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Some topological consequences of the
Product Measure Extension Axiom

by
Heikki J. X. Junnila* (Helsinki)

Abstract. Under the assumption that the Product Measure Extension Axiom holds, the following
results obtain:

Every (sub)normal space of weak character below ¢ is collectionwise (sub)normal.

If X is either of weak character below ¢ or semi-stratifiable, then every Gs-additive partition
of X has a o-discrete closed refinement.

The unparenthesized part of the fitst result answers a question of P. Nyikos.

In [12], P. Nyikos gave a “provisional” solution to one of the outstanding
problems of general topology by showing that if the usual set-theory (ZFC) has
a model in which the Product Measure Extension Axiom (PMEA) holds, then in
that model, every normal Moore space is metrizable. It was already known
(see [15]) that the existence of a normal, non-metrizable Moore space is consistent
with ZFC; however, Nyikos’s result did not quite establish the independence of
the Normal Moore Space Conjecture from ZFC, since it is not known whether
PMEA is consistent with ZFC. '

In this paper, we investigate properties that certain topological spaces have
in models of ZFC + PMEA. We answer a question of Nyikos ([12]) by showing
that under PMEA, every normal space of weak character below 2 is collection-
wise normal. Our other results deal with the relationship between subnormal and
collectionwise subnormal spaces (see [5]) and with properties of G5-additive families
of subsets of topological spaces.

1. Preliminaries. Let o be the set of all finite ordinals, and let ¢ = 2% The
Product Measure Extension Axiom, as defined in [12], asserts the existence, for
each cardinal number %, of a ¢-additive measure defined for all subsets of {0, 1}*
such that the measure extends the product measure p, where p is the measure
on {0, 1} defined by u({0}) = u({1}) = 4. We shall use an equivalent formulation
of the axiom that is better suited for the purposes of this paper.

The Product Medsure Extension Axiom (PMEA) is equivalent (in ZFC) with
the statement that for any set 4, there exists a non-negative real-valued function u

* This paper was written while the author was visiting the University of Pittsburgh as an
Andrew Mellon. Postdoctoral Fellow.
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whose domain of definition is the set consisting of all families of subsets of 4 and
which satisfies the following conditions:

1. If # is a collection of mutually disjoint families of subsets of 4 and || <,
then u(U #) = Y {n(#)| # € #}. : -

2. If F and G are mutually disjoint finite subsets of 4 and n = |[F U G|, then
#{{Bcd| FecBand GNB=@)}) = 27"

By abuse of language, we call any function with the properties required above
a product measure extension for A.

For a discussion on the consistency of PMEA. relative to that of some other

set-theoretic axioms, as well as for other background on PM EA, we refer the reader
to [12].

For the meaning of topological concepts used without definition in this paper,
we refer the reader to [7]. Let X be a topological space, and for each x & X, let
be a filterbase on X such that xe ().#,. The indexed collection (Mg xe Xy
is called a weak neighborhood base assignment for the space X provided that for
every G X, the set G is open if, and only if, for each x e G there exists M e My
such that M<G. We say that the space X has weak character below ¢ provided
that there exists a weak neighborhood base assignment (#,: xe XD for X such
that for each x € X, we have |.#,| <¢. For a relationship between weak neighborhood
base assignments in topological spaces and neighborhoods in closure spaces, see [4],
Section 14.B; we just remark here that a topological space ¥ has weak character
below ¢ if, and only if, the topology of ¥ can be determined by a closure operation
so that in the associated closure space, every point has a neighborhood base of
cardinality <ec.

The purpose of the above definitions is to provide us with as large as possible
a class of spaces for which the conclusion of the I“olloWing lemma obtains.

Lemma 1.1. Let X be a space with wealk character below ¢, let A be some set,
and let {G(B)| Bc A} be a family of open subsets of X. For each xe X, let o,
={Bcd| xe G(B)}. Let p be a product measure extension for A. Then for all xe X
and >0, the set {ye X| (o~ st )<e} is open. ‘

Proof. Let (#,: xe XD be a weak neighborhood base assignment for X
such that for each xe X, |#,|<c. For all xe X and >0, let

U) = {ye X] p(oty~ o) <0} :

Note that for all x € X and e>0, if y e Uy(x), then, setting & = e (ol g~ o),
we have 6>0 and Uy(y)< Uy(x). Consequently, to establish the opcnness; of tlie
sets U,(x), it suffices to show that for all v € X and >0, there exists M e M, such
that M<Uy(y). Let ye X and §>0. For every Be o, since the set G(B) is open
and y e G(B), there exists M(B) e My such that M(B)=G(B). For each Me My,
lot (M) ={Be o)) M(B) = M}. We have o, = (J{af(M)] MeA,} and
it follows, since |#,|<¢, that u(st,) = in(e () M e ,}. Consequently,
there exists a finite subfamily 4" of .#, such that (A W) N e #}y>p(sty)—o.
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Let Me .#, be such that M=) &, and let # = {BcA| McG(B)}. We have
U{# (V)] Ne A&}, and it follows that W(B)>pu(st,)—6. For each ze M,
we have % < o, and hence Ay~ A oy~ FBsothat p(of,~ L)< p(Ay) — p(H)<8;
consequently, M < Uy(y). ) )

COROLLARY 1.2, Let X, A, {G(B)| BcA} and p be as in Lemma 1.1, and let
ae A. For each x € X, let

B.={Bcd| aeB = xeGB)} and ;= {BcAlacAd~B=xeGA~B)}

Then for each reR, the sets {xe X| p(B)>r} and {x e X| p(€)>r} are open.

Proof. Define &/, xeX, as in Lemma 1.1. Openness of the sets
{xe X| u(#)>r} follows using Lemma 1.1 and the observation that u(#,)
Z (B~ u(B.~B,) and B.~B,c sl .~ A, for all xe X and ye X. ’

For each xe X, let o/} = {Bc4| xe G(4~B)}. Applying Lemma 1.1 to the
family {G(4~B)] BcA}, we obtain the result that for all x e X and >0, the set
{ye X| p(5~ of})<e} is open. Openness of the sets {xe X] u(%,)>r} now
follows easily, since €, ~%,= o5~y for all xe X and y € X.

2. PMEA and normalized families. Recall that a family % of subsets of a topo-
logical space is a normalized family provided that for every %'c ., there exist
open sets U and ¥ such that Y& < U, Y(L~F)<V and UnV =@. An
expansion of a family & is a family {E(L)| Le &} of sets such that LcE(L) for
each L e &; the expansion {E(L)| Le %} is a separation of & if E(L) n E(L") = &
whenever L s L'. A family of subsets of a topological space is said to be well separ-
ated if the family has an open separation. Every well-separated family is normalized.
The converse is not true, since there exist normal spaces that are not collectionwise
normal (see [2]), and a space is normal (collectionwise normal) if and only if every
discrete family of subsets of the space is normalized (well separated).

Nyikos showed in [12] that under PMEA, every normalized family of subsets
in a space of character below ¢ is well separated, and he asked whether this result
can be extended to spaces with weak character below ¢. We now show that the
answer to Nyikos’s question is in the affirmative.

TrEOREM 2.1. (PMEA) In d space of weak character below ¢, every normalized
family of subsets of the space is well separated. ’

Proof. Let X be a space of weak character below ¢, and let % be a normalized
family of subsets of X. Then there exist open subsets G(¥'), ¥ <% of X such
that for each ¥'<.% we have |) ¥’ <G(¥’) and G(&£') n G(L~ ¥") = G. For
all Le & and xe€ X, let

BL)={FL' ¥ Le ¥ = xeG(L)}
and
CD)={L' ¥ Lef~Y = xcG(ZL~L)};

note that if x e L, then for each ' ¥, £'e B, (L) N €.(L).
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Let 4 be a product measure extension for Z. For every Le %, let
U(L) = {xe X| p(BAL)>1 and p(F(L))>%}.

Since p({Z'| '« &£}) =1, we see that for each Le.%, LcU(L). By Cor-
ollary 1.2, the sets U(L), L€ %, are open. Consequently, {U(L)| Le £} is an
open expansion of #. We show that the expansion is a separation. Assume on-the
contrary that there are Le % and Ke & such that L % K and U(L) n U(K)
#@. Let ye U(L) n UK) and 9 = (L) n €,(K). We have u(%,(L))>% and
#(#,(K))>%, and it follows that u(2)>%. Let 2 = {L' <« #| Le & and K¢ £}
By property 2° of product measure extensions, we have u(2) = %. It follows that
#(Z 0 2)>0 and hence that 9N 2# . Let ' €ePDn 2 Then Le & and
Ke Z~%'. Since L' ey (L) and Le &', we have ye G(Z"); also, since
L e¥(K) and Ke £~%', we have yeG(ZL~L'). However, G(ZL)n
N G(Z~ ") =D This contradiction shows that {U(L)| Le £} is a separation
of Z.

COROLLARY 2.2. (PMEA) Every normal space of weak character below ¢ Is
collectionwise normal.

In particular, every normal symmetrizable (see [1]) space is collectionwise
normal under PMEA.

Next, we consider a generalization of normalized families, and we prove an
analogue of the result of Theorem 2.1 for these families.

A family & of subsets of a topological space X is a § -normalized family provided
that for every %' %, there exist Gj-sets P and Q such that (%' <P,
U(ZL~L)<=Q and PN Q=@. A S-separation of & is a sequence

HE@) Le £
of expansions of % such that for each x € X, there exists k € w such that the family
{Le #| xe E(L)} has at most one member. We say that & is well §-separated

if % has a J-separation consisting of open expansions of #. Note that if
{E(L)| Le £}, is a d-separation of &, then { () E(L)| Le &} is a separ-

ne®

ation of %; consequently, if & is well §-separated, then % has a G-separation.

THEOREM 2.3. (PMEA) In a spdce of weak character below ¢, every §-normalized
Samily of subsets of the space is well §-separated.

Proof. Let X be a space of weak character below ¢ and let % be a §-normalized
family of subsets of X. Then there exist G4-sets P(.2"), '« &, such that for each
F'c¥, JLcP(L) and P(Z)VNP(L~ZL)=@. For every L', lot
{G(Z")r=o be a sequence of open sets such that (| G,(%") = P(%") and for

new
cach new, G, (LG (&L). Forall Le &, xe X and ne w, let
Booll) ={L' e Pl Le & = xeG,(L))}
and :
benll) ={L'c¥| Le £~P = xeG(L~L)}.
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Let p be a product measure extension for %, For all Le & and ne o, let
UL = {x€ X| p(BsalD)>1% and p(%nD)>13}-

For each ne w, the family {U, (L) Le £} is an open expansion of % (see the
proof of Theorem 2.1). To complete the proof, let x € X. For each ne w, let &,
={L P x¢G(L)YNG(L~L)}. Then U &, ={&] L<&} and for

new
each new, &,c&,4+,; consequently, there exists k € w such that u(£)>1s. We

show that there exists at most one L e & such that x e Uy(L). Assume on the
contrary that there are two distinct members L and K of & such that x e U(L) n
N UK). Let @ = B (L) N €. 1K) 0 &. Since each one of the three sets used
in the definition of & has u-measure exceeding 13, we have p(2)>2 Let 2 =
={¥' c¥|Le % and K¢ £’}. Then u(2) = %, and it follows that u(2 n 2)>0;
hence, @ N 2 # B. Let ¥ € D n 2. Similarly as in the proof of Theorem 2.1,
we see that x € G(F) N G (L ~ £L'); this is a contradiction, since £’ € D=§,.

Theorem 2.3 has a corollary analogous to that obtained above for Theorem 2.1.
A topological space X is subnormal ([L1] and [5]) provided that whenever S and F
are disjoint closed subsets of X, there exist disjoint Gs-sets P and Q such that
ScP and F= Q. The space X is collectionwise subnormal ([5])- provided that every
discrete family of subsets of X is well &-separated. '

Observing that a space is subnormal if and only if every discrete family of
subsets of the space is §-normalized, we get the following result.

COROLLARY 2.4. (PMEA) Every subnormal space of weak character below ¢ is
collectionwise . subnormal.

In [5], it is shown that a topological space is subparacompact if, and only if,
the space is submetacompact and collectionwise subnormal (for the definitions
of subparacompact spaces and submetacompact spaces, see [3] and [9]; sub-
metacompact spaces are often called f-refineable [16]). Hence the following result
obtains.

THEOREM 2.5. (PMEA) Every subnormal, submetacompact space of weak charac-
ter below ¢ is subparacompact.

3. PMEA and G;-additive families. A family &% of subsets of a topological
space is G-additive (F,-additive) provided that for each #'< %, |J £’ is a Gg-set
(an F,-set) in the space. Every family of open sets is G5-additive, and every ¢-clos-
ure-preserving family of closed sets is F,-additive. A partition (i.e., a disjoint cover)
of a space is G;-additive if and only if the partition is F,-additive.

To apply the result of Theorem 2.3 to the study of Gs-additive partitions, we
need the following lemma.

LemMA 3.1. Let % be a partition of a topological space X.

() & is Gy-additive if and only if & is 6-normalized.

(i) & has a o-discrete closed refinement if and only if & is well §-separated.

Proof. (i) Trivial. (i) If ({U,(L)| Le L})pso is-a b-separation of £ con-
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sisting of open expansions of %, and if we set F(L) = X~ J{U,(&)| Ke £ ~{L}}
for all Le & and n e w, then each of the families {F,(L)| Le %}, ne o, is closed
and discrete, and the union of these families is a refinement of .%. Conversely, if

F =) &, is a closed refinement of % such that each of the families Fys HE @,
new

is discrete, and if we set Uy(L) = X~U{Fe #,| FAL =@} for all Le & and
ne o, then the sequence ({U,(L)| Le &}, is 4 §-separation of % by open
expansions of Z.

' Theorem 2.3 and Lemma 3.1 yield the following result.

THEOREM 3.2. (PMEA) In a space of weak character below ¢, every Gy-additive
partition of the space has a o-discrete closed refinement.

In particular, if X has weak character below ¢ and if every subset of X is an
F,-set, then X is o-discrete, provided that PMEA holds. Note that for subsets
of the real line, this last-mentioned result already follows from the result of Nyikos
that under PMEA, every normal Moore space is metrizable and an earlier result
of R. H. Bing ([2]) that if there is an uncountable subspace of R such that every
subset of the subspace is an F,-set in the relative topology, then there is a normal,
non-metrizable Moore space.

Next we show that the conclusion of Theorem 3.2 holds also for semi-stratifi-
able spaces. We use the following characterization of semi-stratifiable spaces (see [8]):
a space X is semi-stratifiable if and only if there exists a sequence { ¥,>, of binary
relations on X such that for all xe X and n € o, the set ¥,{x} is a neighborhood
of x, and for every y € X, whenever G is a neighborhood of y, there exists n e o
such that ¥, "y} =G.

THEOREM 3.3. (PMEA) In a semi-stratifiable space, every G,-additive partition
of the space has a o-discrete closed refinement.

Proof. Let (Z,7) be a semi-stratifiable space, and let & be a G,-additive
partition of this space. For each x € Z, let L be that member of & which contains x.
Let <¥,>;Lo be a sequence of relations on Z with the properties stated above. We
may assume that for each ne @, Vyyp1<V,. For every xeZ, let

My = {V;Hx} new}.

Then there is a topology 7 on Z such that the collection {.#,: x€Z) is a weak
neighborhood. base assignment for the space (Z, ). We have tcn and it follows
that % is G,-additive with respect to %. Since the space (Z, m) has weak character
below ¢, it follows from Lemma 3.1 and Theorem 2.3 that there exists a sequence
(UL Le £}>5, of n-open expansions of % such that for every x € Z, there
exists k(x) € o such that {L e &| x € Uyy(L)} = {L.}. For cach x € Z, let n(xyew
be such that V4 {x} < Uy, (L,). Forall k € o and n € o, let Hy,={xeZ|k(x)=k
and n(x) = n}, and let #,, ={L n Hy,| Le £}; note that the family Ky, 18
discrete ini the subspace H,, of (Z, 7) since for each xe Hy,, if ze Hy\ Vo {x},
then xe ¥V, 1{z}c: UL, and hence L; = L,. Since (Z, 1) is semi-stratifiable, every
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closed subset of (Z, 7) is a Gy-set ([10], [6]). It follows that for all ke w and n e o,
the discrete-in-itself family ##,, has a refinement 7, such that 4, is o-dis-
crete in (Z, 7). The family N = |J{#,| keo and ne o} is a o-discrete re-
finement of . That & has a g-discrete closed refinement now follows easily using
the fact that every member of % is an F -set.

So far, the results in this paper have dealt with the existence of separations and
refinements of disjoint families of sets; in our last theorem, we generalize the result
of Theorem 3.2 to show that PMEA is useful also in connection with certain point-
finite families.

THEOREM 3.4. (PMEA) Let X be a space of weak character below ¢, and let % be
a Gs-additive family of subsets of X. Then there exists a sequence {{U(L)| L e £},
of open expansions of &£ such that for each xe X, if the fumily (&),
= {Le %| xeL} is finite, then there exists ke w such that {Le Z| xe U/(L)}
Proof. For every &'« 2, let {G(Z))o be a sequence of open subsets
of X such that (| G,(&') = |J & and for each ne w, G,1(L)=G(Z"). For

necw
all Le #, xeX and new, let 4, (L) ={L' < Le ¥ = xeG (L)}
Let p be a product measure extension for %. For all Le & and new, let

Un(L) = {x € Xl .u‘(gx,n(L))> 1 _2-—n} E]
and note that L« U,(L) and that by Corollary 1.2, the set U,(L) is open. To complete

_ the proof, let x € X be such that the family (%), is finite. Let m = |[(%),]|+2. For

each new, let 6, = {L' <« ¥| x¢ ) & = x¢G,(&")}. Then there exists e w
such that for each j=h, p(€)>1-2"". Let k = max(m, ). We show that for
everyLe &,if x¢ L, then x ¢ U(L). Let Le ¥~ (F),.Let 2= {FL'c¥|Le ¥’
and (#), n &' = @}. Note that p(2) = 271, We show that (2 n &) N B, (L)
=@ let £ €2n &.Since ¥ €2, wehaveLe ¥ andx¢ | ¥ Sincex¢ &L’
and %' €&, we have x ¢ Gy(L). Finally, since Le &' and x ¢ Gi(L), we have
L' ¢ B (L). We have shown that (2n &) n B, (L) =G. It follows that
w( B (L)<1—p(2 0 &). We have u(2) = 27"+ and p(6,)>1-2"", and hence
w2 &)>2"" Consequently, (%, (L))<1-2"™; since m<k, we have
w(B.1(D)<1-27% in other words, x¢ U,(L). We have shown that for every
Le %, if x¢ L, then x ¢ UyL); it follows that {Le &| xe G(L)} = (&)

Note that if a family & of subsets of a space X has a sequence
{ULDI Le £}ypi; of open expansions such that for each x e X, there exists
kew such that {Le &| xe U(D)} = (¥),, then &£ is Gs-additive; hence
Theorem 3.4 gives a characterization, under PMEA, of G;-additivity for point-finite
families of subsets of spaces with weak character below ¢. Another consequence
of the theorem is given below.

COROLLARY 3.5. (PMEA) Let X be a space of weak character below ¢, and let &
be a Gy-additive family of subsets of X. Then the set {x e X| (%), is finite} is an
F -subset of X. :
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Proof. Use Theorem 3.4 and the observation that for any open expansion
{UMD)| Le £} of 2, the set {xe X| {Le £| xeU(L)} is finite} is an F,-set.

We close this paper with a question related to the results of Theorems 3.2
and 3.3 above.

QUESTION 3.6. Does there exist, in ZFC, a topological space that is not o-dis~
crete but whose every subset is a Gj-set?

Under MA+ 7ICH, such spaces do exist, and they can even be metrizable
(in fact, subspaces of R; see [15] or [14]). By a result in [13], no space giving an
affirmative answer to the above question could be normal and first countable.

Added in proof. Independently of the author, Z. Balogh has shown that, under PMEA,
a space of character less than ¢ is o-discrete, if every subset of the space is an Fy-set.
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Retracts and homotopies for multi-maps
by

A. Suszycki (Warszawa)

Abstract. By means of upper semi-continuous multi-functions defined on compacta and with:
values of trivial shape we introduce the notions of multi-retracts and multi-homotopies. We give
some characterizations of absolute multi-retracts and absolute neighborhood multi-retracts and
apply the notion of multi-homotopy to the construction of groups, called multi-homotopy groups.
In particular, we show that if y € ¥ € ANR, then the nth multi-homotopy group of the space (¥, y):
is isomorphic to the nth shape group of this space.

1. Introduction. Throughout this paper all spaces are compact and metric.
By a multi-function ¢ from a space X to a space ¥ (¢p: X — ¥) we mean one that
assigns to every point x € X a closed non-empty subset ¢ (x) of ¥. The upper semi-
continuity (shortly u.s.c.) of @: X — Y means that the graph & of ¢ defined as

P ={x1NeXxY yep}

is closed in X'x ¥. A map denotes, as usual, a continuous function. The notion of
shape is understood in the sense of Borsuk [3]. A w.s.c. multi-function ¢: X - Y
is called a multi-map of X into Y if ¢(x) is a set of trivial shape for every x e X.
By an extension of a u.s.c. multi-function ¢: X— ¥ onto M>X we mean a u.s.c.
multi-function ¢’: M — Y such that ¢'|X = ¢ and ¢’'(x) has the shape of a point
for every x € M\ X. We say that a map f of Y onto X is a cellular map (compare [12])
if £ 7(x) has trivial shape for every x e X. Let us note that, if f is a cellular map
of Y onto X, then the multi-function ¢: X — ¥, defined by the formula ¢ (x)
= f~(x)= Y is a multi-map. Let us call such a multi-function an inverse of the
map f. We say that X is countable-dimensional if it is the union of a countable family
of finite-dimensional subspaces.

In the sequel we will need the following theorems:

1.1. TreoreM (Kozlowski [9] thms 9 and 12). Let f be a cellular map of a space Y
onto X such that the set {x € X| f ~*(x) is a nondegenerate set} is contained in a com-
pdct and countable-dimensional subset of X. Then for every closed subset A of X the
map f1f~A): £ ~UA): £ ~HA) ~ A is a shape equivalence. Moreover, if Y € ANR,,
then X € ANR.

1.2. TreoreM ([14], [15]). Let ¢ be a nulti-map of a space X into Y e ANR,
where Xc M. If dim(MN\X)<oo or X is countable-dimensional, then there exists
a neighborhood U of X in M such that ¢ has an extension onto U. Moreover, if ¥ e AR,
then ¢ has an extension onto M.
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