.20),
a bouquet each leaf of which is a 2-sphere or an intersection of aspherical manifolds.
The proof is finished. \

Remark. The assumption that (X, x,) is pointed 1-movable is essential. In
order to see that, it is sufficient to change S*! into S? in T. Watanabe’s example
given in [29] p. 239.

The following corollary is an immediate consequence of the above theorem:

(2.8) COROLLARY. A pointed continuum (X, xo)<E® is pointed movable if and
only if a pro-group pro-m,(X, x,) is movable.

Examples of locally connected (and therefore pointed 1-movable) non-
movable E3 subcontinua (see [1] and [21]) show that the assumption of movability
of pro-m,(X, x,) cannot be replaced by a weaker one where pro-n;(X, xo) satisfies
the Mittage-Leffler condition.

The‘following corollary does not require any proof either:

(2.9) COROLLARY. Suppose (X, x,) is a pointed 1-movable subcontinuum of E>.
Then (X, xo) is approximatively n-connected for n>2 if and only if Sh(X, x,) does
not dominate Sh(S?, sp).

The next corollary describes all the approximatively 1-connected contmua
up to shape.

(2.10) COROLLARY. If the pointed contimum (X, xo)<E? is approximatively
1-connected and Sh{(X, x,) is non-trivial, then (X, x,) is pointed movable and has the
shape of a bouquet of 2-spheres.

1I1. Shapes of pointed FANR -spaces in E*. The question whether it is true that
every FANR-space is of a polyhedral shape — is generally answered in the negative.
D. A. Edwards and R. Geoghegan in [11] have constructed a pointed FANR-space
of fundamental dimension two which is not of a polyhedral shape. The following
problem, raised by K. Borsuk in [2] (Problem 8.1, p. 350), remains open:

Ts it true that every FANR-set lying in E> is of a polyhedral shape?

The main theorem of this section states that in the case of pointed FANR—sets
the answer to the above question is positive.
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The proof of this theorem is based on the following two lemmas:

(3.1) LeMMA. Jf (X, xo) = E® is a pointed 1 -movable continuum with the countable
ny (X, %,), then (X, x,) is pointed movable.

Proof. By Theorem (2.2) we may assume that (X, x¢) = ) (X,, xo) V(Z, zp}
n=1

where (X,, Xo)=(X,+1, Xo) is an aspberical manifold in E* for n = 1,2, ... and
(Z, z,) is a bouquet of 2-spheres. Since the operation of one-point union preserves
pointed movability, it is sufficient to show that (X, x,) is pointed movable. Since
pro-n (X, x,) satisfies the Mittage-Leffler condition and n,(X, x,) is countable,
pro-m, (X, x,) is stable (see [7], Corollary 2.19, p. 13). Hence this pro-group is
movable. Now Lemma (3.1) follows from Corollary (2.8).

(3.2) LEMMA. Suppose (X, x,) is a pointed 1-movable continuum in E> with
the countable (X, x,). If pro-ny(X, x,) is trivial then (X, xo) is of a polyhedral
shape.

o0
Proof. Theorem (2.2) implies (X, x,) = () (X, xo) where (X1, xo) ={X,, X}
=1

is an aspherical manifold for n = 1, 2, ... Lemma (3.1) implies that (X, x,) is pointed
movable. Hence (X, x,) is a pointed FANR-space (see [7], Theorem 7.12, p. 37).
This means that there is an index n, such that Sh(X,,, x,)=Sh(X, x,). Let Q be
an aspherical manifold such that 7,(Q, ¢o)~m;(X, x;) (see Lemma 1.23). Let

[t (Xogs %) = (X, x0)

be shape morphisms such that fg~idyy,y. Let A (@, o) = (X, Xo) be a map
which induces an isomorphism hy: 7,(Q, go) = im(g)y =7, (X, xg) (see [26],
Theorem 9, p. 427). The shape morphism fi induces an isomorphism

(Mt w25 40) = m(X, %)

for all » = 1,2, ... and hence it is a shape equivalence (see [22] p. 250).

The main theorem is the following:

(3.3) THEOREM. Suppose (X,xo)<E? is a pointed connecied FANR-space.
There is a polyhedron (P, po) such that Sh(X, x,) = Sh(P, p,).

Proof. Suppose (X,xo)cE® is a pointed connected FANR-set. By The~
orem (2.2) we may assume that Sh(X, xo) = Sh(Y, yo)-+Sh(Z, z,) where (Z,z,)
is a bouquet of 2-spheres and Sh(Y, y,) is approximatively 2-connected. Since
§h(Y Vo) SSh(X, xo), (¥, ) is a pointed FANR-set and hence by Lemma (3.2)
is of a polyhedral shape. Since (X, x,) is FANR-set, ﬁz(‘X , Z) is finitely generated
and hence (Z, 7o) is a finite bouquet of 2-spheres. The proof is finished.

Let us prove the following corollary:

(3.4) CorOLLARY. Suppose (X, xo), (Y, yo)<=E* are pointed connected FANR-

sets. Then Sh(X, x,) = Sh(Y, y,) if and only if 7y (X, x) =~y (Y, 3) and Hy (X, Z)
~H,(Y, Z).

and gt (X, xg) = (X, Xo)
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Proof. By Theorems (2.2) and (3.3) we may assume that Sh(X, x,):
= Sh(X,, x0) +Sh(X;, xo) and Sh(¥, yo) = Sh(Yy, ¥0)+Sh(¥s, ¥o) where (X, xo),
(Y., 1) are aspherical polyhedra and (X,,xo), (¥,,),) are finite bouquets of”
2-spheres. The condition m,(X, xo)~x,(Y, o) implies =z;(Xy, xo)=7m; (Y1, ¥o)
and hence (X, xo)=(Y;, ¥o). Since the groups H,(X,Z) and H,(Y, Z) are finitely
generated and (X, xo)=(Yy,¥,), the condition Hy(X, Z)y~ H,(¥,Z) implies.
Hoy(X,,Z)~Hy(Y,,Z) and hence (X,,xq)~(Y,,yo). This implies Sh(X, xo)
= Sh(Y, yo). The inverse implication is obvious. The proof is finished.

Theorem (3.3) states that a pointed FANR-set in E* has a po]yhedral shape.
The following problem remains open:

(3.5) ProBLEM. Let (X, x,) be a connected pointed FANR-set in E3. Isit true
that there is a pointed polyhedron (P, po)<E> of the same shape?

Suppose (P,po)=E* is a connected aspherical polyhedron. Let (&, Xo) be-
2 pointed continuum (not necessarily in E?) such that Sh(P, po) = Sh(X, x;). Then
(X, x,) is a pointed FANR-set and 7,(X, x,) is a finitely generated subgroup of”
a group 7;(P, po). By Lemma (1.23) we infer that there is an aspherical polyhedron
(Q, go) with 7,(Q, qo) = =1(X, Xo). Hence Sh(X, Xo) = Sh(Q, g,). We have obtained
the following theorem:

(3.6) THEOREM. Suppose (P,po)<E?® is a connected aspherical polyhedron..
If Sh(P, po)=Sh(X, xo), then there is a polyhedron (Q, 4o) such that Sh(Q, qp)
= Sh(X, x;).

The following problem remains open:

(3.7) PROBLEM. Suppose (P,po)<=E? is a connected polyhedron and Sh(P, po)-
>Sh(X, xo). Is it true that (X, x,) is of a polyhedral shape?

The above problem seems to be rather difficult. One can prove that it is equi-
valent to the following algebraic question:

(3.8) Is it true that for every polyhedron (P, pg)=E> the group Ry(my(P, po)y
is trivial?

(For definition of Ky(G) see [28]).

Let us note that, if (P,po)<=E> is a polyhedron and Sh(P, Do) dominate
Sh(X, x,), then (X, x,) need not be embedded up to shape in E3 (see [16]).

(3.9) Remark. Recently J. Dydak and H. Hastings have proved that every-
FANR-set of fundamental dimension 2 is a pointed FANR-set. Therefore all the
results of this section are true for unpointed FANR-sets in E3 (see [9]).

IV. Characterizations of shapes of E> pointed subcontinua. Suppose (X, xo) = E 3
is a pointed continuum. We denote the bouquet of #-copies of 2-spheres by S,..
Let us define number s(X, x,) by setting’
sS(X, xo) = max{h: Sh(X, x¢) = Sh(S,, so)} -

If such a number does not exist, then we set. s(X, xo) = c0.
If we want to describe fully the shape of the pointed continuum (X, Xo)=E 3
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it is sufficient to know the number s(X, x,) and the pro-group pro-m (X, xy).
Namely. the following theorem holds: ‘

(4.1) THEOREM. Let (X, x,), (¥, yo)<E? be pointed 1-movable continua. Then
the following conditions are equivalent:

(i) Sh(X, x,) = Sh(Y, yo),

(i) pro-m (X, xo) mpro-ny (Y, yo) and s(X, xo) = s(¥, yg)-

Proof. Implication (i)=>(ii) is obvious. Suppose condition (ii) holds. By
“Theorem (2.2) there exist continua (X, xo), (X3, %o}, (Y1, ¥o)s (Y2, ¥o) such that

Sh(X, xp) = Sh(X;, xo)+Sh(X,, xo),

Sh(¥, 30) = Sh(¥}, yo)+Sh(¥z, yo)

(X1, %o)s (¥y, ¥o) are inverse limits of inverse sequences of aspherical polyhedra,
(X,, xo), (¥, ¥0) are bouquets of 2-spheres.

Since (X;, x,) and (Y;,y,) are inverse limits of inverse sequences of aspherical
polyhedra and

pro-my (X, xo) = pro-m; (X, xo) &pro-ny(¥, yo) = pro-my(¥y, yo) ,

the isomorphism of these pro-groups is induced by a shape morphism (see [26],
Theorem 9, p. 427). Therefore, by the generalized Whitehead theorem (see [7],
Theorem 6.2', p. 27), we infer that Sh(X,, xo) = Sh(Yy, y,). Since Sh(X|, xy)
and Sh(Y;,y,) does not dominate Sh(S?, so), the condition s(X, xo) = s(¥, ¥,)
implies that Sh(X,, xo) = Sh(Y,,¥,), and therefore Sh(X, x,) = Sh(Y, y,). The
proof is finished. ’

(4.2) Remark. Easy examples show that the condition s(X, xp) = s(¥, 3,)
in fhe above theorem cannot be replaced by ‘a weaker one where H,(X,Z)
~H,(Y,Z).

In [2] K. Borsuk has raised the following problem (Problem 8.2, p. 351):

Is it true that every movable compactum X for which the group 7,(X, xg)
is finitely generated for every xo € X and all Betti numbers p,(X) are finite and
Fd(X)<oo is a FANR-set? :

In the case of pointed continua the following theorem gives a partially positive
answer:

‘ (4.3) TrHEOREM. If (X, x0)<E® is a pointed 1-movable continuum such that
(X, xo) is countable and the group H,(X,Z) is finitely generated, then (X, x,) is
a pointed FANR-set.

Proof. By Theorem (2.2) we may assume that (X, x,) = (Y, y,) v (Z, Z)
where (Y, 3o) is the inverse limit of an inverse sequence of aspherical polyhedra
in E? and (Z, z,) is a bouquet of 2-spheres. Since the group Hy(X, Z) is finitely
generated, (Z, 2o} is a finite bouquet. Moreover, since 7,(X, xo)~m,(Y, Yo) is count-
able and pro-n,(Y, yo) is trivial, Lemma (3.2) implies that (Y, y0) is of a polyhedral
shape. This means that (X, x) is of a polyhedral shape and therefore it is a pointed
FANR-space. The proof is completed.
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Let us note the following corollary:
(4.4) COROLLARY. A pointed 1-movable contimuum (X, xo)cE® has a trivial
shape if and only if the groups m (X, xo) and Hy(X,Z) are trivial.
Let us observe that the above corollary may also easily be obtained from
Corollaries (2.8) and (2.10).
Another characterization of pointed continua of trivial shape in E? is given
in the following theorem:
(4.5) THEOREM. A pointed continuum (X, Xo)<E 3 has a trivial shape if and only
if it is pointed 1-movable and the groups H(X,Z) and H,(X,Z) are trivial.
Proof. By Theorem (2.2) we may assume that (X,x,) = (¥, Yo VI(Z, z)
W o
where (Y, 30) = (¥, ¥o) and (Yhi1,20) (Y, o) s an aspherical polyhedron
n=1
in E? for n=1,2,... and (Z,z,) is a bouquet of 2-spheres. The condition
H,(X,Z) = 0 implies that Sh(Z, zo) is trivial. Suppose Sh(¥, y,) is non-trivial.
Since (¥, y,) is pointed 1-movable, pro-m,(Y, yo) satisfies the Mittage—Leffler con-
dition. Without loss of generality we may assume that for every n and m>1 the
following condition holds:

(i:+1)#(751( Yae1s J’o)) = (i:'z'+m)#(7f1( Ytms J’o)) .

Let us denote the group (i**1)4(n1;(¥ys1, ¥o)) bY Ay,. At is clear that the pro-group
f4 "1 is isomorphic to pro-m,(Y, o). Moreover, the homomorphism
instn J P. P
(g Apsr — 4,
is an epimorphism for every n = 1,2, ...

By Lemma (1.23) we can find aspherical PL-3-manifold P, such that
7y(P,, po)~ A, for every n = 1,2, ... Since (P,» Po) is aspherical, we can find a con-
tinuous map

gn**t (Purts Po) = (Pus Po)
such that
(gn" s =  Daldnes -
Therefore
Sh(Y, y¢) = Sh(lim{(®,, o). g5 *}) -

From. our construction it follows that (gh*')4 is an epimorphism for every
n=1,2, .. Since P, is aspherical and not contractible, we have P, = P,. Moreover,
(X, xg)=E? implies &P, # @ for every n=1,2, ... Therefore, by Lemma (1.24)
we infer that H,(P,, Z) is infinite and

@t Hy(Pusss Z) = Hy(Py, 2)
is an epimorphism. Therefore the group

H(Y,Z) = Him{(P,, po)» g3+'}, Z)
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is mon-trivial, which contradicts the assumption ];fl(_Y,Z )= H 1(X,Z) = 0. The
inverse implication is obvious. The proof is completed.

Recently J. Krasinkiewicz and P. Minc have proved that arcwise connected
continua are pointed 1-movable (see [18]). Combining this result with Theorem (4.5),
one can obtain the following:

(4.6) COROLLARY. Let X< E® be an arcwise connected continuum. If H (X, Z)
and H,(X,Z) are trivial, then for every xo€ X the shape Sh(X, xg) is trivial.

As a special case we have obtained the following corollary (see [3], Problem 6.1,
p. 216): :

(4.7) CorOLLARY. 4 locally contractible continuum X< E? is an AR-set if and
only if X is acyclic (i.e. H(X,Z)=0 fori=1,2,.)

V. Pointed continna in E* and suspension. We denote by XX the suspension of
a continuum X. Let us prove the following theorem:

(5.1) Tueorem. Suppose (X, xo)=E® is a pointed contimuum. If E3\X is con-
nected, then (£X, xo) has the shape of the inverse limit of an inverse sequence of finite
bouquets of 2-spheres. If, moreover, pro-H, (X, Z) satisfies the Mittage-Leffler
condition, then (X, xo) has the shape of a bouquet of 2-spheres.

Proof. Since E3\X is connected, we infer by the well known Alexander duality
theorem ([26], Theorem 16, p.295) that Hy(X,Z) = 0. Since Fd(X)<2, H"(X,Z)
is trivial for n>2. We recall that

c(X) = max{n: H"(X,Z) # 0},

and if X is approximatively 1-connected and has a finite fundamental dimension,
then Fd(X) = ¢(X) (see [23]). Therefore we have

cEX)<c(X)+1<2
and hence Fd(ZX)<2. On the other, hand, if pro-H(X, Z) is non-trivial, then

" pro-H,(ZX, Z) is non-trivial and hence Fd(ZX) = 2. In [27] S. Spiez has proved

that a continuum of fundamental dimension » which is approximatively k-connected
for k = 1,2, ..., n—1 has the shape of the inverse limit of an inverse sequence of
finite bouquets of n-dimensional spheres. If pro-Hy (X, Z) is trivial, then of course
Sh(ZX, xo) is trivial. If pro-H,(X, Z) satisfies the Mittage-Leffler condition, then
(ZX, x,) is movable and hence has the shape of a bouquet of 2-spheres.

Let us formulate the following corollary:

(5.2) COROLLARY. Suppose (X, xo)=E? is an arcwise connected continuum such
that the set E3\X is connected. Then there is a continuum (Y, yo)< E® such that
Sh(ZX, xp) = Sh(¥, y,).

Proof. Since X is arcwise connected, it is pointed 1-movable (see [18]). Hence
Corollary (5.2) follows from Theorem (5.1).

Let us prove the following theorem:

(5.3) TuroreM. Let (X, xo)<E? be a pointed continuum. If there is a continuum

B

icm

7

On the shape of poil

1p d subsets of E®

183

(Y, yo)=E® such that Sh(ZX, x,) = Sh(Y, y,), then E3\X is connected and there is
a continuum (Z, zp)<=E? such that Sh(ZX, xo) = Sh(ZZ, z,).

Proof. If E3\X is not connected, then by the Alexander duality theorem we

infer that H*(X,Z) # 0 and hence H*(ZX,Z) # 0, which implies Fd(ZX)23.

Since (2X, x,) is approximatively 1-connected, (Y, y,) is also approximatively
1-connected. Therefore by Corollary (2.10) it has the shape of a bouquet of 2-spheres.
The existence of the required plane continuum (Z, z,) is now obvious.

(5.4) Remark. Itis not true that if Sh(ZX, xo) = Sh(7, y,) where (¥, yo)<E?3,
then (X, x,) is pointed 1-movable.

In particular, if X is a Case-Chamberlain acyclic curve, then Sh(ZX, x,) is
trivial.

(5.5) Remark. Theorems (5.1), (5.3) and Corollary (5.2) are true also in the
unpointed version.

V1. Decomposition of the shape of pointed continua in E3 into a one-point union.
We recall that a shape Sh(X,x,) is called simple if the equation Sh(X, x,)
= Sh(Y, yo)+Sh(Z, z,) implies that either Sh(Y, y,) or Sh(Z, z,) is trivial. If both
these shapes are non-trivial, then we call them constituents of the shape Sh(X, x,).

Let us prove the following theorem (which, for finite bouquets has been proved
by K. Borsuk in [2], Theorem 6.1, p. 136):

o o0
(6.1) THEOREM. Let \/ (X;, x) and \/ (¥;, yo) be bougquets. If there is a bijection
g: N —~ N such that Sh(X i Xg) = Sh(YU(,), yo) for every i=1,2,.

Sh( \/ (X5, xo)) = Sh( \/ (Y; J’o))-

., then

Proof. Since the bouquets \/( , Xo) and \/ (X,(y> Xo) are homeomorphic

(cf. [12], Theorem 3.5, p. 167) then we may assume that ¢(i) = i for every
i=1,2,.. Let

(o, aby: (X, %), FiT 1} = (X, vo), M
and

(B B2): (Y, yo) B} = {20, %), S}
be shape morphisms such that
(o, a) (B, by)~idy,
Let

a(n) = max{e*(n), 2*(), ...,

and (B b)(o, a) vidy,

for every i = 1,2, ...
o)} .
We define the map

ay (Xa(n)7 xo) —>(Yn:y0)
by setting . .
aanu(n) = a; f;ﬁ?()") for

au(X 1(11)) = {J’O}

i=1,2,.,n

for i=n+1,n+2,..,0@m.
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Similarly, we define
B(i) = max{B*(n), B2(n), ..., B"(m)}
and the map
bn: {Y/J(n)a J’o} g (Xm xo)
by setting
‘ bnlyin =b)i|g/i]("')n for i=1,2,.,n,
) L BH(n)
b(Thoy) = {xo} for i= n+1,n+2, .., f(n).
Let us observe that for every i =1,2,... we have
: i + pnkl i Bln1
.](‘ir,ln"1 Oy 4 11 Y;}(u-i- 1) = .)(‘i’,’y;+ ! Cl:‘,,_ 19%}1(}"?1) = ﬁ:‘n a:n»i- 1 g(‘.ﬂ“’(u-l-)l)
[ i pOn1 w1y
g”rl:gip.p(‘"(:)ng?,%a?l)zar’lgl[‘,((;‘f(n)) = fr..gﬁﬁ',i) )|Y/J(n+1) »
which means that (o, a,) is a well-defined shape morphism. Through analogical cal-

culation we check that (B, b,) is a well-defined shape morphism.
Now let us consider the composition

; : o patn)
yba| Yhatry = @1 Frcitn B 0 e

il
&= g{i,: o g ;9,77(12%(11) = gﬁa(rx) .

Through analogical calculation we check that
bna{!(n)gf:ﬁ(n) 3

which means that (2, a,) and (8, b,) are shape equivalences. The proof is finished.

Tn general, the converse theorem is not true even in the case of finite bouquets
whose leaves are pointed FANR-sets of simple shapes. In. [6] M. J. Dunwoody has
constructed two polyhedra, X and Y, of dimension 2 such that X4Y but
XV 82~ YvS2 If we now express X and Y as a finite sum of FANR’s of simple
shapes (see [14], Cor. 24), we obtain two different bouquets of the same shape.

The main result of this section states that in E* such an example cannot be
constructed even for infinite bouquets. Namely, the following theorem holds:

o0 o)
6.2). TueoreM. -If Sh(\/ (Xi, x0) = Sh(\ (Yj.p0) where  (Xj, Xo),
i=1 =1

(Y, yo)=E> are pointed compact connected FANR’s of simple shapes for every
i,j=1,2,..,thenthere is abijection o: N — Nsuchthat Sh(Xj, xo) = Sh( Yams Yo)
for every i=1,2,.. '

In order to prove Theorem (6.2) we need two lemmas.

6.3) LEMMA. Suppose (X, xo) is a pointed FANR-set which is approximatively N

n-connected for n>2. Sh(X, xo) is simple if and only if m((X, x;) is indecomposable
into a free product.

Proof. Suppose 7, (X, xq) & Gy»G,. Let (W, w,) be a CW-complex of the same
shape as (X, xo) (see [4] or [11]). Since (X, x,) is approximatively n~-connected
for n3>2, then (W, wy) is aspherical. Let (W;, w,) be a pointed CW-complex such
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that 7, (W;, wo)& G, for i =1, 2. Then (W, wo)=(Wy, wo) v (W, o). Let (P, pok
be a polyhedron such that Sh(P, py)>Sh(X, x,); then there are maps

2 Popo) = (Wowe), g2 (W, wo) .= (P.po), -

Jit (Pypo) = (Wi, wo),  git (Wi, wo) — (P, pg)
such that

Sog~idy relw,  and  fig,~idy, relw, for i=1,2.
Let us consider the inverse sequences

{(P’Po),gf}7 {(Pap(})ag].fl}’ {(P,po),ggfz}-
We have (see [11], Prop. 3.1):

Sh(X, xo) = Sh(lim{(2. po). 9/ }) »
Sh(Xi: XO) = Sh(M{(P,Po)a glft})

for i =1,2. It is clear that Sh(Xj, xo) = Sh(W;, wy) and (X;, x,) is a pointed
FANR-set for i = 1,2 and hence :

Sh(X, xg) = Sh(Xy, x5)+Sh({X,, xq) .
Since 7,(X;, xo) =G, the shapes Sh(X;, x,) are non-trivial for i = 1,2.

Now suppose 7;(X, x,) is indecomposable into a free product, and let
Sh(X, x¢) = Sh(X,, xo) +Sh(X,, x5). Let (W;, wy) be CW-complexes such that
Sh(X;, xg) = Sh(W,, wy) for i = 1,2 (see [4] or [11]). Since (X, x,) is approxima-
tively n-connected for nz=2, (W;, w,) are aspherical for i = 1, 2. Since 7,(X, xo)
is indecomposable, one of the groups m;(W;, w,) is trivial: Suppose m,(W;, wy)
is trivial; then (W, wy) is contractible and hence the shape Sh(X, x,) is ‘trivial. The
proof is finished.

The second lemma is of a purely algebraic character.

(6.4) LemMaA.  Suppose A, B, C, D are abelian groups. Let r,: A®B — A,
rg: A®B — B, r¢: C®D — C and rp: C®D — D be projections defined by the
Sormulas r(a+b) = a, rg(a+b) = b, ric+d) = c and ry(c+d) = d for every
aeA,beB, ceC, de D. If there are isomorphisms ¢: A®B — C®D andy: COD
= A®B such that Yo = idgp, (rcpld)e (r4¥|C) = ide and (rgf|C)o (rep|A)y
= 1id,, then rp@|B: B — D is an isomorphism.

Proof, Let us show that rp¢|B is an epimorphism, Suppose d* € D. Then there:
is an element a+be 4@ B such that

@(a+b) = p@+o®) = ctd+c'+d = d+d = d*.
Let W (¢) = a,+b;. Then rf(c) = a,. Since rc@(a) = ¢ then a = a,. Let us con~
sider the element b—b; € B. We have
ro@(b=by) = rppa+b—a—by) = rp(p@+e®)—ela+hy)
= rplc+d+c +d —c) = rp(c’ +d") = d*

and hence rp¢|B is an epimorphism.
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Let us show that rp|B is also a monomorphism. Suppose rp@(b) = rpo (b
and b, b’ e€B and b # b'. We have

o) =c;+d apd o) =ctd and ¢y # ¢y
Let

Wle) = ag+b, and  Y(e) = czz;!-bz .

Since rp|C is an isomorphism, we have a; # ¢;. On the other hand, we have
b= Yop(d) = Wic,+d) = ag+b +(d) = ay+by+x+y,
b = Yo®) = lestd) = az+by+ Y (d) = az+by+x+y.

Tt follows that —x = a; = a,, which contradicts ¢, # a,. Hence rpep|B is an iso-

morphism. The proof is finished.

Proof of Theorem (6.2). If (X, x,) is a pointed FANR-set in E% and
Sh(X, x,) is simple, then by Theorem (2.2) we infer that Sh(X, x) = Sh(S?, 55)
.or there is an aspherical polyhedron (P, po) such that Sh(X, xo) = Sh(P, p,) and the
group 7,(P, po) is indecomposable into a free product (Lemma 6.3).

0

=]
Let \/ (X xo) and \/ (¥}, ) be bouquets which satisfy the assumption of
i=1 Jj=1

‘Theorem (6.2). We may assume that (X;, xo) is a 2-sphere or an aspherical poly-
hedron with an indecomposable fundamental group for every i = 1, 2, ... We assume
the same about (f’j,yo) forj=1,2,

Let us cxpress \/ (X;, x0) and \/ (¥}, yo) as one-point unions of two bouquets,

Vo)V \/(Y,’,yo) respectively, such that

(X7, x0) and (¥, o) are aspherical polyhedra f01 everyi,j =1,2,...and Sh(X Xo)
= Sh(Y}, o). = Sh(S?,5,) or one or both of the shapes Sh(Xi, x0), Sh(Y}, ¥o)
are trivial (Theorem 6.1).

\/1('Xi,x0)v \/(X{,xo) and \/(
= i=1 J=1

Since Sh( \/ (X;, X)) does not dominate Sh(S2,s,) and Sh( \/ (¥}, ¥0))
does not dommate Sh(S?, 5,), we infer by Theorem (4.1) that the two bouquets
\/ (X}, xq), and \/

Thexefore it is sufﬁment to prove (Theorem 4.1) that
o0 0
Sh(iyl (&, xo)) = Sh(j\/l(yj, J’o)) .

Let us assume that for odd indexes the leaves (X7, xo) and (¥, yo) bave funda-
n'_xental.dimcnsion two or zero, and for even indexes these leaves have fundamental
dimension one or zero (Theorem 6.1). The continuum of fundamental dimension
zero is of course of a trivial shape. It follows that the leaves with even, indexes have
the shape of a 1-sphere or a point.

s ¥o) contain the same number of leaves of non-trivial shapes.

icm
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Let A" = m,(X;, xo) and B' = m;(¥;, yo). We have
@
Pro'nl(.\/l (Xh xo)) = {An! (P:+1} 3
i

Pro'nl(.l/1 (Yi’ yO)) = {Bm ‘I/;+1}

where

B, = BxB%x..xB",
and @'l =1if ae A",
Virie) = 1if be B

= A% A%%.. 4",
QP ia) = a if aedlx..x4"
Yri(b) = b if be B's..+B" and

In our notation A*'~* and B>*~! are trivial or indecomposable into a free product
and are not infinite cyclic groups, and A2", B are trivial or infinite cyclic groups for
every n =1,2,..

Suppose that

CNATR S Bt AR
(ﬁ gn) {B'l9 llb"+1} - {An’ "+1}

are isomorphism of pro-groups such that

@ £) (B, gn) = (Bet, Wity ny
and
#, gu)(a £ = (@B, o3t ™)

Let 1 be a natural number. Consider the following commutative diagram of
groups and homomorphisms:

o fa(n) aﬂuﬁa(n)
Pa(n) PBaln) y
« e Ay ——— Auparny < Aapapaty © -
6.5)
o N o) | 1 papa(n)

¢ gl v yhepal

..+ B, ~é—~———.Bp¢(,,) < Bpapagny + -

Let i be an odd natural number less than o(n). Then

okl4L = idy  for every kzmza®) .
Consider the group f,,,,(,,)(Ai). By the well-known Kurosh subgroup theorem (see [19],
p. 211) we know that

S A FeH kHopx .+ H,
where Fis a free group and H; is a group conjugated with some subgroup of B; for
some index j. Since

gm(u)fﬁz(n)lAi = idA.‘ B

3 — Fundamenta Mathematicae CXV
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Saaemld” is a monomorphism. Moreover, since A'is indecomposable into-a free
product and is not an infinite cyclic, there is exactly one odd index j such that

Fram( A = H

where H is conjugated with some subgroup of B;. This means that there is an element
0 € By, such that

fi]z(u)(Ai) = QGQ—l

where G<B;. By similar arguments and the commutativity of (6.5) we infer that ‘

there are 7 € Aupum and G’ <4’ such that

ga/}z(n)(Bj) =9yG'y*.
Since :

fum(u)guﬂu(n)(-Bj) = Bj:
we have

fﬂa(n)(yG,'Y“l) =5.
Therefore we have

B = Fpuat®) Fpauf(G) Fpaim ™) < a1 G2  pay®@™ 1) -

This 1§nplie.s that f3,y(»)e € B’ and hence G = B, Hence we infer that the group A*
fmd B’ are isomorphic. .In this way for every odd index i we can find exactly one odd
index ¢ (i) such that 4" and B°® arc isomorphic. It is easy to check that o {odd
numzers} —~ {odd numbers} so defined is a bijection. -

et :

«© 00 .
(X, xo) =‘\\/1(X2iaxo): (X', x) = \/(XZH—IaxO)J
i= i=1 :
o

T (Y. y0) = \/ (Y215 70) »

i=1

and (Y, p0) = \/ (¥ai-1, Yo) -
i=2
Suppose that morphisms («, /), (8, g,) are induced by

o (X, x0) V(X' x0) = (X, y0) v (Y, 3o)
and

:g: (YﬂyO)V(Y’! J’O) g (Xa xO)V(X’: x(\) »

respectively, where f and g are shape equivalences. By Theorem (6.1) we-infer that
Sh(X, xo) = Sh(Y, y,). It remains to show that Sh(X, Xo) = Sh(¥, 3).

B .Lett rxt (X, x0) v (X', %0) = (X, xo) be a retraction such that ry(¥") = {x,}
imilarly we define a retraction ry., ry, ry.. Since for every odd index 7 oo

' (f)#(m(Xi, xo)) = in(yw(i)) yo)at,
we infer that

(Dat X 2) » Hy(¥0, 2)

icm
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js an isomorphism, which implies

(ryf)e: Hi(X',2) = Hy(Y', Z)
is an isomorphism and

(regre sl Hi(X, Z) = id..
Therefore, by Lemma (6.4) we inféf that

(ryfet H(X,Z) ~ Hy(Y,Z) -

is an isomorphism and hence Sh(X,x,) = Sh(Y, ¥o). The proof is completed.

Let us formulate the following corollary: '

(6.6) CoroLLARY. If (X, xo)cE? is a pointed connected compact FANR-set,
then the family of constituents of the shape Sh(X, xo) which may be embedded in E3
is finite. k . . '

Proof. Since (X, x,) is a FANR-set, there is a finite family of simple shapes
such that Sh(X,xg) = Sh(Xy, xo)+...+Sh(X,, xo) (see [14], Cor. 24). By
Theorem (6.2) there exists only. one such family. . B

(6.7) Remark. The above corollary may also be proved directly from The-
orems (2.2) and (3.1) and Lemma (6.2).

(6.8) Remark. The assumption (X;, Xo), (If'j,yo)c:E3 in Theorem (6.2) is
essential. Namely, it is easy to check that the polyhedron X from M. J. Dunwoody’s
example ([6]) has the homotopy type of some polyhedron in E* (see [16]). Hence
X v S? has two different decompositions into simple shapes in ES.

Let .# denote the class of compact conmected closed manifolds of dimension
less than or equal to 2. One can prove the following theorem in the same way as
Theorem (6.3):

(6.9) THEOREM. Suppose X, Yye M for every i= 1,2, .. Jf Sh(V (X, %)}
i=1

2]
= Sh(\/(Yj,yo)), then there is a bijection o: N — N such that Sh(X;, X0}
j=1 ,

= Sh(JY,U),yO) Sforievery i=1,2,...

It is known that the family of shapes of plane continua is countable. In E3 the
situation is not so good, even in the case of locally connected and movable continua.
Let us prove the following corollary:

(6.10) CoROLLARY. In E® there exists an uncountable fumily {(X1, %0)}sea O
locally connected and pointed movable continua such that, for 1 # p, Sh(X), Xo)
# Sh(X,, Xo)- .

Proof. Let
1 -1 1 1 i
7 —— S yST 0<Z<7—-—}.

1
. 3. gx<
B,_{(x,y,z)eE. SX<7, T N

i+1

4
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Theu.(j1 B; U {0,0,0} is a continuum. Let
1 I={(x,7,20eE* 0<x<l,y =2z =0}.
Let (P,,po) be a 2-dimensional oriented surface of genus 2n, and let
h,: (P,, Po) = (B,, B, 1)

be a PL-embedding such that A,(P,\{po})<intB,.
Let A be a set of all sequences (n,n,,...) such that n; = 0 or 1 for every
i=1,2,.. Let Ae A. We define a continuum (X, x,) by setting:
(Xy, %) =10 {0,0,0} U U (r(P), {0,0,0).
iefi: meiam=1}
Then (X, x,) is locally connected. By Theorem (6.9) we infer that if A 5 u, then
Sh(X;, x) # Sh(X,, xo). The proof that (X, xo) is pointed movable for every
Ae A is left to the reader as a simple exercise.

The following problem remains open:

(6.11) ProBLEM. Is it true that for every pointed continuum (X, x,)<E?
there is a bouquet of the same shape with leaves of simple shapes ? Is such a decom-
position unique?

If we consider bouquets in the sense of A. Gmurczyk [12], then the second
question has a negative answer. In order to see that, let us consider the following
example: :

(6.12) ExampLE, Let p;,p,, ... be a sequence of prime numbers sucht that
Pi<Dyyq for every i=1,2,... We denote by (X, x,) the bouquet

(STVSEv...v S, 50)

of 2* copies of 1-spheres. We denote by y¥ the generator of 71(X}y, xo) which is
represented by

i i
(S, 50) = (S1, 50) = (Xi» Xo)
where i is an inclusion. We define the map

et (X415 Xo) = (X}, Xg)
by setting generators

FELO5TY = ol
1 i 3
for every i = 1,2, ...

Let (X, xo) = {im {(X,, xo), 5 *1}. Tt is clear that (X, x,) is a bouquet in the
sense of A. Gmurczyk. Moreover, each leaf of (X, Xg) is a solenoid and hence has
a simple shape. On the other hand, (™41 1,(Xy, xo) = m (X, o) is an epi-
morphism for every k = 1,2, ... and hence (X, x,) is pointed 1-movable. Since
Fd (I-() = 1, (X, x,) is pointed movable and hence it has the shape of a certain plane
continuum.’ But each plane continuum has the shape of a bouquet of 1-spheres.

AT = e
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This example also shows that the following proposition holds:

(6.13) PROPOSITION. The pointed movability of a bouquet (in the sense of A. Gmur-
czyk) does not imply the existence of a movable leaf.

The following proposition is an immediate consequence of Theorem (2.2):

(6.14) ProposITION. If (X, x%g)=E® is a pointed 1-movable contimum such
that Sh(X, x0)>Sh(S?, 5,), then Sh(X, xo) has a simple constituent.

This gives a partial positive answer to Borsuk’s problem ([2], Problem 6.12,
p. 139).

It, in the above proposition, we additionally assume that Sh(X, xo) is simple,
then we obtain the following corollary: .

(6.15) COROLLARY. Suppose (X, xo)<E? is a pointed 1-movable continuum of
simple shape. If Sh(X, x0)2Sh(S?, 50), then Sh(X, xo) = Sh(S?, so)-

VIL Décomposition of pointed shapes of a subcontinuum in E® into a cartesian
product. Let us recall that the shape Sh(X, xo) is prime if the equation Sh(X, xo)
= Sh((¥, yo) X (Z, z,)) implies that Sh(Y, yo) or Sh(Z, zo) is trivial

The following theorem holds:

(7.1) TaeoreM. Let (X, xo) = E® be a pointed 1-movable continuum. If Sh(X, xo)
dominates the shape Sh(S?, s,), then Sh(X, x;) is prime.

In order to prove this theorem we need the following lemma:

(7.2) Lemva. Suppose X, Y are compacta such that H*XxY, Q) = 0. If
Sh(Xx ¥)>Sh(S™), then Sh(X)>Sh(S") or Sh(Y)=Sh(s").

Proof. Let X = lm{X,,/s*Y), ¥ =lim{Y,,s;*'} and S"= lim{S}, id}
where St = S" for k = 1,2, ... Hence Xx ¥ = fim{X, x Y,, fi* 1 x gy*t} and there
are shape morphisms .
r=B,r): XxY—> 8"

h=(a,l): S"> XxY and

such that rhevidg.. Consider the following commutative diagram:

I Sty
‘X,m X Y;n  —

Koy > Yoo
I e
L S—.
If m is sufficiently large, then we may assume that
(f3 X gpga)* 20 H¥™X,, % Y,y Q) = H*( X g0y % Yy ©)

is a trivial homomorphism. Let p: X;x ¥, = X; be a projection_ onto X7,
g: X,x Y; > ¥; a projection onto ¥;, and i: Xy x{po} = Xix Ty a‘nd Ji {xo}x ¥y
- X, x ¥, inclusions for every [ =1,2,... Let y e H"(S", 0). Consider an element

(fns X TraV @) = (faoo % pa)* (i;P*(“i) U g*(by)
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where a;€ H*(Xﬁ(k), 0), be H¥(Ygiy, QY 'and’ dlmai+dlmb,—-n (see [51,
Prop.: 12.16, p. 182 and Prop.:8.18, p. 222) We have

(1.3).  (famx Qp(k))*( ZP*(ai) v g*b) = ZP*(fp(k)) k(“t) u Q*(Qﬂ(k))* (bi)

Since ( fﬂ(k)xgﬁ(k))z,l is tnv1a1 we have for dlmai dlmbi = n, *( f,,(k))*(a,) v
V] q*(g,,(,‘,)*(bl) =0 and hence (fpmp)*(@) =0 or (gpud*®) = 0. Therefore
we may assume that dimb;  n for every b, in (7.3). Hence

hm(; (fpﬁ('k)l?)*(ﬂi) u (9?(1:) (I)*(b;)) =j;1h$(7fp'2'k)ﬁ)*(‘li;)

where a;, are all elements in (7.3) with dima,, = n. Let us consider mo1phlsms ph
and 7. Let us observe that :

8 .
mp*( /ﬁ(k))*l*rk (Y) = hmp*( B(k) *i*(zp*(ﬂi) o q*(bi)

= hm(fﬁ(k)P)*( Z azj) Z B, TP (@) =7 B

Therefore by the universal coefficient formula ([26], Theorem 10, p. 246) we infer
that riph~idg. and hence Sh(X)>Sh(S™). The proof is finished.

From this lemma we infer ‘that if Sh(X) = Sh(Zx ¥) and Sh(X)=Sh(5%
then Sh(Zx.Y)>Sh(S?x ¥). But this is impossible because Fd(S?x ¥)=3 for
every continuum ¥ with a non—tnvml shape (sue [17]). The proof o[' Theorem (7.1)
is finished.

In [15] the present author has proved the following theorem:

THEOREM. Let us suppose that the pointed contimuum (X, xy) is approximatively
n-connected for nz2, and Fd(X)<oo or. (X, xo) is pointed movable. If Sh(X, x,)
has a non-trivial factor (constituent), then Sh(X; x,) is simple (prime).

Combining this result with Theorem (7.1) we have the following

(7.4) TrEOREM. Let (X, xo) < E? be a pointed 1-movable continuum. If Sh(X, x¢)
has a non-trivial -constituent (factor), then Sh(X, x,) is prime (simple).

(7.5) Remark. In space E" for n>5 Theorem (7.4) fails. A suitable example
may be found in [15].

Added in proof. After this paper has been send to the publisher Mr R., Zabek has found a counter~
example to Lemma (1.11). This lemma needs some additional assumption, Correction will be sulb-
mitted to Fundamenta Mathematicae,
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