On the winding number and equivariant homotopy classes of maps
of manifolds with some finite group actions

by
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Abstract. The paper considers equivariant maps of a closed connected m~dimensional mani-
fold M with an effective smooth action of a finite group G into a punctured linear (m+ 1)-dimensio-
nal space E\{0} with a smooth action of Gon E such that O is a fixed point and every isotropy group
of the action on M acts trivially on E. The following questions are investigated:

1. What numbers may be the winding numbers of such maps?

2. What are the equivariant homotopy classes of such maps?

The well-known Borsuk theorem asserts that any equivariant map of a sphere
with the antipodic action of Z, into itself has an odd degree. In this paper we take
up the question what winding numbers (degrees) have equivariant maps of a closed
connected smooth G-manifold M into a linear G-space E of dimension greater by 1
with. O removed when every isotropy group of the action of a finite group G on M
acts trivially on E (Theorem 2.2).

Although these assumptions are very restrictive, they contain the case of free
actions on M and the case of the trivial action on E. Without the imposed assumptions
the results may be false (Example 2.4).

Moreover, Theorems 3.1, 4.3 and 5.1 give a complete equivariant homotopy
classification of such maps and may be viewed as a generalization of the Hopf
theorem.

The methods nsed are similar to those in Krasnoselski’s paper [5]. Although
the maps under consideration are continuous, they are treated by means of rather
differential topology methods as in [3] or [6].

In the whole paper G is a finite group. By a manifold we mean a paracompact
smooth manifold without boundary. All actions of a group G are assumed to be
smooth.

1. Auxiliary results. We shall use a kind of mappings given by

1.1. DermNITION. Let P be a p-dimensional manifold and E a real (m+1)-di-
mensional vector space. A map f: P — E is called good iff £ is continuous on P, fis
smooth on some open set Q containing f ~1(0) and O is a regular value of f|Q.
If, in ‘addition, G acts smoothly on P and E, fis a G-map and f*(0) it contained
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in the part P, of P consisting of all points with the trivial isotropy group {e}, then Fis
called a G-good map.

For a good map, f~Y(0) is a (p—m—1)-dimensional submanifold of P (in-
variant if f is G-good and O is a fixed point of the action of G on E) or is empty.

The following facts concern extensions of good maps to good maps.

1.2. Let P be a manifold, F a closed set contained in an open subset U of P and D
a compact set in P. If f: U — E is a good map, then there exist an open set W con-
taining FU D and a good map h: W — E such that WF = f|F.

Proof. Choose open sets Up, U; and U, such that Fe Uy Uy U U U,
«U,cU and a smooth function ¢: P — [0, 1] satisfying conditions ¢ (x) = 0 for
xeU, and @(x) =1 for xeP\U,. Choose open sets V, and V such that
Dc V=V, Vwith ¥ compact. By 1.1 there exists an open set @ containing /' ~*(0)
such that f|Q is smooth and O is a regular value of f[Q. Let >0 be the minimum
of | f (x| for x belonging to the compact set K = (Vn U,)\(U; L Q). Letfy: P — E
be a smooth map such that | fo(x)—f (x)] < & for x € K. Define themap fy: Uy u V> E
by . ’

A = {f<x)+co(X)(fo(x)—f(X)) if xe U, LV U),
folx%) if xe "\U,.

f1 is continuous, f1]U; = f|Uy, fi(x) # 0 for x € K n V and therefore f; is smooth
in some open set Z containing f; Y(0) if f1 1(0) # @.

Let Z, and Z; be open sets such that f;*(0) n (Vp\Up)cZycZo=Z,=Z,
<ZN\F with Z, compact. Let : P — [0, 1] be a smooth function such that y (x) = 0
for xe P\Z; and (x) = 1 for xeZ,. There exists a compact set K, such that
fLH0) 0 (Z\Zy) n UycIntK,=Ky< U, \F and the tangent maps df;, are epi-
morphisms for x € K. The set Ky = (Z;\Z;) n P\IntK, is compact and fi(x) 5 0
for x € K;. By the Sard lemma there exists a regular value a € E for f||Z arbitrary
close to O. Define W = U, U ¥V and h: W — E by h(x) = fi(x)—y(x)a. If |a| is
sufficiently small, then df, are epimorphisms for x € K and A(x) 0 for x e K;.
Therefore £ is a good map and A|F = f{|F = f|F.

1.3. Let G act on a manifold P and on a vector space E with the fixed point O.
Let U be a G-invariant open subset of P and V an H-invariant open subset of P for
a subgroup H of G such that gV NV =@ for ge G\H. If f: Uu V = E is a good
map, f~H0) =P, f|U is G-equivariant and f |V is H-equivariant, then there is ¢ unique
extension of f to the G-good map f: UL GV — E.

Proof. Set
T(x):{f(x)_ for xe U, .
‘ gf(g™*x) for xegV and ge@G.

1.4. Let B be a b-dimensional G-manifold with exactly one type of orbits corres
ponding to the conjugacy class of isotropy subgroups (H). Let G act on an (m+1)-di-
mensional vector space E with the fixed point O in such a way that H acts trivially
on Eandb<mor H = {e}. If f: W — E is a G-good map on an open invariant sub-
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set W of B containing a closed invariant set A, then f|A can be extended to a G-good
map h: B — E. (If b<m, this means that h(x) # 0 for x € B and h is equivariant.)

Proof. We can assume that B is separable. At any point x e B\A with the iso-
tropy group G, = H there is a slice ¥ (cf. [1] or [4]) which may be identified with RY
with an orthogonal action of H. Take a unit closed ball D in ¥. The set B\A can be
covered by tubes IntGD;, where D; are such disks, j = 1, 2, ... By induction we
define G-good maps f,: W,—E on open invariant sets W, containing

K
Avu U GD; = F such that filF} = fi. |F for k =0,1,2,.. Put Wo = W and
=1
Jo =jf. Having fj, on W, by 1.2, we choose a good map #;: U, U Vy,y - E where
U,oF, is open G-invariant, V4, Dy,y is open contajned in a slice and hy|Fy
= f;|F,. The subgroup H acts trivially on ¥}.; and on E, and so by 1.3 there is
a G-good extension fi 4yt Wiy — E of Iy, on Wiy = Up U GViyy D Fpyy. The
G-good extension i: B — E of f|4 is defined by h(x) = fi(x) for x & F;.

If G acts effectively on a connected manifold P, then the trivial group {e} is
principal (cf. [7]). The open and dense set P, is called the principal part of P (cf. [1]
or [4]). Its complement P* = P\P, will be called the singular part of P. Tt is a finite
union of submanifolds, and the diménsion of P’ is the greatest of the dimensions of
those manifolds.

The following lemma will be important in our considerations.

1.5. EXTENSION LEMMA. Let G act on an (m-+1)-dimensional vector spdce E
with the fixed point O. Suppose also that G acts effectively on a connected manifold P
in such a way that each isotropy group of the action on P acts trivially on E dand
dimP'<m. If f: U— E is a G-good map on an open invariant set UcP containing
a closed invariant set F, then there exists a G-good extension h: P — E of f|F. If f'is
smooth, then I is also smooth.

Proof. All conjugacy classes of isotropy groups of the G-manifold P are partially
ordered. Thus they can be arranged in a sequence (H,), (H), ..., (H,) = (e) in
such a way that whenever (H})>(H) then i<j. The set Py, of points of P with
the isotropy groups belonging to H; is a disjoint union of submanifolds ’?f P by the

existence of slices and dimPyy<m if i<n. Denote Fy=F uiule,) for

k=0,1,..,n The sets F, are closed because in a slice at a point x of P there are
only points with. isotropy groups not greater than G..

We shall construct G-good maps fi: Uy, — E on open invariant sets Uy con-
taining F, for k = 0,1, .., n such that filF; = fys1|Fy. Set Uy = U and fo, = f.
Suppose that U, and f; have been constructed and k<n.

Denote B = Py, - Let W be an open invariant subset of P such that
Foc WeWe U,. Set Vy = B~ W and choose invariant sets ¥; and ¥, open in B
and satisfying the condition VycV,cV;cVycV,c=B U, where closures are
taken in B. The map f;| ¥ is G-good because if k+1<n then fi(x) # 0forxe V,=B
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and if k+1 = n then ¥, is open in P. By 1.4 there exists a' G-good extension
hy: B—E of fi|Vo. If k+1 =n set
S ifxeVy,
Fera() = {h,,(x) if xeB=P,.

Suppose that k- 1<n..There exists an invariant tubular neighbourhood N
of B, open in P, which can be identified with the equivariant normal bundle of B
in P. Let n: N — B be the projection. We can assume that:

1. In this bundle we have an equivariant Riemannian metric.

2. The part of the bundle of the unit open disks N; over V, denoted by N,|V,
is contained in U,.

3. The diameters §(I,) of the fibres of the vector bundle N over points y € B
in some metric on P tend to O when y tends to infinity — the point added to B in
the one-point compactification of B.

The set B\Vy = F4\V, s closed in P and the closure in P N1|B\V0 is the part
of the bundle of the unit closed disks. of N over B\V, by condition 3. Let
@: B—[0,1] be an equivariant smooth map such that ¢(x) = 1 for x& ¥, and
@(x) =0 for xe B\V,. We can assume that fi(x) # 0 for xeN,;|V,. Define
Upr = (Uk\(Nll-B\VO)) U Ny and fiiq0 Ugeq = E'by

£ for x € UNN,IB\Vy) »
Jie1() = { filp () x) for xeN|V,,
g, 0 () for x e N,|B\V, .

Jrwy is a well-defined G-good map on Uy, .

The last map & = f, is a G-good extension of f|F on the whole m'mlfold
P=1U,.

All maps in 1.2, 1.3, 1.4 and 1.5 are smooth if f was smooth.

1.6. COROLLARY. Let M be a closed connected manifold with an effective action
of G. Let G act on the vector space E with the fixed point O in such a way that each
isotropy group of the action on M acts trivially on E. Denote E, = EN{0}.

a) If dimM <dimE, then there is a smooth G-map fi M — E,.

b) If dimM <dim E—1, then any two contimious (smooth) G-maps fo, f1: M - Ey
are G-homotopic (smoothly).

For the proof we take in 1.5 P = M and U = @ in case &) and

P=RxM, U=@®{4)xM, F=1{0,1}xM
and
_JAx  forte(~o0,%), xeM .
[, x) = {fl(x) for te(y, +oo), xei M b).

The following example shows that equivariant maps do not always exist.

1.7. EXAMPLE. There is no equivariant map of the unit sphere S?=R® with
the antipodic action of Z, into an orjentable surface S, of genus g>0 embedded
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symmetrically with respect to O in R® with thc action of Z, by symmetry with
respect to O.

Ifsuchamapf: S* — S, exists, then fis homotopic to a constant map because S
has a trivial fundamental group and the universal covering space of S, is homeomor-
phic to an open disk. Therefore degf = 0. By 1.6 a) there exists an equivariant
map g: S, — 5% because S* is an equivariant deformation retract of R3\0. The
map g © f S2 - $% is equivariant with deg g o f =0, which contradicts Borsuk’s
theorem.

1.8. HOMOGENEITY LEMMA. Let G act effectively on a comnected manifold P.
If x, y belong to the same component C of the principal part P,, then there exists an
equivariant diffeomorphism h: P - P mapping x to y, equivariantly diffeotopic to idp
by the diffeotopy h,, which does not move points beyond some compact invariant set
and beyond P,.

The proof is similar to that in the non-equivariant case ([6]). We have in C the
equivalence relation: x ~y iff the statement of 1.8 is true. Let ¥ be a slice at x in C
diffeomorphic to a Euclidean space and let y e V., By the non-equivariant homogeneity
there exists a diffeotopy f;: V' — V such that f = idy, fi(¥) =y and fi2) = z
beyond some compact set. We define the equivariant diffeotopy h,: P — P by

if ze PNGV,

h{z) if zegV, geG.

- {aﬂ(g"z}
Therefore the classes of the relation are open and C is the only class by conneetivity.

1.9. Remark. If the component C is a nonorientable manifold and o, and o,
are any orientations of the tangent spaces TP and TP, respectively, for x,ye C,
then the G-diffeomorphism / of 1.8 can be chosen in such a way that the tangent
map dh, maps o, to o,.

1.10. There is a generalization of 1.8 (and 1.9) analogous to that in the non-
equivariant case: Jf AimP>1 and x;, y, for i =1, ..., k are two k-tuples of points
of a component C belonging to different orbits, then there is a G-diffeomorphism
h: P — P G-diffeotopic to idp such that h(x;) =y, for i=1,.., k.

This follows by induction on k because a finite set does not separate a manifold
of dimension greater than 1.

1.11, Remark, If x and y belong to different components of P,, then a G-dif-
feomorphism Az P ~» P such that A(x) = y does not always exist, e.g. if the sub-
group of G preserving the component C of x denoted by G is different from the
subgroup Gyg = gGeg™* for y = gx (as in Example 3 of [7]). If g belong to the
centre of G, then such an / exists. But there is no G-diffeotopy /, from idp to /2
because each h, would map P, onto P, and C onto C.

2. Winding numbers of equivariant maps.
2.1. Let M be a closed connected manifold of dimension mz1 with an_ effective
smooth action of a finite group G. Suppose that G acts smoothly on.an (m-+1)-dimen-
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sional Euclidean vector space E, O is a fixed point and every isotropy group of the
action on M acts trivially on E. Denote E, = E\{O}. The above assumptions will
.always be observed in the sequel.

If M is oriented, there are two possibilities:

a) Every g € G simultaneously preserves the orientations of M and E or simul-
taneously reverses them. .

b) Some g € G preserves the orientation of M and reverses the orientation of E
-or vice versa.

In case a) we shall say that the actions of G on M and E are concordant and in
-case b) that they are discordant.

If M and E are oriented, then for a continuous map f: M — E, the winding
number W(f) is by definition the degree of the map f/| f|: M — S"< E, where S"
is the unit sphere in E oriented as the boundary of the unit ball in E. If M is non-
-orientable, then the winding number modulo 2 denoted by W,(f) is defined similarly.

2.2. THEOREM. Let G, M, E, E, be as in 2.1 and let M be oriented.

a) If the actions of G are concordant, then for any continuous equivariant maps fy,
Jit M= Ey W(fo) = W(f)mod|G].

b) If the actions of G are discordant, then for any continuous equivariant map
St M > Ey, W(f) =0 (even without the assumptions about isotropy groups).

Proof. b) Let 0, and ¥, denote the diffeomorphisms of M and E, respectively,
corresponding to g € G. The local degree at 0, degy,, is equal to 1 if , preserves
the orientation of £ and equal to —1 otherwise. Since the action of G is discordant,
‘there exists a ¢ & G such that degf, = ~degy¥,. The map fis equivariant, and so
fo 8, =1,of Therefore W(f)degh, = dego,W(f), W(f)= —W(f) and
w(f)=0.

a) By the extension Lemma 1.5 applied to the manifold P = Rx M, the sets
U= (R\{IDxM, F=(R\0,1))xM and the mapping f: U— E defined by

[ if 1<,
f(”“)‘{f:(x) if 1>1

there is a G-good homotopy h: Ix M — E from f, to fi. (Ix M is a manifold with
boundary, but /1 can be extended to a G-good map on the manifold P without
boundary. Similarly we shall use the notion of G-good map in the sequel). s !(0)
is a finite equivariant subset of (0, 1)x M, because dimI/x M = m+1 = dim £,
‘Choose one point x; ineach orbit of A7*(0) for i =1, ..., k.
It is known (cf. [3] or [6]) that W(f)—W(f,) = ,.Z,( )deg,\.h, where deg,/i is
xeh~1(0

the local degree at isolated zero x of k. If 8, and i, denote the diffeomorphisms of
Ix M and E, respectively, corresponding to g € G, then deg()” = degy/, because
the actions of G are concordant. From the equality /o O,=,oh we get
deg,,h-degl, = degyy,-deg, h and degy.h = deg,h for every x e h™1(0) and g e G.
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So the local dcgrec: of h at all points of one orbit of £~ *(0) are equal. Therefore
W(fi)—W(fo) =l§IGI deg,,h and W(f,) = W(f)mod|G).

2.3. Remark. If the action of G on E is orthogonal, we can consider equi-
variant maps M — S™ instead of M — E, and the degrees of such maps instead of -
winding numbers. Since the sphere $™ is an equivariant deformation retract of E,,
this concerns also the results in sections 3-5.

Theorem 2.2 &) may be false if the assumptions on the isotropy groups are not
satisfied.

2.4. BExampeLe. Consider the action of Z, on the unit circle M = S'cR?
and E = R2, in which the gencrator of Z, acts by symmetry with respect to a line.
Those actions are concordant. The maps f;, = idy and f; = constant map into one
of two fixed points on $* are equivariant, but degf, = 1 and degf; = 0.

2.5, COROLLARY. If the action of G on E is trivial, then for any action of G on M
and mapping f: M — Ey constant on orbits W(f) = 0mod|G].

2.6. Remark. Theorem 2.2 can always be applied if the action of G on M is
free. The proof in this case may be considerably simplified.

2.7. ExAMPLL. Suppose that G acts on an. (m+1)-dimensional Euclidean vector
space with the fixed point O, N is a compact (m+1)-dimensional invariant sub-
manifold of E with boundary M = éN<E, and the induced action of G on M
is free. Then, for any equivariant map f3 M — Eo, W(f) = 0mod|G| if O¢N
and W(f) = lmod|G| if OeN. . i

Indeed, if £, is the inclusion M — Ey, then it is equivariant and has an extension
to the inclusion fy: N — E without zeros if O ¢ N and with exactly one zero 0 with
the local degree deg, f = 1if O € N. Since W(fp) = deg, fo, this follows from 2.2 a).

If, in addition, the action of G on E is orthogonal, then the Gauss map

fi: M — S"™<E,, which assigns to a point xe M the unit vector normal to M

at x directed outward of N, is equivariant. The degree of fj is equal to the Euler—
Poincaré characteristic x(N) of N (cf. [2]). For any equivariant map f: M — E,,
W(f) = x(N)mod|G|. If the number m is even, then x(N) = 3x(M) (by - consi-
dering the double of A). :

2.8. ExAMpLE. Let £ be an (m+1)-dimensional linear space, and N a com-
pact (m+1)-dimensional manifold in E with boundary M=0N Let T: M > M
be a fixed point free smooth. involution. T' defines an action of Z; on M. Consider E
with the action of Z, generated by symmetry with respect to O. Let T: N— Ebe
any continuous extension of T. The map fo: M — E, defined by folx) = x—T(x)
1s equivariant and W(fy) = ind T, where ind T'is the fixed point index of T (cf. 2D
{the set of fixed points of T is compact and contained in Int¥N). By 2.2, for any
equivariant map f: M ~ Eo, W(f) = ind Tmod2.

2.9, BxampLE. Let Z, act on E = C” with the action of a generator g of Z,
defined by ,(z) = ¥z for z & C?, where n and k are natural numbers. Let Z,
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act also on the unit sphere M = §271<=C?, the action defined by 0,(2) = =i
for ze S?*~1, where the natural numbers » and [ are relatively prime. The action
on S*7* is free. The class of /modn denoted by [/] is an invertible element of Z,.
Let [¢] =[k)/l/] in Z,, i.e. g = kmodn. The map fo: $?*7*~C"™{0} defined by
Solzgs o 2) = (24, ..., z2) is equivariant and W(f,) = ¢® because f, has an exten-
sion fo: C”— C¥ given by the same formula, O is the unique zero of f, and
degy fo = ¢”. By 2.1, for any equivariant map f: S*~'= C\{0}, W(f) = g’modn,

2.10. Remark. In case 2.2 a) if Gy, i=1,..,k, are Sylow subgroups of G
and r; is a number such that G, -maps fi: M — E, have W(f) = rimod|G,,| for
i=1,..,k, then the number r of 2.2 a) is uniquely mod|G| determined by the
numbers r; by the conditions r = rimod |G, | for i=1,.., k.

2.11. COROLLARY. Under the conditions of Theorem 2.2, if in addition, the action
of G on Eis linear, then, for every continuous map f: M — Ey with W(f) & rmod|G]|
in the concordgnt case and W(f) # O in the discordant case, there is a point xe M
such that O € conv{gf (g™ 'x)},eq.

Indeed, if O ¢conv{gf (g™ x)},eq, then the map fo: M — E; - defined by
' 1
Jo(x) = — “ix
0 Gl Eagf(g X)

is equivariant and homotopic to f (by the standard bomotopy). Therefore W(f)
= W(fs) = rmod|G| in the concordant case or W(f) = W(fy) = 0 in the discor-
" dant case, which contradicts the assumptions.

In particular, if the action of G on E is trivial and if W(f) # 0mod|G|, then
there is a point x & M such that O e conv{ f (9%)}4 -

In the case of the action of Z, by symmetry with respect to O on £ and a free
action of Z, on M we get

2.12. COROLLARY. Let T be a fixed point Jree smooth involution on M and
f1 M — 8™ a continuous map into the unit sphere in E.

a) If f has an odd degree, then there is a point x € M such that JTx) = ~f(x).

b) If deg f & rmod2 in the concordant case or degf # O in the discordant case,
then there is.a point x & M such that f (TX) = f(x). :

From b) it follows that in the concordant case if r = 1, then every continuous
map @: M — R™ has a point x € M such that ¢(Tx) = ¢ (x) because R™ is homeo-
morphic to $™\{pt}.

3. Concordant actions. The folIoWing theorem gives the equivariant homotopy
classification of maps in the concordant case.

3.1. THEOREM. Let G, M, E, Eo, rbe asin 2.1 and 2.2 a), i.e. M is oriented and
the actions of G on M and E are concordant. Then the Sunction W: [M, Egle —
{n= r+k|G| for k e Z}, assigning to an equivariant homotopy class [ f] represented
by a continuous equivariant map f: M — Ey its winding number W(f), is bijective.

Proof. a) Surjectivity. Let fo: M — E, be equivariant continuous. Such

e ©
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a map exists by 1.6 a). We may assume that W( So) = r. Let k be any integer different
from O and O<a<1. Let p, i =1,..,%, be points of (2, 1)x C ‘belonging to
different orbits of the G-manifold P = Rx M, where C is a component of M,.
Let V; be a slice at p; contained in (a, 1)x C such that gV; are disjoint for
i=1,..,kand geG. V; can be mapped onto. E by a diffeomorphism preserving
the orientation if £>0 and reversing the orientation if k<0 such that p; is mapped
onto O. Those diITeomorphismskcan be extended by 1.3 to a G-good map f: U ~'E,
where U = (R\[a, 2])x M wl U1 GV such that f(r, x) = fo(x) for te R\[a, 2]
and x e ,{V[ . By the extension Lemma 1.5 applied to P = Rx M and F = {0,3}x
XM Ux(; Dy, where D; are closed discs about p; in ¥, there exists a G- good map
e

I [0,3]x M ~ E such that A|F = f|F.

BE™0) consists of points gp,, 1 =1, sk, g€ G and additional points 4,
J=1,..,1 We may assume by 1.10 that q;e(1,2)x M,. Define f,: M — E, by
Si(x)=h(l, x). Then the restriction of & to I'x M gives a G- good homotopy from f,
to fi. For i=1,...,k deg,/t = sgnk, and for all g G deg,,,h = sgnk, because
the actions of G are concordant. Therefore W(f)— W(f,) = k|G| and W(f)
= r+k|G|.

b) Injectivity. Suppose that for equivariant continuous maps fo, fi: M — E,
W(fo) = W(f.). By the extension Lemma 1.5 there exists a G-good homotopy .
h: Ix M= E from fy to fy. I 17 *(0) is nonvoid, let h~*(0) consist of points gp;,
i=1,.,k geG, where p;e(0,)xC and Cis a component of M, (cf. Propo-

X ;

sition 2 of [7]). From the equalities O = W(f)—W(fy) = |G] Y deg, ki and
i=1

deg, i = &1 it follows that k is even and the points p; can be arranged in such a way
that deg,, 2 = (— 1) Let ¥'=(0, 1) x C be a slice at Py and D an open ball about p,
in V. By 1.10 we may assume that ¥ n A~%(0)=D h~*0)="{p;,p,}. By the
Hopf theorem /[ ¥\D can be extended to a continuous map f: ¥ - E,. By 1.3 there
Is a G-good map h: I'x M - E extending f and Ji|Tx MN\GD. E~1(0) consists of the
orbits of p; for i>2 if k>2. Proceeding further similarly, we get an equivariant
homotopy A: Ix M ~ E, from f, to f,.

4. Discordant actions, Before formulating the general result in this case we give
some examples. We still observe the assumptions of 2.1.

4.1. ExameLy. Let M be an orientable manifold with a free action of G not
preserving the orientation and let G act trivially on a linear space . In this case the
space of orbits M/G Is a nonorientable manifold, There is a bijective correspondence
between the set of equivariant homotopy classes [M, Eq)s and the set of non-equi-
variant homotopy classes [M/G, Ey]. By the Hopf theorem the degree mod2 gives
the bijective correspondence [M/G, Ey] & Z, and there are two different equivariant
homotopy classes in [M, Ey]s although the winding number of any equivariant
map f; M — E, is 0 by 2.2 b). The same is true for equivariant maps f: M — ™.


GUEST


244 C. Bowszyc

In particular, there are two equivariant homotopy classes if M is an even-di-
mensional sphere with the action of Z, by antipodism (M|Z, is the nonorientable
projective space) or if M is an orientable surface of genus g lying symmetrically with
respect to O in R* with the action of Z, by symmetry with respect to O (M/Z, is
the nonorientable surface of genus g+1).

4.2. ExaMpLE. Let M be a G-manifold having a compact fundamental set in
the sense of [7] and let G act trivially on E. There is a bijective correspondence
between [M, Eylg and [F, Eo]. If F is contractible, then there is only one homotopy
class in [F, Eo] and in [M, Eplg. ’

In particular, there is one equivariant homotopy class if M is the unit sphere of
any orthogonal representation of G on ¥ whose singular part is a union of hyper-
planes (Corollary 9 in [7]). This is the case for the symmetry group of any Platon
polyeder,

In the case of discordant actions of G' on. M and E the group G is the disjoint
union of the subgroup G, and its coset G, where the actions of G. on M and £
are concordant. The number |G} is even. The equivariant homotopy classification of
maps in this case gives

4.3, THEOREM. Let G, M, E, Ey be as in 2.1, M being orientable, and let the
actions of G on M and E be discordant, Denote by M' = M\M, the singular part of M.

a) If dimM' = m—1 then [M, E,]g consists of one class.

b) If dimM ' <m—1 then [M, Eylg consists of two classes.

Proof. a) Let fy, fi: M — E, be any equivariant maps (such maps exist
by 1.6 a)). By the extension Lemma 1.5 there is a G-good homotopy /i: Ix M ~ E
from f, to fi. The singular part (0, 1)x M’ of the (m+1)-dimensional manifold
P = (0, 1)x M has dimension m. Therefore there exists a g, € G\{e} such that the
fixed set P% of g, has a component Q which is an m-dimensional submanifold of P,
On a slice at any point from Q, go acts by symmetry with respect to a hyperplane,
and so g5 = e. For any g e G different from ¢ and g, the intersection Q n P is
a finite union of manifolds of dimensions less than m. Therefore there exists a point
X, € Q Wwith the isotropy group G,, = {e, go}. Let ¥ be a slice at x,. ¥ may be iden-
tified with R"**, x, with 0 and Q n V with a hyperplane H given by the equation
Xus1 = 0. go acts on V by symmetry with respect to this hyperplane. Let D be the
unit open ballin ¥, V, = {x € ¥V X, 20}, V_ = {xe V: x,,,<0} and let C be
the component of P, containing Int¥ .

If 2~*(0) is nonempty, it is a finite invariant subset of P,. There exists a point
peCnh™*(0). By 1.10 we can assume that ¥, 0 h™(0)=D n V, n A4 (0)={p}.
There exists a continuous retraction r: ¥, — V,\D. Define the map f: V - E,
by
hor(x)

fw:%wmw

f isG-equivariant because g, acts trivially on E. By 1.3 there is a G-good map
B: Ix M — E extending f and h|Ix M\GD. The number of orbits in A~(0) is less

for xeV,. ,
for xe V. .

icm
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by 1 than that in h™1(0). By a similar procedure we get an equivariant 'homotopy'
B IXM — Ey from fy to fy. ‘

b) The condition.dimM " <m~1 implies that M, is connected. Fix some equi--
variant map fo: M — Ey (by 1.6 a)). As in part a) of the proof of 3.1, there is an.
equivariant map f,: M = E, and a G-good homotopy Hy: Ix M - E from fotofy
such that Hg '(0) consists of exactly one orbit. We shall prove that [M, Ey) consists.
of two different classes [ fy] and [f].

Let f: M -+ I, be any continuous equivariant map. As in part b) of the proof
of 3.1, there is a G-good homotopy ii: Ix M- E from f; to f. Suppose that A~1(0)
contains more than one orbit. Since the actions of @ are discordant, for any
peh™"(0) deg,,h = deg,h if g & G, deg,,h =~deg,hif geG_ and deg,h = +1
because /1 is G-good. We can choose points py, p, € A" H0)=(0, 1) x M = P, from
different orbits in such a way that deg, i = —1 and deg,,h = 1. Let ¥ be a slice-
at py; and let D be an open unit ball in V. By 1.10 we may assume that

Vah™(0) = DAk 0) = {py, ps}

because P, = (0, 1)x M, is connected. As in part b) of the proof of 3.1, we can:
modify 1 to a G-good homotopy ki from f, to f without orbits or with one-orbit
in BY0). In the first case [f'] = [fy]. In the second case there is a G-good homo-
topy K from fi to f such that &'~*(0O) consists of two orbits. Similarly, &' can be
modified to a G-good homotopy h”: IxM — E, from f; to f, so [f]=[fil.

Tt remains to prove that the classes [f,] and [f] are different. We have the
G-good homotopy Hy: Ix M — E from f, to f, with H™*(0) consisting of one
orbit. Suppose, on the contrary, that there exists also a continuous equivariant.
homotopy Hy: Ix M — E, from f, to f;. The homotopies H, and H; may be con-
sidered as G-good maps on the manifold without boundary Rx M and we can
suppose that there are numbers 0<a<b<1 such that Ho(t, x) = H;(2, x) = fy(x)
for t<a and Hy(t, x) = H\(t, x) = fy(x) for ¢>b. The G-manifold P = RxRxM
has the singular part P’ = RxRxM' and dimP'<m by the assumption of
dimM’'<m~2. Extension Lemma 1.5 applied to P, F=P\0,1)x(0,1)xM,
U = P\[u, b]x[a, b]x M and to the G-good map H: U — E defined by

[1{0(1, x) if s<a,

) L JH X)) i e>b,

TN =970y if 1<a,
Ji(x) it 1>b

gives o G-good map H: P - E extending H[F.

The set L = H"Y(0) A IxIxM is a compact I-dimensional invariant sub-
manifold of P, whose boundary is the orbit {0} x Hy *(0). So L is the disjoint union
of arcs L;, i = 1,...,]G|/2 and a finite number of closed curves. The union L of
arcs L; is invariant. The subgroup G, of G consisting of elements preserving Ly
consists of two elements. Let g & G\{¢}. By the Brouwer fixed point theorem there:
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exists an x € Ly = P, such that gx = x. But this is impossible because the action of G [31 V. Guillemin and A. Pollack, Differential Topology, Prentice Hall, 1974.
on P, is free 41 K.Jinich, Differenzierbare G-Mannigfaliigkeiten, Lect. Notes in Math. 59, Springer-Verlag,

e M "

1968.

5. The nonorientable case. For a nonotientable manifold M we have the following [5] M. A. Kpacmocenscxuit, O ewuncaeriy epatyenun 6enmopioz nois Ha u-seproti cfepe,
-equivariant homotopic classificationn of maps. TAH CCCP 101 (3) (1955), pp. 401-404. ) o
ed P . ) P . , [6] J. Milnor, Topology from the differentiable viewpoint, The University Press of Virginia, 1965.

5.1. THEOREM. Let G, M, E, Eq be as in 2.1 and let M be nonorientable. Let M {71 C.Bowszyc, On the components of the principal part of a manifold with a finite group action,
be the singular part of M. Fund. Math, 115 (1983), pp. 229-233.

#

a) If G is odd, then the function Wy: [M, Egle = Z,, dssigning to an equivariant
homotopy class [f] represented by a continuous equivariant map f+ M — Eq its
winding number mod2 W,(f), is bijective.
b) If |G| is even and dimM' = m~1, then W,(f) = O for every equivariant
map f: M — Ey and [M, Eylg consists of one class. ‘
©) If G is even and dimM’'<m—1, then, for all equivariant maps f: M — E,,
W,(f) is the same and [M, Egle consists of two classes.
The proof of a) is similar to the proof of 3.1, using 1.9 and the fact that M, is
-connected.
In cases b).and ¢) W,(f) are independent of f by arguments as in the proof
of 2.2 a).
In case b) G contains an isotropy group G,, of the action on M of rank 2, which
acts trivially on E. So the constant map is G, -equivariant and W,(f )
= W(const) = O by the preceeding remark. The proof of the rest of b) is analogous .
to that of 4.3a).
The proof of ¢) is similar to that of 4.3b).
It can be seen by examples that all the cases in Theorem 5.1 are possible (in c)
the winding number mod2 may be 0 and 1).
5.2. Let G, M, E, E, be as in 5.1 and in addition let G act on E preserving the
orientation. Denote by M the double orientation covering manifold of M. The points
of ]\71 can be thought of as the orientations of the tangent spaces T.M.The action of G
on M lifts to the orientation preserving action of G on §: For g € G and an orienta-
tion 0 of T, M, go is the image of the orientation o by the tangent map dg, (comp. [1],
1.9.4). Let T: M — I be the involution on ¥ mapping an orientation o of T M into
the opposite orientation —o of TyM. T commutes with the action of G on M and re-
verses the orientation of M. Let n: M — M be the covering projection.
The concordant actions of G on 8 and E satisfy the assumptions of Theorem 2.2 a)
and every equivariant map f+ M - Ey has the winding number W(f) = 0mod|G|.
For the proof let go: M — E, be any ecuivariant map. Set Jo = go o 7. From ‘ .
the fact that fy = fo o T we have W(fy) = —W(f,) and therefore W(Jfo) = 0. l:
Then the result is a consequence of 2.2a).

Aecepté par la_Rédaction le 12, 5. 1980
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