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Defining cardinal addition
by <-formulas

by

Alexander F. Hiiussler| * (Zirich)

Abstract. It is well-known that in Zermelo-Fraenkel set theory strengthened by the axiom
of choice, cardinal addition of infinite sets can be expressed by the supremum which is defined
by a first-order formula in the cardinal ordering <. The same holds in presence of the weaker
axiom stating that every infinite set is idemmultiple, ie. Vx(x <o vx = x+4x). On the other
hand, in Zermelo-Fraenkel set theory a definition of cardinal addition of infinite sets by a <-for-
nwla is not possible. We show that this is also impossible for the following two kinds of extensions:
First, those extensions which are consistent with the existence of a Dedekind set g, i.e. ¢ infinite
and ¢ # s+1, secondly, extensions which are consistent with the existence of an infinite unit A,
ie. A infinite, A<A+4, ¥x,y(x+y = A+x=Avy = 4).

§ 1. In Zermelo-Fraenkel set theory ZF with the axiom of choice cardinal
addition x+y = z of infinite sets can be expressed by the supremum sup(x, y, z)
which is defined by the <-formula x,y<zAVu(x, y<u — z<u). In [2], p. 55
A. Tarski showed that the weaker axiom Vx(x<wVx = x+x) — meaning that
every infinite set is idemmultiple — still implies within ZF the following equivalence
for cardinal addition of infinite sets

Vx, v, z(Inf(x) AInf(») Alnf(z) » (x+¥ = z <> sup(x, y, 29))

where Inf(x) abbreviates T1x<a. .

In ZF itself — provided it is consistent — a definition by a (first-order) < -for-
mula cannot be given. To show this, we assume that for some < -formula < (x, y, =¥
the following holds in ZF

Vi, v, 2(Inf(x) AInf(3) AInf(z) = (x+y = z < #(x,7, 2))) .
This leads to a contradiction as follows: .

Consider the consistent extension of ZF in which the existence of a Dedekind
set ¢ (Inf(€) Ae # s+1) is postulated. Then the cardinals 47, ne o, are definite
and ordered like the integers. Let 0 be the following function symbol (= is the set-
theoretical equality)

{x+1 , ifdnew(=c+tnvi+n=74),
0(x) = .
X, otherwise

* 1t is my sad duty to inform the reader that Alexander Héussler died of cancer on August
8, 1982. — H. Léuchli.
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and note that 8(g) = e-+1, but 0(e+&) = s+s, hence 0(e)+0(s) # O(a+¢). One
«can check by examining several cases that 0 is an = -automorphism of the universe,
preserving the order < and infinity, thus we have

Vi, x'(x = 3" « 0(x) = 0(x)),
Vydxo(x) =y,
Vi, x'(x<x’ < 0(x)<0(x)),
Vx(Inf(x) < Inf(0(x))) .
Induction on the complexity yields
V(o () & o (0(x))
for every < -formula of (x).

‘By applying this to &/ (x, y, z) inthe assumed equivalence for cardinal addition
of infinite sets we thus obtain in ZF-Inf(g)As # &-+1 the following

Yax; v, Z(Illf(x)AInf(ji)Alllf(Z = (x+y =z « 0(x)+0(3) = 0(2))),

hence for x = ¢, y=-¢ and z'= ¢+¢& we deduce 0(g)+0(e) = 0(8-}-&) -~ 4 con-
tr’idxc‘uon to the consistency of ZF+Inf(c) AnE# e+

The same proof is valid for a slightly more general situation:

TuroREM 1. In a theory which is compatible with ZF —bﬂx([nf(,\)A,x # x+1)
no < -formula defines cardinal addition of infinite sets, :

COROLLARY 2. Let theory T be an extension of ZE in which a < < ~formula defines
cardinal addition of infinite sets. Then Vx(x<ovx = x+1) can be deduced from T,

Proof of Corollary 2. Assurue that Vx(x<ovx = x—(—l) is not ]novablu
in 7. Then T+3x{Inf(x) Ax # x+1) is consistent and -hence wmpactxblf~ with
ZF -rEl)e(Inf(x)/\x # x+1). Thus by Theorcm 1 no <-formula defines cardinal
addition of infinite sets.

The question arises whether the axiom Vx(x<@vx = x+1) — meaning that
every infinite set is transfinite — is sufficient for defining cardinal addition of infinite
sets by a (first-order) < -formula. The answer for even much stronger axioms like DC,
DCy,, Y2AC, or even DC,, AVAAC, is negative (see Corollary 5).

Thereby DC and DCy, are axioms of dependent choices and VAAC, means that
any wellorderable set of nonempty eclements has a choice function (sce [11, p. 119).
In all these cases we cannot refer to a Dedekind set ¢ as we did in Theorem 1. Howe-
ver, it is compatible with these axioms to assume that there exists a set 4 such that
the sets kx 4, 1<k € w, have in a sense the same behavmur as the natural numbers
(see Lemma 3 and Theorem 4).

DErINITION. 4 is an Unit, if A<d+ 4 and Vx, y(x+y= A = x = Advy = A).

LemMA 3. If @ (x, 2) is a < -formula, then there exists a numeral s with 1<se w
such that in ZF+Unit(4) the following holds:

D(sxd, (s+5)x4) & D(sx A4, (s+s+1)x4).
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- The proof of this lemma. is given in §§ 2-5. We sketch the proofin-§ 2, in §§ 3
and 4 we work out the theory ZF-+Unit(4) and fmally in § 5 we prove the lemia,
Let:us nevertheless give the conclusions now:

" THEOREM: 4. In a theory T which is compatible with ZF+3x(Inf(x)AUmt(x))
no '<-formula’ defines ‘cardinal addition of infinite sefs

 Proof of Theorem 4. Let us assume that the < -formula & (x,y,z) defines
i T cardinal addition of infinite sefs. Since T has the compatibility property, we can
assume the existence of a set 4 such that T +ZF+qu(A)AU111t(A) is' consistent;
dem ly in thls extension of T also 1he following holds:.

Vi, 7, 2{Inf() ATRE() AInf(R) — (47 = 2 < o2(x, . 9).

By‘ applying Lemma 3 on the <-formula 7 (x, , z) we obtain a numeral s with
1< SE® such that

A (sx A, 5xA, (s+85)x4)  A(sxA,5%4, (s+5+1)x 4)

hblds in ZF+Unit(4).

"As A is assumed to be infinite, s+A, (s+5)xA4 and (s+s5+1) x4 are infinite
too furthermore s x 445 x 4 = (s+5) x 4 holds. Hence by the assumed equivalence
for addition and the result from Lemma 3 we obtain sx A+sx 4 = (s+5+1)x A,
Thiis 4 = 4+4 (see § 3) which contradicts the assumed compatibility.

Remark. The same argument holds if we replace “infinite” by “finite”. As 1 is
a Unit, in any theory compatible with ZF (for instance every consistent extension
of ZF), no <-formula defines cardinal addition of finite sets.

COROLLARY 5. If ZF is consistent, no. <-formula defines cardinal addition of
infinite sets in the theory ZF+DCy,+VIAC;.

Proof. By Theorem 4 it suffices to show that this theory is compatible with
ZF-I—E!x(Inf(x)/\Unit(x))A In [1] Theorem 8.9 (p. 127) let & = 1: Then DC,, and
VJAC,; hold in the Fraenkel-Mostowski permutation model given there. Further-
more it is easy to see that the set of atoms is a Unit in the permutation model.

Using a refinement of the embedding theorem, this relative consistency resuit
by means of a permutation model is transferred into ZF; hence

ZF +DCy, +VAAC, +3x(Inf(x) A Unit(x))

is relative consistent to ZF.

The author is indebted to Prof. Dr, H. Lauchh for many helpful discussions on
this subject.

§ 2. Sketch of proof of Lemma 3. We work in ZF and furthermore assume
Unit(4) for a set 4. A <A+ 4 implies k x 4 <(k+1) x 4 for k € o; thus the class &
of all kx4 with 1<k € w (including the cardinal equivalent scts) obviously has the
same ordering as " = {k| 1<k € w}. This isomorphism of the ordering < can be
transferred to < -formulas, provided that the quantifiers refer only to the classes o
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and .4 respectively. Hence, by the well-known theorem on natural numbers, Lemma 3
holds for o -relativized < -formulas.

In order to treat quantifiers which refer to the whole universe, we investigate
the ordering between elements of 2 and those of the universe. To do this, we intro-
duce the notion of multiplicity a(x) which intuitively counts the number of pairwise
disjoint copies of 4 which can be embedded in a set x (§ 3). Then a set x has multi-
plicity k (I<kew) iff x is a sum kxA+y with ALy. In this decomposition the
second summand y is not unique, however, A-+y is definite up to cardinal equiva-
lence. Let # be the class of all sums 4+y with A%). On the class ¥ of all k x A+ y
(ISkew,A%£y) we introduce the two projections » onto £ satisfying
#(kxA+y) = kx4 and ¢ onto # satisfying g(kx 4+y) = A-+y.

It can be shown that x; <x, < % (x,)<n(xy) A0 (xy) <o (xy) holds for xy, x,
in ¢. In order to compare x’ in % to x” in 719, it suffices to compare g(x') to x".
Introducing # by #v 1% we see (§ 4), that a predicate given by a < -formula
S (x', x"") is equivalent to a propositional combination of 4 -relativized < -for-
mulas in 2%(x}), ..., %(x)) and . -relativized <-formulas in o(x}), ..., 0(xp),
x1', .o, Xpto— provided that all x1, ..., x;, are in ¢ and x7, ..., X in 71%. Assuming
all x;, x5, ..., X, to be in £ (hence none in 1%), then x(x;) = x;, 0(x;) = 4 and
thus &/ (x) is equivalent to a propositional combination of A -relativized < -for-
mulas in x and some ¥ -sentences in 4. This is what we need for the proof of Lemma 3
in § 5, as mentioned at the beginning.

§ 3. Unit and multiplicity. Working in ZF+ Unit(4) we may assume that there
exists a set 4 with the following two properties:
(3.1 A<A+A4,
3.2) Vx,y(x+y=A— x=Avy = A).
Then the following holds for A4:
(3.3)
(3.4)

Vx(A+x = 4 —» x<A),

Vx(x<d — A+x = A).

Furthermore (3.3) is equivalent to (3.1) and assuming (3.1) or (3.3) respectively,
then (3.2) and (3.4) are equivalent too.

Proofs. (3.1)= (3.3). Let A+x = A for some x. Then x<A, hence x<4
because x = A is excluded by (3.1). (3.3) = (3.1): With x = A in (3.3) the assumption
A = A+A yields the contradiction A<, hence A<A-+A. (3.2) = (3.4): Let
x<4 for some x; then there exists y with x+y = 4 and y = 4 by (3.2), thus
X+d=4.CGAHAGBL = (3.2):Letx+y = A, butx, y<4.By (3.4) A+ (x+y) = 4,
hence A+4 = 4 in contradiction to (3.1).

Before continuing, let us note a theorem on cardinal algebra provable in ZF:

(3.5) ke onkxu+v<kxu+w — utv<utw,

For a proof refer to Corollary 4 in [3], p. 81.
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From Unit(4) we deduce

(3.6) 0<4,

3.7 kew - kxA<(k+1)x4,

(3.8) keonk+)xd<kxA+y - ALy,
3.9 kewAx<kxd — ASxVvA+x = A,
(3.10) keoax<kxA+y — ASxvA+x<A+y.

Proofs. (3.6) and (3.7) follow by (3.1) and (3.5).

(3.8): Let (k+1)x A<k x A+y, then by applying (3.5) we obtain 4 +A4<A4+y.
Hence there exist @', a’, ', "' with 4 = a'+y’ = a'+y", ' +a" <4 and y'+y"'< 3.
By(32)a' =Avy =Aanda’ = Avy’' = 4. Inthecase 4 = o’ — a’’, we obtain
A+A4 = d+a"<A4 — a contradiction to (3.1). In all other cases ALY +y"<y.

(3.9): By induction on k € w: For k = 0 it holds trivially. Let x<(k+1)x 4,
then there exist x', x” with x = x'+x", x'< 4, xX"'<kxA, thus x’ <A or x' = A4
and by induction hypothesis 4<x"” or A+x" = 4. In. the case of x'<A and
A+x" = A, 3.4 yields A+x = A+x"+x" = A, in all other cases AL +x" = x.

(3.10): Let x<<kxA+y, then there exist x’, x” with x = X' +x", X’<kx A,
x"<y By 3.9itis A<x" or A+x" = A. In the first case A<Lx'<x, in the latter
Aty = A+x'+x" = A+x"<A+y.

We introduce a function symbol assigning to a set x the maximal number a(x)
of pairwise disjoint copies of 4 which can be embedded in x. This notion of multi-
plicity is helpful for investigating the ordering <.

Let @ be defined formally by the following:

(3.11)

a(x) is an initial segment of w, hence a(x) € w or a(x) = w. Furthermore multiplicity
is monotone, thus the following three propositions hold and are trivial:

a(x) ={nl neorm+1)x A<x}

(3.12) a(x)ew®, where 0" =ouio},
(3.13) x€x, - alx)<alx,),
(3.14) x; =X, = a(x) = a(x,).

If a(x) is finite then, as intended, the following holds:

(3.15) kew - (a() =k & kxA<xalk+1)x Ax).

Proof. Let ke w. The case k = 0 is obvious, because A%x iff a(x) is empty
(alx) = 0). Let 1<k e w: If a(x) = k, then k—1 € a(x), hence by (3.11) kx A< x;
the assumption (k+1) x 4 <x however leads to the contradiction k € k. For the other
implication assume that kx A<, but (k+1)xAg&x; (3.11) yvields k—1 e a(k),
but k ¢ a(x); hence a(x) = k follows.

Remark. In the case k = w we have only the equivalence between a(x) = w
and Vkew kx A<x. In general this does not imply w x4<x.
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The function (x) decomposes the universe in ot many classes. In the following
we give, in some sense, a more explicit characterization of sets with finite multiplicity
and the ordering < between such sets. For this purpose we introduce the monadit
predicate % in (3.16). By (3.15) the proposition (3:17) is then obvious.

(3.16) W) > ax) =0,

(3.17) L) e Adx.

Now the following statements hold:

(3.18) kew— (a(®) =k « (W () Ax=kxAd+))),
319 kew-oalkxd)y=k,

(3.20)  1<ky, kye @AW () AW (32)
= (kyxA+y; ko x d+yy < ki SkynA+y <A-tys) .

Remark. It cannot be expected that (3.20) holds with kySlkyApy€y,.

Proofs. (3.18): Let ke . If a(x) =k, then by (3.15) there exists p such that
x = kxA+y and (k-+1)x Agx hold, hence A%y follows. If, on the other hand,
x = kx A+yfor some y with 4y, we have k x A<x. The assumption (k+1) x 4<x
= kx A+y, however, yields the contradiction A<y by (3.8). Hence a(x) = k by
(3.15).

(3.19): Let y = 0 in (3.18), then ALy by (3.6), hence a(kx d) = k.

(3.20): Assume 1<ky, k€@, W (), “/V(yz) If ky sk, and A-+y, Sd+y,,
then obviously JyxA+y<kyxA+4y,. If, on the other hand, kyxdA+y,
<k, x A+¥,, then k; =k, by (3.13) and (3.18). Furthermore we have y; <ky X A +ya,
hence A<y, or A+y, <4 +y, by (3.10). Because of #'(y,) the second case holds.

Let us introduce the monadic predicates J", ¢ and £ in. (3.21) to (3.23). In (3.24)
and (3.25) equivalent forms, obvious by (3.18), are added:

(3.21) H(x) « Fk(I<kewrx = kx4),

(3.22) F(x) « 1<a(x)ew,

(3.23) Rx) > ax) =1, ;
(3.24) Y(x) & AkAy(I<ske o AW (W) Ax = kx A+)),

(3.25) Ax) — (W (M) Ax = A+Y).

The elements of % are sums. By (3.20) not the summands kx 4 and y but kx4
and A-+y are unique up to cardinal equivalence, This allows us to introduce the
following two cardinal function symbols % and ¢ on the class %, i.¢. function symbols
with respect to cardinal equality only:

(3.26) If9(x)—thus x = kxA+y for some k, y with 1 <k &  and % (3) — then
et %(x) = kx4 and g(x) = A+y.

The following list of propositions formally expresses that the class % with the
ordering < is the “product” of the subclasses " and % with projections » and g,

©
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The proofs are easy 4pphcauons of p1evxou<;1y shown propomtlons which we leave:
to the reader: ; )

(3.27) H(x) — fﬁl(x) )

(3.28) R(x) - 4(x),

(3.29) Gx) = A (H())AR((x)),

(3.30) G(z) ~ JuTo(A () ARW) Ax(z) = ung(z) = 1),

(331)  A@ARW) ~ (G A%E) = urel?) =),

(332) Gl AB(x) = (1< © n(x)<e(x) Ae(x) <o),

(3.33) (XY > 1(X) = xAg(x) =

Having established this “product” property of %, we consider now the ordering:

between elements of ¥ and its complementary class ~19. Of an clement in & only
its g-projection is involved in this. By (3.12) and (3.22) the following holds for :

(3.34) G (%) > alx) =ovax) = o,
(3.35) G AT (%) = (30, © 0(x)<x,),
(3.36) G A 1D (xy) = (€0, © x<0(xy)).

Proofs. (3.35): Let 9 (x,), T19(x,), bence x; = k; x 4+y, for some ky, vy
with 1<k, ew and # (yy). Furthermore g(x;) = A+y, by (3.26). Assuming'
X KX, We get @(xy) = A4y, <ky X A-+y; = x;<x, because 1<k;. On the other
hand, let @(x;)<x,, hence A< x,, thus a(x,) = © by "% (x,) and (3.34). By (3.11)
ky x A< x,, thus there exists a set u with k; x A+u = x,. Furthermore, we have:
i S€d+y, = o(x)<xy = kyxA+u and by applying (3.10) we obtain A<y, ‘
or A+y, <A-u. The first case contradicts # (), hence by the latter x; = k; x A+
+y,<ky X A+u = x,, because 1<k, holds.

(3.36): Let 9(x,), T1%(xy), hence x, = kyxA+y, for some k,, y, with.
1<k, e w and # (y,). Furthermore g(x;) = A+y,. Assuming x; <x,, we obtain
a(xy) sk, € by (3.13) and (3.18). Hence a(x,) = 0 by 1% (x,) and (3.34). By (3.10)
Xy €KXy = Ky X A+y, yields A<x; or A+x;€A+y,; but A<x; is excluded by
a(x,) = 0, thus the latter holds and we obtain x; <o (x,). On the other hand, if
Xy €0 (xy), we have x; Ko (xy) = Aty <hy x A4y, = x, by 1<k,.

Finally we introduce in (3.37) the class ., priviously mentioned in § 2, and note
two properties obvious by (3.12) and the definitions (3.22), (3.23) of % and 4.

(3.37) M) e alx) =0valx)=lvaelx) = o,
(3.38) G(x)v M (x),
(3.39) GX) A (X) > R(x).

§ 4. Analysing < ~formulas. In (3.32), (3.35) and (3.36) we gave, for the atomic
formula x, €x,, equivalent formulas depending on whether x;, x, are in % .or T1%..
In the following we generalize this to < -formulas.
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’ L(<, Py, ..., P denotes the first order language built by means of the logical
comnectives A, v, 1, 3, V starting with the primitive symbols < and the predi-
cates @, ..., P,. If o(x) is a formula of L(<, 2y, ., @) and @ any monadic
predicate, we write [« (x)]? for the relativization of the formula #/ (x) to the class 2

L2 (x)]” is recursively defined on the complexity of #(x) as follows:
x<1)® is x<y, [Z®) is Px) for r=1,2,...,5,
() A €@ is [B@)I7AE®),
B Ve is [#@P VB,

M@ is B,
HzB(x, 2)]? is Az (Q’(Z)A[Q?(x 21%),
Wz (x, 2))° is Yz2(R 2 @) vIEB(x, 2)1%).

“Thereby we write & (x,, X, ..., X,) — shorter & (x), to indicate that the free variables
in the formula & are among {x;, X,, ..., X,} — shorter {x}. Furthermore we abbre-
viate P(x)AP(x) A AP(X) by 2(x) and TIP(x)ATIP(x) A
by 12(x).

ProrosiTION 4.1. Let o/ (x) be a formule of L(<) with all its free variables
among {xy, ..., x,}. For every decomposition ({x'}, {x""}) of the set {x} of variables,
there exist formulas s{(x") of L(<) and o7 (x',x") of L(S, &) (i=1,2,..,m)
such that

1)

[ ((x), N .

In the following discussion this type of disjunction will be referred to as the
“normal form” of &/ (x).

The proof is by induction on the complexity of o (x). It is sufficient to consider
the logical connectives v, 71, 3. Let &Z(x) be an atomic formula, hence x;<x,.
There are four possible decompositions of the variables, namely ({x,, x,}, 4),
Cxds P2 (o}, {x}) and (4, {x1, x,}). By (3.32), (3.35) and (3.36) and the
definition. of relativation, the following holds:

A TEE > (Z@) \/1 ([t (el A

G )AF () = (x1€x, o k) SA(e)]F Aol <o),
G(x ) A9 (x,) — (xl X < [Q(-’:L)sz]m) s
G) A G (xy) = (x€x, o [x <o),
TG DA TIG(x) = (ry<x, o oy <))
Let «(x) be the disjunction %(x) v ¢ (x) and ({x'}, {¥"'}) a decomposition of {x}.
Then by induction hypothesis there exists a normal form for 2 (x) (% (x) respectively).

Assuming & (x") A T9(x"), it is equivalent to 8 (x) (% (x) respectively). The disjunction
of these two normal forms is a normal form for & (x).

Let #7(x) be 1% (x) and ({x'}, {¥""}) a decomposition of {x}. By induction

ATIP (%)

icm
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hypothesis there is a normal form for #(x), therefore — provided GxNA %) —
the negation of this normal form is equivalent to & (x), thus

@) o TV (@ A8, ).

By referring to propositional calculus and the definition of relativation we obtain
the following normal form for o (x):

VLA O] FALJ (e, x4 .

IS {1500m}

Let &/ (x) be HzB(x,z) and ({x'}, {x"}) a decomposition of {x}. #(x) is then
equivalent to Az{%(2) A B (x, 2))vIz(T19 () A #(x, 2)). It is sufficient to find
a normal form for each of these two disjuncts:

By induction hypothesis there exists for the decomposition ({x'} U {z}, {x"})
a normal form for #(x, z), hence

B(x, 2) < \/ ([, 2 @) A1} (e, €@, x"))

provided ¢ (x") A ¥(z) A 19 (x"). Predicate calculus shows that 32(%(2) A B(x, 2))
is cq1uv11e111. to

\/32( (2) A L)), v @) A B (%), 22, £ N*)
provided ¥(x") A T1%(x""). By (3.30) each disjunct of \/ is equivalent to

AzFuTo (G (@) AK W) ARW) A%(2) = une(z) =vA
AB((x), D) A 187 (e(x), 0@, 5")) -

With %(z) = u, 0(z) = v and using the fact that the cardinal equivalence is an
equality for all occurring predicates, we obtain:

Hzﬂuﬂv(@(z)/\.%('(u) AZW)AR(Z) =ung(@) =vA
] B (x), u)* B (e(x). v, ")) -
By (3.31) each disjunct of \/ is consequently equivalent to
J

Fudo (A ) A R () AB (), W) AL ), v, 3)1%);

together with 22(v) «» #(0) A (v) (3.39) and the definition of relativation, this
finally yields

[Hudioe (), u)l A [Fo (R (0) A B (05, 0, -
Hence we have a normal form for Jz(%(x)A B(x, 2)). I‘or the disjunct

3z(1%(2) A B (3, 2)) we use induction with the decomposition ({x'}, {x"} v {z}),
hence — provided #(x)A 1% (") A ~1%(z) — we have

#(x,2) « \/ ([ BilrEO) A Bie), x", ).
h

4 - Fundamenta Mathematicae CXV
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Provided ¢ (x") A 19 (x"), it can be shown by predicate calculus that

3z(% (D) A B(x, 2)
is equivalent to : '

V ([BeG)* A32(19) A By (), 5 1)
b

With 14 (2) < 12 (z) A A (2) ((3.38), (3.‘379)) and the definition of relativation,
the normal form
(Bl ) A [B2(T12(2) A B (0 (5", 5, 2))1)

h
can finally be obtained.
Corollary 4.2 is obtained by specifying all free variables to be in @:
COROLLARY 4.2. Let of(x) be a formula of L(<) with all its free variobles

among {x}. Then there exist formulas i(x) of L(<) and {(x) of L(<, %)
(i=1,2,..,m) such that

@)~ (# () < V([ @) ale] (0())") .

Again by specifying all freé variables to be in #” and (3.27), (3.33) tlﬁc followiitg
holds:
COROLLARY 4.3. Let 4(x) be a formula of L(<) with all its free variables

among {x}. Then there exist formulas of {x) of L(<K) and sentences &, of
L(<, R, M, A) (1 =1,2,..,m) such that

H@ - (L@ <\ (LD 25
The restriction on the class 2" of a predicate given in the universe by a < -formula
is thus equivalent to a predicate essentially defined within 7.

§ 5. Proof of Lemma 3. Let ./ be the monadic predicate defined by
N(k) > 1<keo. By (3.21), (3.19) and (3.13) the multiplicity « introduced in § 3
gives an order preserving isomorphism from (4" ,=, <) onto (A, =, E),
(A, =, <) respectively. By induction this isomorphism of the ordering < can beé
extended to < -formulas, provided all quantifiers are restricted, hence

(5.1) If o/(x) is a formula of L(<) with all its free variables among {x}, then
A X) = ([ D > [ (a@)").

We are now in the position to prove Lemma 3 of § 1 without much difficulty. The
only assumption on 4 we have used so far is Unit(4). Let D(x,z) be a < -for-
mula. By Corollary 4.3 there exist formulas Dy(x, 2) of L(<K)
of L(S, &, M, 4A) (i=1,2, .., m) such that

HOINA(2) > (D(x,2) « Y (12 x, 21 A #)),

and sentences &

©
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hence by (5.1)
) @(x.2) =\ ([2a@), a@)" 7
1]

provided 4 (x) ANA (2). ’ N

By the well-known analysis of < -formulas on natural numbers using elimina-
tion of quantifiers we obtain for each < ~formula @ (x, z) two num.erals q; and p;
such that for any numeral x, z with ¢;<x and p;<z—x the following holds:

[D(x, D o [D(x, 4+ DI,

Remark. If x and z arc far away from the first element and the distance between
them is large enough, then the < -formula [2,, )" does not distinguish between
the two pairs (x, z) and (x, z-+i). .

Let g = max{g,| i=1,2,..,m}, p=max{p] i=1,2, ey,

§ = max{g,p}+1 and ¢=s+s5.

Then g;<s and p;<t—s hold for all i =1,2,..,m, hence for all i = 1,2,..,m
simultancously hold .
() ' @5, D"« [2s, 1+ D"
In (%) let x = sx A, z = txA. Then H (s A)y H(txA), alsxd) =5, afxd) =1
ields
’ Bsxd, txd) « \ (2, NN
i
Similarly by x = sx.4 and z = (t+1)x A we obtain
D(sx A4, (t+1)x4) < \/([@,(x, DM ALY

Hence by (#+) and ¢ = s+s:
D(sx A, (s+5)xA) « D(sx A, (s+s+D)x4).
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