

Defining cardinal addition by ≤-formulas

by

Alexander F. Häussler * (Zürich)

§ 1. In Zermelo-Fraenkel set theory ZF with the axiom of choice cardinal addition x+y=z of infinite sets can be expressed by the supremum $\sup(x,y,z)$ which is defined by the \leq -formula $x,y\leq z \wedge \forall u(x,y\leq u \to z\leq u)$. In [2], p. 55 A. Tarski showed that the weaker axiom $\forall x(x<\omega \vee x=x+x)$ — meaning that every infinite set is idemmultiple — still implies within ZF the following equivalence for cardinal addition of infinite sets

$$\forall x, y, z \big(\mathrm{Inf}(x) \wedge \mathrm{Inf}(y) \wedge \mathrm{Inf}(z) \rightarrow \big(x + y = z \leftrightarrow \sup(x, y, z) \big) \big) \; ,$$

where Inf(x) abbreviates $\neg x < \omega$.

In ZF itself — provided it is consistent — a definition by a (first-order) \leq -formula cannot be given. To show this, we assume that for some \leq -formula $\mathcal{A}(x, y, z)$ the following holds in ZF

$$\forall x, y, z (\operatorname{Inf}(x) \wedge \operatorname{Inf}(y) \wedge \operatorname{Inf}(z) \rightarrow (x+y=z \leftrightarrow \mathscr{A}(x,y,z))).$$

This leads to a contradiction as follows:

Consider the consistent extension of ZF in which the existence of a Dedekind set ε (Inf $(\varepsilon) \wedge \varepsilon \neq \varepsilon + 1$) is postulated. Then the cardinals $\varepsilon + n$, $n \in \omega$, are definite and ordered like the integers. Let θ be the following function symbol (\equiv is the settheoretical equality)

$$\theta(x) \equiv \begin{cases} x+1, & \text{if } \exists n \in \omega (x = \varepsilon + n \lor x + n = \varepsilon), \\ x, & \text{otherwise} \end{cases}$$

^{*} It is my sad duty to inform the reader that Alexander Häussler died of cancer on August 8, 1982. — H. Läuchli.

and note that $\theta(\varepsilon) = \varepsilon + 1$, but $\theta(\varepsilon + \varepsilon) = \varepsilon + \varepsilon$, hence $\theta(\varepsilon) + \theta(\varepsilon) \neq \theta(\varepsilon + \varepsilon)$. One can check by examining several cases that θ is an = -automorphism of the universe, preserving the order \leq and infinity, thus we have

$$\begin{aligned} &\forall x, x'(x=x' \leftrightarrow \theta(x)=\theta(x')), \\ &\forall y \exists x \theta(x)=y, \\ &\forall x, x'(x \leqslant x' \leftrightarrow \theta(x) \leqslant \theta(x')), \\ &\forall x \big(\mathrm{Inf}(x) \leftrightarrow \mathrm{Inf}(\theta(x)) \big). \end{aligned}$$

Induction on the complexity yields

$$\forall \underline{x} \big(\mathscr{A}(\underline{x}) \leftrightarrow \mathscr{A}(\theta(\underline{x})) \big)$$

for every \leq -formula $\mathscr{A}(\underline{x})$.

By applying this to $\mathcal{A}(x, y, z)$ in the assumed equivalence for cardinal addition of infinite sets we thus obtain in $ZF+Inf(\varepsilon) \wedge \varepsilon \neq \varepsilon+1$ the following

$$\forall x, y, z \big(\operatorname{Inf}(x) \wedge \operatorname{Inf}(y) \wedge \operatorname{Inf}(z) \to \big(x + y = z \leftrightarrow \theta(x) + \theta(y) = \theta(z) \big) \big),$$

hence for $x = \varepsilon$, $y = \varepsilon$ and $z = \varepsilon + \varepsilon$ we deduce $\theta(\varepsilon) + \theta(\varepsilon) = \theta(\varepsilon + \varepsilon)$ — a contradiction to the consistency of $ZF + Inf(\varepsilon) \wedge \varepsilon \neq \varepsilon + 1$.

The same proof is valid for a slightly more general situation:

THEOREM 1. In a theory which is compatible with $ZF + \exists x (Inf(x) \land x \neq x+1)$ no \leq -formula defines cardinal addition of infinite sets.

COROLLARY 2. Let theory T be an extension of ZF in which $a \le -formula$ defines cardinal addition of infinite sets. Then $\forall x (x < o \lor x = x+1)$ can be deduced from T.

Proof of Corollary 2. Assume that $\forall x(x < \omega \lor x = x+1)$ is not provable in T. Then $T+\exists x(\text{Inf}(x)\land x\neq x+1)$ is consistent and hence compactible with $ZF+\exists x(\text{Inf}(x)\land x\neq x+1)$. Thus by Theorem 1 no \leq -formula defines cardinal addition of infinite sets.

The question arises whether the axiom $\forall x(x < \omega \lor x = x+1)$ — meaning that every infinite set is transfinite — is sufficient for defining cardinal addition of infinite sets by a (first-order) \leq -formula. The answer for even much stronger axioms like DC, DC₈₁, $\forall \lambda AC_{\lambda}$ or even DC₈₁ $\wedge \forall \lambda AC_{\lambda}$ is negative (see Corollary 5).

Thereby DC and DC_{S1} are axioms of dependent choices and $\forall \lambda AC_{\lambda}$ means that any wellorderable set of nonempty elements has a choice function (see [1], p. 119). In all these cases we cannot refer to a Dedekind set ϵ as we did in Theorem 1. However, it is compatible with these axioms to assume that there exists a set A such that the sets $k \times A$, $1 \le k \in \omega$, have in a sense the same behaviour as the natural numbers (see Lemma 3 and Theorem 4).

DEFINITION. A is an Unit, if A < A + A and $\forall x, y(x+y=A \rightarrow x=A \lor y=A)$.

LEMMA 3. If $\mathscr{D}(x,z)$ is $a \leqslant$ -formula, then there exists a numeral s with $1 \leqslant s \in \omega$ such that in ZF+Unit(A) the following holds:

$$\mathscr{D}(s \times A, (s+s) \times A) \leftrightarrow \mathscr{D}(s \times A, (s+s+1) \times A)$$
.



The proof of this lemma is given in §§ 2-5. We sketch the proof in § 2, in §§ 3 and 4 we work out the theory ZF+Unit(A) and finally in § 5 we prove the lemma. Let us nevertheless give the conclusions now:

THEOREM 4. In a theory T which is compatible with $ZF+\exists x (Inf(x) \land Unit(x))$ no \leq -formula defines cardinal addition of infinite sets.

Proof of Theorem 4. Let us assume that the \leq -formula $\mathcal{A}(x, y, z)$ defines in T cardinal addition of infinite sets. Since T has the compatibility property, we can assume the existence of a set A such that $T+ZF+Inf(A) \wedge Unit(A)$ is consistent; clearly in this extension of T also the following holds:

$$\forall x, y, z \big(\mathrm{Inf}(x) \wedge \mathrm{Inf}(y) \wedge \mathrm{Inf}(z) \to \big(x + y = z \leftrightarrow \mathscr{A}(x, y, z) \big) \big) \, .$$

By applying Lemma 3 on the \leq -formula $\mathscr{A}(x, x, z)$ we obtain a numeral s with $1 \leq s \in \omega$ such that

$$\mathscr{A}(s \times A, s \times A, (s+s) \times A) \leftrightarrow \mathscr{A}(s \times A, s \times A, (s+s+1) \times A)$$

holds in ZF + Unit(A).

As A is assumed to be infinite, s+A, $(s+s)\times A$ and $(s+s+1)\times A$ are infinite too; furthermore $s\times A+s\times A=(s+s)\times A$ holds. Hence by the assumed equivalence for addition and the result from Lemma 3 we obtain $s\times A+s\times A=(s+s+1)\times A$. Thus A=A+A (see § 3) which contradicts the assumed compatibility.

Remark. The same argument holds if we replace "infinite" by "finite". As 1 is a Unit, in any theory compatible with ZF (for instance every consistent extension of ZF), no ≤-formula defines cardinal addition of finite sets.

COROLLARY 5. If ZF is consistent, no \leq -formula defines cardinal addition of infinite sets in the theory ZF+DC_{N1}+ $\forall \lambda$ AC_{λ}.

Proof. By Theorem 4 it suffices to show that this theory is compatible with $ZF+\exists x\big(\mathrm{Inf}(x)\wedge\mathrm{Unit}(x)\big)$. In [1] Theorem 8.9 (p. 127) let $\alpha\equiv 1$: Then DC_{x_1} and $\forall \lambda\mathrm{AC}_{\lambda}$ hold in the Fraenkel-Mostowski permutation model given there. Furthermore it is easy to see that the set of atoms is a Unit in the permutation model.

Using a refinement of the embedding theorem, this relative consistency result by means of a permutation model is transferred into ZF; hence

$$ZF + DC_{x_1} + \forall \lambda AC_{\lambda} + \exists x (Inf(x) \wedge Unit(x))$$

is relative consistent to ZF.

The author is indebted to Prof. Dr. H. Läuchli for many helpful discussions on this subject.

§ 2. Sketch of proof of Lemma 3. We work in ZF and furthermore assume Unit(A) for a set A. A < A + A implies $k \times A < (k+1) \times A$ for $k \in \omega$; thus the class $\mathscr X$ of all $k \times A$ with $1 \le k \in \omega$ (including the cardinal equivalent sets) obviously has the same ordering as $\mathscr N \equiv \{k | 1 \le k \in \omega\}$. This isomorphism of the ordering \le can be transferred to \le -formulas, provided that the quantifiers refer only to the classes $\mathscr X$

and $\mathcal N$ respectively. Hence, by the well-known theorem on natural numbers, Lemma 3 holds for $\mathcal K$ -relativized \leqslant -formulas.

In order to treat quantifiers which refer to the whole universe, we investigate the ordering between elements of $\mathcal X$ and those of the universe. To do this, we introduce the notion of multiplicity a(x) which intuitively counts the number of pairwise disjoint copies of A which can be embedded in a set x (§ 3). Then a set x has multiplicity k ($1 \le k \in \omega$) iff x is a sum $k \times A + y$ with $A \not\le y$. In this decomposition the second summand y is not unique, however, A + y is definite up to cardinal equivalence. Let $\mathscr B$ be the class of all sums A + y with $A \not\le y$. On the class $\mathscr G$ of all $k \times A + y$ ($1 \le k \in \omega$, $A \not\le y$) we introduce the two projections \varkappa onto $\mathscr K$ satisfying $\varkappa(k \times A + y) = k \times A$ and ϱ onto $\mathscr B$ satisfying $\varrho(k \times A + y) = A + y$.

It can be shown that $x_1 \leqslant x_2 \leftrightarrow \varkappa(x_1) \leqslant \varkappa(x_2) \land \varrho(x_1) \leqslant \varrho(x_2)$ holds for x_1, x_2 in \mathscr{G} . In order to compare x' in \mathscr{G} to x'' in $\neg \mathscr{G}$, it suffices to compare $\varrho(x')$ to x''. Introducing \mathscr{M} by $\mathscr{R} \lor \neg \mathscr{G}$ we see (§ 4), that a predicate given by a \leqslant -formula $\mathscr{A}(\underline{x}',\underline{x}'')$ is equivalent to a propositional combination of \mathscr{K} -relativized \leqslant -formulas in $\varkappa(x_1'), ..., \varkappa(x_n')$ and \mathscr{M} -relativized \leqslant -formulas in $\varrho(x_1'), ..., \varrho(x_n'), x_1'', ..., x_n'''$ — provided that all $x_1', ..., x_n''$ are in \mathscr{G} and $x_1'', ..., x_n'''$ in $\neg \mathscr{G}$. Assuming all $x_1, x_2, ..., x_n$ to be in \mathscr{K} (hence none in $\neg \mathscr{G}$), then $\varkappa(x_i) = x_i, \varrho(x_i) = A$ and thus $\mathscr{A}(\underline{x})$ is equivalent to a propositional combination of \mathscr{K} -relativized \leqslant -formulas in \underline{x} and some \leqslant -sentences in A. This is what we need for the proof of Lemma 3 in \S 5, as mentioned at the beginning.

§ 3. Unit and multiplicity. Working in ZF+Unit(A) we may assume that there exists a set A with the following two properties:

$$(3.1) A < A + A$$

$$\forall x, y(x+y=A \to x=A \lor y=A).$$

Then the following holds for A:

$$\forall x(A+x=A \rightarrow x < A),$$

$$\forall x (x < A \rightarrow A + x = A).$$

Furthermore (3.3) is equivalent to (3.1) and assuming (3.1) or (3.3) respectively, then (3.2) and (3.4) are equivalent too.

Proofs. (3.1) \Rightarrow (3.3). Let A+x=A for some x. Then $x \leqslant A$, hence x < A because x = A is excluded by (3.1). (3.3) \Rightarrow (3.1): With x = A in (3.3) the assumption A = A+A yields the contradiction A < A, hence A < A+A. (3.2) \Rightarrow (3.4): Let x < A for some x; then there exists y with x+y=A and y=A by (3.2), thus x+A=A. (3.4) \wedge (3.1) \Rightarrow (3.2): Let x+y=A, but x,y < A. By (3.4) A+(x+y)=A, hence A+A=A in contradiction to (3.1).

Before continuing, let us note a theorem on cardinal algebra provable in ZF:

$$(3.5) k \in \omega \land k \times u + v \leq k \times u + w \rightarrow u + v \leq u + w.$$

For a proof refer to Corollary 4 in [3], p. 81.

From Unit(A) we deduce

$$(3.6)$$
 $0 < A$,

$$(3.7) k \in \omega \to k \times A < (k+1) \times A,$$

$$(3.8) k \in \omega \wedge (k+1) \times A \leq k \times A + y \to A \leq y,$$

$$(3.9) k \in \omega \land x \leqslant k \times A \to A \leqslant x \lor A + x = A.$$

$$(3.10) k \in \omega \land x \leq k \times A + y \to A \leq x \lor A + x \leq A + y.$$

Proofs. (3.6) and (3.7) follow by (3.1) and (3.5).

(3.8): Let $(k+1) \times A \le k \times A + y$, then by applying (3.5) we obtain $A + A \le A + y$. Hence there exist a', a'', y', y'' with A = a' + y' = a'' + y'', $a' + a'' \le A$ and $y' + y'' \le y$. By (3.2) $a' = A \vee y' = A$ and $a'' = A \vee y'' = A$. In the case A = a' = a'', we obtain $A + A = a' + a'' \le A$ — a contradiction to (3.1). In all other cases $A \le y' + y'' \le y$.

(3.9): By induction on $k \in \omega$: For $k \equiv 0$ it holds trivially. Let $x \leqslant (k+1) \times A$, then there exist x', x'' with x = x' + x'', $x' \leqslant A$, $x'' \leqslant k \times A$, thus $x' \leqslant A$ or x' = A and by induction hypothesis $A \leqslant x''$ or A + x'' = A. In the case of $x' \leqslant A$ and A + x'' = A, 3.4 yields A + x = A + x' + x'' = A, in all other cases $A \leqslant x' + x'' = x$.

(3.10): Let $x \le k \times A + y$, then there exist x', x'' with x = x' + x'', $x' \le k \times A$, $x'' \le y$. By 3.9 it is $A \le x'$ or A + x' = A. In the first case $A \le x' \le x$, in the latter $A + x' = A + x' + x'' = A + x'' \le A + y$.

We introduce a function symbol assigning to a set x the maximal number a(x) of pairwise disjoint copies of A which can be embedded in x. This notion of multiplicity is helpful for investigating the ordering \leq .

Let a be defined formally by the following:

(3.11)
$$a(x) \equiv \{n \mid n \in \omega \land (n+1) \times A \leq x\}$$

a(x) is an initial segment of ω , hence $a(x) \in \omega$ or $a(x) \equiv \omega$. Furthermore multiplicity is monotone, thus the following three propositions hold and are trivial:

(3.12)
$$a(x) \in \omega^+, \text{ where } \omega^+ \equiv \omega \cup \{\omega\},$$

$$(3.13) x_1 \leqslant x_2 \to a(x_1) \leqslant a(x_2),$$

$$(3.14) x_1 = x_2 \to a(x_1) \equiv a(x_2).$$

If a(x) is finite then, as intended, the following holds:

$$(3.15) k \in \omega \to (a(x) \equiv k \leftrightarrow k \times A \leq x \land (k+1) \times A \nleq x).$$

Proof. Let $k \in \omega$. The case $k \equiv 0$ is obvious, because $A \nleq x$ iff a(x) is empty $(a(x) \equiv 0)$. Let $1 \leqslant k \in \omega$: If $a(x) \equiv k$, then $k-1 \in a(x)$, hence by (3.11) $k \times A \leqslant x$; the assumption $(k+1) \times A \leqslant x$ however leads to the contradiction $k \in k$. For the other implication assume that $k \times A \leqslant x$, but $(k+1) \times A \nleq x$; (3.11) yields $k-1 \in a(k)$, but $k \notin a(x)$; hence $a(x) \equiv k$ follows.

Remark. In the case $k \equiv \omega$ we have only the equivalence between $a(x) \equiv \omega$ and $\forall k \in \omega \ k \times A \leq x$. In general this does not imply $\omega \times A \leq x$.

The function a(x) decomposes the universe in ω^+ many classes. In the following we give, in some sense, a more explicit characterization of sets with finite multiplicity and the ordering ≤ between such sets. For this purpose we introduce the monadic predicate \mathcal{W} in (3.16). By (3.15) the proposition (3.17) is then obvious.

Now the following statements hold:

$$(3.18) k \in \omega \to (a(x) \equiv k \leftrightarrow \exists y (\mathcal{W}(y) \land x = k \times A + y)),$$

$$(3.19) k \in \omega \to a(k \times A) \equiv k,$$

$$(3.20) \quad 1 \leqslant k_1, k_2 \in \omega \land \mathcal{W}(y_1) \land \mathcal{W}(y_2) \\ \rightarrow (k_1 \times A + y_1 \leqslant k_2 \times A + y_2 \leftrightarrow k_1 \subseteq k_2 \land A + y_1 \leqslant A + y_2).$$

Remark. It cannot be expected that (3.20) holds with $k_1 \subseteq k_2 \land v_1 \leqslant v_2$.

Proofs. (3.18): Let $k \in \omega$. If $a(x) \equiv k$, then by (3.15) there exists y such that $x = k \times A + v$ and $(k+1) \times A \leq x$ hold, hence $A \leq y$ follows. If, on the other hand, $x = k \times A + v$ for some v with $A \le v$, we have $k \times A \le x$. The assumption $(k+1) \times A \le x$ $= k \times A + v$, however, yields the contradiction $A \le v$ by (3.8). Hence $a(x) \equiv k$ by (3.15).

(3.19): Let
$$y = 0$$
 in (3.18), then $A \nleq y$ by (3.6), hence $a(k \times A) \equiv k$.

(3.20): Assume $1 \le k_1, k_2 \in \omega$, $\mathcal{W}(y_1)$, $\mathcal{W}(y_2)$. If $k_1 \subseteq k_2$ and $A + y_1 \le A + y_2$, then obviously $k_1 \times A + y_1 \le k_2 \times A + y_2$. If, on the other hand, $k_1 \times A + y_1$ $\leq k_2 \times A + y_2$, then $k_1 \subseteq k_2$ by (3.13) and (3.18). Furthermore we have $y_1 \leq k_2 \times A + y_2$, hence $A \le y_1$ or $A + y_1 \le A + y_2$ by (3.10). Because of $\mathcal{W}(y_1)$ the second case holds.

Let us introduce the monadic predicates \mathcal{H} , \mathcal{G} and \mathcal{R} in (3.21) to (3.23). In (3.24) and (3.25) equivalent forms, obvious by (3.18), are added:

$$(3.21) \mathcal{X}(x) \leftrightarrow \exists k (1 \leq k \in \omega \land x = k \times A),$$

$$(3.22) \mathscr{G}(x) \leftrightarrow 1 \leqslant a(x) \in \omega,$$

$$(3.23) \mathscr{R}(x) \leftrightarrow a(x) \equiv 1,$$

$$\mathscr{G}(x) \leftrightarrow \exists k \exists y (1 \leq k \in \omega \land \mathscr{W}(y) \land x = k \times A + y),$$

(3.25)
$$\mathscr{R}(x) \leftrightarrow \exists y \big(\mathscr{W}(y) \land x = A + y \big).$$

The elements of \mathcal{G} are sums. By (3.20) not the summands $k \times A$ and y but $k \times A$ and A+v are unique up to cardinal equivalence. This allows us to introduce the following two cardinal function symbols \varkappa and ρ on the class \mathscr{G} , i.e. function symbols with respect to cardinal equality only:

(3.26) If
$$\mathscr{G}(x)$$
 — thus $x = k \times A + y$ for some k , y with $1 \le k \in \omega$ and $\mathscr{W}(y)$ — then let $\varkappa(x) = k \times A$ and $\varrho(x) = A + y$.

The following list of propositions formally expresses that the class $\mathcal G$ with the ordering \leq is the "product" of the subclasses \mathcal{X} and \mathcal{R} with projections \varkappa and ϱ . The proofs are easy applications of previously shown propositions which we leave HA Green High Carlett agreement tage of the to the reader:

$$\mathcal{X}(x) \to \mathcal{G}(x),$$

$$\mathcal{X}(x) \to \mathcal{G}(x),$$

$$\mathcal{X}(x) \to \mathcal{G}(x)$$

$$(3.28) \mathscr{R}(x) \to \mathscr{G}(x),$$

$$(3.29) \mathscr{G}(x) \to \mathscr{K}(\varkappa(x)) \wedge \mathscr{R}(\varrho(x)),$$

$$(3.30) \qquad \mathscr{G}(z) \to \exists u \exists v \big(\mathscr{K}(u) \land \mathscr{R}(v) \land \varkappa(z) = u \land \varrho(z) = v \big),$$

$$(3.31) \mathcal{K}(u) \wedge \mathcal{R}(v) \to \exists z (\mathcal{G}(z) \wedge \varkappa(z) = u \wedge \varrho(z) = v),$$

$$(3.32) \mathscr{G}(x_1) \wedge \mathscr{G}(x_2) \to \left(x_1 \leqslant x_2 \leftrightarrow \varkappa(x_1) \leqslant \varkappa(x_2) \wedge \varrho(x_1) \leqslant \varrho(x_2) \right),$$

$$(3.33) \mathcal{K}(x) \to \varkappa(x) = x \wedge \varrho(x) = A.$$

Having established this "product" property of G, we consider now the ordering between elements of $\mathscr G$ and its complementary class $\neg \mathscr G$. Of an element in $\mathscr G$ only its ρ -projection is involved in this. By (3.12) and (3.22) the following holds for \mathscr{G} :

$$(3.34) \qquad \qquad \neg \mathscr{G}(x) \leftrightarrow a(x) \equiv o \vee a(x) \equiv \omega,$$

$$(3.35) \mathscr{G}(x_1) \wedge \neg \mathscr{G}(x_2) \to (x_1 \leqslant x_2 \leftrightarrow \varrho(x_1) \leqslant x_2),$$

$$(3.36) \mathscr{G}(x_2) \wedge \neg \mathscr{G}(x_1) \to (x_1 \leqslant x_2 \leftrightarrow x_1 \leqslant \varrho(x_2)).$$

Proofs. (3.35): Let $\mathcal{G}(x_1)$, $\neg \mathcal{G}(x_2)$, hence $x_1 = k_1 \times A + v_1$ for some k_1, v_2 with $1 \le k_1 \in \omega$ and $\mathcal{W}(y_1)$. Furthermore $\varrho(x_1) = A + y_1$ by (3.26). Assuming $x_1 \leqslant x_2$, we get $\varrho(x_1) = A + y_1 \leqslant k_1 \times A + y_1 = x_1 \leqslant x_2$ because $1 \leqslant k_1$. On the other hand, let $\varrho(x_1) \leq x_2$, hence $A \leq x_2$, thus $\varrho(x_2) \equiv \omega$ by $\neg \mathscr{G}(x_2)$ and (3.34). By (3.11) $k_1 \times A \leq x_2$, thus there exists a set u with $k_1 \times A + u = x_2$. Furthermore, we have $y_1 \leq A + y_1 = \varrho(x_1) \leq x_2 = k_1 \times A + u$ and by applying (3.10) we obtain $A \leq y_1$ or $A+y_1 \leq A+u$. The first case contradicts $\mathcal{W}(y_1)$, hence by the latter $x_1 = k_1 \times A+v$ $+y_1 \leq k_1 \times A + u = x_2$, because $1 \leq k_1$ holds.

(3.36): Let $\mathcal{G}(x_2)$, $\neg \mathcal{G}(x_1)$, hence $x_2 = k_2 \times A + y_2$ for some k_2 , y_2 with $1 \le k_2 \in \omega$ and $\mathcal{W}(y_2)$. Furthermore $\varrho(x_2) = A + y_2$. Assuming $x_1 \le x_2$, we obtain $a(x_1) \subseteq k_2 \in \omega$ by (3.13) and (3.18). Hence $a(x_1) \equiv 0$ by $\neg \mathscr{G}(x_1)$ and (3.34). By (3.10) $x_1 \leqslant x_2 = k_2 \times A + y_2$ yields $A \leqslant x_1$ or $A + x_1 \leqslant A + y_2$; but $A \leqslant x_1$ is excluded by $a(x_1) \equiv 0$, thus the latter holds and we obtain $x_1 \leq \rho(x_2)$. On the other hand, if $x_1 \le \varrho(x_2)$, we have $x_1 \le \varrho(x_2) = A + y_2 \le k_2 \times A + y_2 = x_2$ by $1 \le k_2$.

Finally we introduce in (3.37) the class \mathcal{M} , priviously mentioned in § 2, and note two properties obvious by (3.12) and the definitions (3.22), (3.23) of \mathscr{G} and \mathscr{R} .

$$\mathcal{M}(x) \leftrightarrow a(x) \equiv 0 \lor a(x) \equiv 1 \lor a(x) \equiv \omega,$$

$$\mathscr{G}(x)\vee\mathscr{M}(x)\,,$$

$$(3.39) \mathscr{G}(x) \wedge \mathscr{M}(x) \leftrightarrow \mathscr{R}(x).$$

§ 4. Analysing ≤-formulas. In (3.32), (3.35) and (3.36) we gave, for the atomic formula $x_1 \leq x_2$, equivalent formulas depending on whether x_1, x_2 are in \mathscr{G} or $\neg \mathscr{G}$. In the following we generalize this to ≤-formulas.

 $L(\leqslant,\mathscr{P}_1,...,\mathscr{P}_s)$ denotes the first order language built by means of the logical connectives \land , \lor , \neg , \exists , \forall starting with the primitive symbols \leqslant and the predicates $\mathscr{P}_1,...,\mathscr{P}_s$. If $\mathscr{A}(\underline{x})$ is a formula of $L(\leqslant,\mathscr{P}_1,...,\mathscr{P}_s)$ and \mathscr{P} any monadic predicate, we write $[\mathscr{A}(\underline{x})]^{\mathscr{P}}$ for the relativization of the formula $\mathscr{A}(\underline{x})$ to the class \mathscr{P} $[\mathscr{A}(\underline{x})]^{\mathscr{P}}$ is recursively defined on the complexity of $\mathscr{A}(\underline{x})$ as follows:

$$[x \leqslant y]^{\mathscr{P}} \text{ is } x \leqslant y, \ [\mathscr{P}_{r}(\underline{x})]^{\mathscr{P}} \text{ is } \mathscr{P}_{r}(\underline{x}) \text{ for } r = 1, 2, ..., s,$$

$$[\mathscr{R}(\underline{x}) \wedge \mathscr{C}(\underline{x})]^{\mathscr{P}} \text{ is } [\mathscr{B}(\underline{x})]^{\mathscr{P}} \wedge [\mathscr{C}(\underline{x})]^{\mathscr{P}},$$

$$[\mathscr{R}(\underline{x}) \vee \mathscr{C}(\underline{x})]^{\mathscr{P}} \text{ is } [\mathscr{R}(\underline{x})]^{\mathscr{P}} \vee [\mathscr{C}(\underline{x})]^{\mathscr{P}},$$

$$[\neg \mathscr{R}(\underline{x})]^{\mathscr{P}} \text{ is } \neg [\mathscr{R}(\underline{x})]^{\mathscr{P}},$$

$$[\exists z \mathscr{R}(\underline{x}, z)]^{\mathscr{P}} \text{ is } \exists z (\mathscr{P}(z) \wedge [\mathscr{R}(\underline{x}, z)]^{\mathscr{P}}),$$

$$[\forall z \mathscr{R}(\underline{x}, z)]^{\mathscr{P}} \text{ is } \forall z (\neg \mathscr{P}(z) \vee [\mathscr{R}(\underline{x}, z)]^{\mathscr{P}}).$$

Thereby we write $\mathscr{A}(x_1, x_2, ..., x_n)$ — shorter $\mathscr{A}(\underline{x})$, to indicate that the free variables in the formula \mathscr{A} are among $\{x_1, x_2, ..., x_n\}$ — shorter $\{\underline{x}\}$. Furthermore we abbreviate $\mathscr{P}(x_1) \wedge \mathscr{P}(x_2) \wedge ... \wedge \mathscr{P}(x_n)$ by $\underline{\mathscr{P}}(\underline{x})$ and $| \mathscr{P}(x_1) \wedge | \mathscr{P}(x_2) \wedge ... \wedge | \mathscr{P}(x_n)$ by $| \mathscr{P}(\underline{x}) \rangle$.

PROPOSITION 4.1. Let $\mathcal{A}(x)$ be a formula of $L(\leqslant)$ with all its free variables among $\{x_1, ..., x_n\}$. For every decomposition $(\{\underline{x}'\}, \{\underline{x}''\})$ of the set $\{\underline{x}\}$ of variables, there exist formulas $\mathcal{A}'_i(\underline{x}')$ of $L(\leqslant)$ and $\mathcal{A}''_i(\underline{x}', \underline{x}'')$ of $L(\leqslant, \mathcal{R})$ (i = 1, 2, ..., m) such that

$$\underline{\mathscr{G}}(\underline{x}') \wedge \underline{\neg \mathscr{G}}(\underline{x}'') \ \rightarrow \ \left(\mathscr{A}(\underline{x}) \leftrightarrow \bigvee_{i=1}^{m} \left(\left[\mathscr{A}'_{i}(x(\underline{x}'))\right]^{\mathscr{X}} \wedge \left[\mathscr{A}''_{i}(\varrho(\underline{x}'),\underline{x}'')\right]^{\mathscr{M}} \right) \right).$$

In the following discussion this type of disjunction will be referred to as the "normal form" of $\mathscr{A}(x)$.

The proof is by induction on the complexity of $\mathscr{A}(\underline{x})$. It is sufficient to consider the logical connectives \vee , \neg , \exists . Let $\mathscr{A}(\underline{x})$ be an atomic formula, hence $x_1 \leqslant x_2$. There are four possible decompositions of the variables, namely $(\{x_1, x_2\}, \Lambda)$, $(\{x_1\}, \{x_2\})$, $(\{x_2\}, \{x_1\})$ and $(\Lambda, \{x_1, x_2\})$. By (3.32), (3.35) and (3.36) and the definition of relativation, the following holds:

$$\begin{split} \mathscr{G}(x_1) \wedge \mathscr{G}(x_2) &\to \left(x_1 \leqslant x_2 \leftrightarrow \left[\varkappa(x_1) \leqslant \varkappa(x_2)\right]^{\mathscr{A}} \wedge \left[\varrho(x_1) \leqslant \varrho(x_2)\right]^{\mathscr{A}}\right), \\ \mathscr{G}(x_1) \wedge \neg \mathscr{G}(x_2) &\to \left(x_1 \leqslant x_2 \leftrightarrow \left[\varrho(x_1) \leqslant x_2\right]^{\mathscr{A}}\right), \\ \mathscr{G}(x_2) \wedge \neg \mathscr{G}(x_1) &\to \left(x_1 \leqslant x_2 \leftrightarrow \left[x_1 \leqslant \varrho(x_2)\right]^{\mathscr{A}}\right), \\ \neg \mathscr{G}(x_1) \wedge \neg \mathscr{G}(x_2) &\to \left(x_1 \leqslant x_2 \leftrightarrow \left[x_1 \leqslant x_2\right]^{\mathscr{A}}\right). \end{split}$$

Let $\mathscr{A}(\underline{x})$ be the disjunction $\mathscr{B}(\underline{x}) \vee \mathscr{C}(\underline{x})$ and $(\{\underline{x}'\}, \{\underline{x}''\})$ a decomposition of $\{\underline{x}\}$. Then by induction hypothesis there exists a normal form for $\mathscr{B}(\underline{x}) (\mathscr{C}(\underline{x}))$ respectively. Assuming $\mathscr{G}(\underline{x}') \wedge \underline{\neg \mathscr{G}}(\underline{x}'')$, it is equivalent to $\mathscr{B}(\underline{x}) (\mathscr{C}(\underline{x}))$ respectively. The disjunction of these two normal forms is a normal form for $\mathscr{A}(\underline{x})$.

Let $\mathcal{A}(\underline{x})$ be $\neg \mathcal{B}(\underline{x})$ and $(\{\underline{x}'\}, \{\underline{x}''\})$ a decomposition of $\{\underline{x}\}$. By induction

hypothesis there is a normal form for $\mathscr{B}(\underline{x})$, therefore — provided $\underline{\mathscr{G}}(\underline{x}') \wedge \underline{\neg \mathscr{G}}(\underline{x}'')$ — the negation of this normal form is equivalent to $\mathscr{A}(x)$, thus

$$\mathscr{A}(\underline{x}) \leftrightarrow \neg \bigvee_{i=1}^{m} \left(\left\{ \mathscr{B}'_{i} \left(\varkappa(\underline{x}') \right) \right]^{\mathscr{X}} \wedge \left[\mathscr{B}''_{i} \left(\varrho(\underline{x}'), \underline{x}'' \right) \right]^{\mathscr{A}} \right).$$

By referring to propositional calculus and the definition of relativation we obtain the following normal form for $\mathscr{A}(\underline{x})$:

$$\bigvee_{I \subseteq \{1, \dots, m\}} \left(\left[\bigwedge_{i \in I} \neg \mathcal{B}'_i (\varkappa(\underline{x}')) \right]^{\mathscr{X}} \wedge \left[\bigwedge_{i \notin I} \neg \mathcal{B}'_i ' (\varrho(\underline{x}'), \underline{x}'') \right]^{\mathscr{A}} \right).$$

Let $\mathscr{A}(\underline{x})$ be $\exists z \mathscr{B}(\underline{x}, z)$ and $(\{\underline{x}'\}, \{\underline{x}''\})$ a decomposition of $\{\underline{x}\}$. $\mathscr{A}(\underline{x})$ is then equivalent to $\exists z (\mathscr{G}(z) \wedge \mathscr{B}(\underline{x}, z)) \vee \exists z (\neg \mathscr{G}(z) \wedge \mathscr{B}(\underline{x}, z))$. It is sufficient to find a normal form for each of these two disjuncts:

By induction hypothesis there exists for the decomposition $(\{\underline{x}'\} \cup \{z\}, \{\underline{x}''\})$ a normal form for $\mathcal{B}(x, z)$, hence

$$\mathscr{B}(\underline{x},z) \leftrightarrow \bigvee_{j} \left(\left[\mathscr{B}_{j}' (\varkappa(\underline{x}'),\varkappa(z)) \right]^{\mathscr{X}} \wedge \left[\mathscr{B}_{j}'' (\varrho(\underline{x}'),\varrho(z),\underline{x}'') \right]^{\mathscr{A}} \right)$$

provided $\underline{\mathscr{G}}(\underline{x}') \wedge \mathscr{G}(z) \wedge \underline{\neg \mathscr{G}}(\underline{x}'')$. Predicate calculus shows that $\exists z (\mathscr{G}(z) \wedge \mathscr{B}(\underline{x}, z))$ is equivalent to

$$\bigvee_{j} \exists z \big(\mathscr{G}(z) \wedge [\mathscr{B}'_{j}(\varkappa(\underline{x}'), \varkappa(z))]^{\mathscr{X}} \wedge [\mathscr{B}''_{j}(\varrho(\underline{x}'), \varrho(z), \underline{x}'')]^{\mathscr{M}} \big)$$

provided $\underline{\mathscr{G}}(\underline{x}') \wedge \underline{\neg \mathscr{G}}(\underline{x}'')$. By (3.30) each disjunct of \bigvee is equivalent to

$$\exists z \exists u \exists v \left(\mathcal{G}(z) \wedge \mathcal{K}(u) \wedge \mathcal{R}(v) \wedge \kappa(z) = u \wedge \varrho(z) = v \wedge \left[\mathcal{B}'_i(\kappa(\underline{x}'), \kappa(z)) \right]^{\mathcal{K}} \wedge \left[\mathcal{B}''_i(\varrho(\underline{x}'), \varrho(z), \underline{x}'') \right]^{\mathcal{A}} \right).$$

With $\varkappa(z) = u$, $\varrho(z) = v$ and using the fact that the cardinal equivalence is an equality for all occurring predicates, we obtain:

$$\exists z \exists u \exists v \Big(\mathscr{G}(z) \wedge \mathscr{K}(u) \wedge \mathscr{R}(v) \wedge \varkappa(z) = u \wedge \varrho(z) = v \wedge \\ \wedge \left[\mathscr{B}'_i \Big(\varkappa(x'), u \right) \right]^{\mathscr{K}} \wedge \left[\mathscr{B}''_i \Big(\varrho(\underline{x}'), v, \underline{x}'' \right) \right]^{\mathscr{A}} \Big).$$

By (3.31) each disjunct of \bigvee is consequently equivalent to

$$\exists u \exists v (\mathscr{X}(u) \land \mathscr{R}(v) \land [\mathscr{B}'_{I}(\varkappa(\underline{x}'), u)]^{\mathscr{K}} \land [\mathscr{B}''_{I}(\varrho(\underline{x}'), v, \underline{x}'')]^{\mathscr{M}});$$

together with $\mathcal{R}(v) \leftrightarrow \mathcal{R}(v) \land \mathcal{M}(v)$ (3.39) and the definition of relativation, this finally yields

$$\left[\exists u \mathscr{B}_{j}'(\varkappa(\underline{x}'), u)\right]^{\mathscr{X}} \wedge \left[\exists v \left(\mathscr{R}(v) \wedge \mathscr{B}_{j}'(\varrho(\underline{x}'), v, \underline{x}'')\right)\right]^{\mathscr{M}}.$$

Hence we have a normal form for $\exists z (\mathscr{G}(z) \land \mathscr{B}(\underline{x}, z))$. For the disjunct $\exists z (\neg \mathscr{G}(z) \land \mathscr{B}(\underline{x}, z))$ we use induction with the decomposition $(\{\underline{x}'\}, \{\underline{x}''\} \cup \{z\})$, hence — provided $\underline{\mathscr{G}}(\underline{x}') \land \underline{\neg \mathscr{G}}(\underline{x}'') \land \neg \mathscr{G}(z)$ — we have

$$\mathscr{B}(\underline{x},z) \leftrightarrow \bigvee_{h} \left(\left[\overline{\mathscr{B}}_{h}'(\varkappa(\underline{x}')) \right]^{\mathscr{K}} \wedge \left[\overline{\mathscr{B}}_{h}''(\varrho(\underline{x}'),\underline{x}'',z) \right]^{\mathscr{M}} \right)$$

Provided $\mathscr{G}(\underline{x}') \wedge \neg \mathscr{G}(\underline{x}'')$, it can be shown by predicate calculus that

$$\exists z (\neg \mathcal{G}(z) \land \mathcal{B}(x,z))$$

is equivalent to

$$\bigvee \left\langle \left[\overline{\mathcal{B}}_h'(\varkappa(\underline{x}'))\right]^{\mathcal{X}} \wedge \exists z \left(\neg \mathcal{G}(z) \wedge \left[\overline{\mathcal{B}}_h''(\varrho(\underline{x}'),\underline{x}'',z)\right]^{\mathcal{A}} \right) \right\rangle.$$

With $\neg \mathcal{G}(z) \leftrightarrow \neg \mathcal{R}(z) \land \mathcal{M}(z)$ ((3.38), (3.59)) and the definition of relativation, the normal form

$$\bigvee_{h} \left(\overline{\mathscr{B}}_{h}' (\varkappa(\underline{x}')) \right]^{\mathscr{K}} \wedge \left[\exists z \big(\neg \mathscr{R}(z) \wedge \overline{\mathscr{B}}_{h}'' (\varrho(\underline{x}'), \underline{x}'', z) \big) \right]^{\cdot t} \right)$$

can finally be obtained.

Corollary 4.2 is obtained by specifying all free variables to be in \mathcal{G} :

COROLLARY 4.2. Let $\mathscr{A}(\underline{x})$ be a formula of $L(\leqslant)$ with all its free variables among $\{\underline{x}\}$. Then there exist formulas $\mathscr{A}'_h(\underline{x})$ of $L(\leqslant)$ and $\mathscr{A}''_i(\underline{x})$ of $L(\leqslant,\mathscr{R})$ (i=1,2,...,m) such that

$$\underline{\mathscr{G}}(\underline{x}) \to \left(\mathscr{A}(\underline{x}) \; \longleftrightarrow \; \bigvee_{i} \left(\left[\mathscr{A}_{i}'(\varkappa(\underline{x})\right)\right]^{\mathscr{K}} \wedge \left[\mathscr{A}_{i}''(\varrho(\underline{x}))\right]^{\mathscr{A}} \right) \right).$$

Again by specifying all free variables to be in ${\mathscr X}$ and (3.27), (3.33) the following holds:

COROLLARY 4.3. Let $\mathscr{A}(\underline{x})$ be a formula of $L(\leqslant)$ with all its free variables among $\{\underline{x}\}$. Then there exist formulas $\mathscr{A}_{l}(\underline{x})$ of $L(\leqslant)$ and sentences \mathscr{S}_{l} of $L(\leqslant,\mathscr{R},\mathcal{M},A)$ (i=1,2,...,m) such that

$$\mathcal{K}(\underline{x}) \to \left(\mathcal{A}(\underline{x}) \leftrightarrow \bigvee \left([\mathcal{A}_i(\underline{x})]^{\mathcal{X}} \wedge \mathcal{S}_i \right) \right).$$

The restriction on the class $\mathscr X$ of a predicate given in the universe by a \leqslant -formula is thus equivalent to a predicate essentially defined within $\mathscr X$.

§ 5. Proof of Lemma 3. Let \mathcal{N} be the monadic predicate defined by $\mathcal{N}(k) \leftrightarrow 1 \leq k \in \omega$. By (3.21), (3.19) and (3.13) the multiplicity a introduced in § 3 gives an order preserving isomorphism from $(\mathcal{K}, =, \leq)$ onto $(\mathcal{N}, \equiv, \subseteq)$, $(\mathcal{N}, =, \leq)$ respectively. By induction this isomorphism of the ordering \leq can be extended to \leq -formulas, provided all quantifiers are restricted, hence

(5.1) If $\mathscr{A}(\underline{x})$ is a formula of $L(\leq)$ with all its free variables among $\{\underline{x}\}$, then

$$\mathcal{L}(\underline{x}) \to ([\mathcal{A}(\underline{x})]^{\mathcal{X}} \leftrightarrow [\mathcal{A}(a(\underline{x}))]^{\mathcal{X}}).$$

We are now in the position to prove Lemma 3 of § 1 without much difficulty. The only assumption on A we have used so far is $\mathrm{Unit}(A)$. Let $\mathcal{D}(x,z)$ be a \leqslant -formula. By Corollary 4.3 there exist formulas $\mathcal{D}_i(x,z)$ of $L(\leqslant)$ and sentences \mathcal{S}_i of $L(\leqslant,\mathcal{R},\mathcal{M},A)$ (i=1,2,...,m) such that

$$\mathcal{K}(x) \wedge \mathcal{K}(z) \to \left\langle \mathcal{D}(x,z) \leftrightarrow \bigvee_{i} \left(\left[\mathcal{D}_{i}(x,z) \right]^{\mathcal{K}} \wedge \mathcal{S}_{i} \right) \right),$$

hence by (5.1)

$$\mathscr{D}(x,z) \leftrightarrow \bigvee_{i} \left(\left[\mathscr{D}_{i} \left(a(x),a(z) \right) \right]^{\mathscr{N}} \wedge \mathscr{S}_{i} \right)$$

provided $\mathcal{K}(x) \wedge \mathcal{K}(z)$.

By the well-known analysis of \leq -formulas on natural numbers using elimination of quantifiers we obtain for each \leq -formula $\mathcal{D}_i(x,z)$ two numerals q_i and p_i such that for any numeral x, z with $q_i < x$ and $p_i < z - x$ the following holds:

$$[\mathcal{D}_i(x,z)]^{\mathcal{N}} \leftrightarrow [\mathcal{D}_i(x,z+1)]^{\mathcal{N}}$$
.

Remark. If x and z are far away from the first element and the distance between them is large enough, then the \leq -formula $[\mathcal{D}_i(\cdot,\cdot)]^{\mathcal{N}}$ does not distinguish between the two pairs (x,z) and (x,z+i).

Let
$$q = \max\{q_i | i = 1, 2, ..., m\}, p = \max\{p_i | i = 1, 2, ..., m\},$$

$$s = \max\{q, p\} + 1 \quad \text{and} \quad t = s + s.$$

Then $q_i < s$ and $p_i < t-s$ hold for all i = 1, 2, ..., m, hence for all i = 1, 2, ..., m simultaneously hold

$$(**) \qquad [\mathscr{D}_i(s,t)]^{\mathscr{N}} \leftrightarrow [\mathscr{D}_i(s,t+1)]^{\mathscr{N}}.$$

In (*) let $x = s \times A$, $z = t \times A$. Then $\mathcal{K}(s \times A)$, $\mathcal{K}(t \times A)$, $a(s \times A) = s$, $a(t \times A) = t$ yields

$$\mathscr{D}(s \times A, t \times A) \leftrightarrow \bigvee_{i} ([\mathscr{D}_{i}(s, t)]^{\mathscr{N}} \wedge \mathscr{S}_{i}).$$

Similarly by $x = s \times A$ and $z = (t+1) \times A$ we obtain

$$\mathscr{D}(s \times A, (t+1) \times A) \leftrightarrow \bigvee ([\mathscr{D}_i(s, t+1)]^{\mathscr{N}} \wedge \mathscr{S}_i).$$

Hence by (**) and t = s + s:

$$\mathcal{D}(s \times A, (s+s) \times A) \leftrightarrow \mathcal{D}(s \times A, (s+s+1) \times A)$$
.

References

 T. Jech, The axiom of choice, Studies in Logic and the Foundations of Mathematics, Volume 75, 1973, North-Holland Publishing Company.

[2] A. Tarski, Cardinal Algebras, Oxford University Press, 1949.

[3] - Cancellation laws in the arithmetic of cardinals, Fund. Math. 36 (1949), pp. 77-92.

MAX-PLANCK-INST. FUR BIOPHYS. CHEMIE

Postfach 968

D-3400 Göttingen

Accepté par la Rédaction le 30. 3. 1980