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H*G|B, L) for G of semi-simple rank 2
by

Walter Lawrence Griffith, Jr. (Westfield, Massachusetts)

Abstract. Let G be 2 semi-simple linear algebraic group of rank 2, B a Borel subgroup, and
L a line bundie on the flag variety G/B, The structure as G-modules of H*(G/P,my(L)) and
H*(P|B, Lp/s) are obtained by explicit calculations, where P is a maximal parabolic subgroup
and @: G/B - G/P the canonical map. These are used to study the G-module structure of
HYG/B, L).

The purpose of this paper is to calculate the structure as G-modules of the
submodules of the cohomology space H* of line bundles on the generalized flag
variety G/B in char. p, when G is a semi-simple algebraic group of semi-simple
rank 2.

Tn 1958 Bott showed that if the ground field was C, then H,(G/B, L) vanished
for all values of g with one possible exception. The non-vanishing cohomology
space is irreducible as a G-module and is isomorphic to H(L') for a prescribed L
([6]). Demazure proved this for any algebraically closed field of char. O ([7]).
Mumford first showed that the vanishing theorem was false in char. 2; it was subse-
quently shown to be false for any positive characteristic ([8]). It is quite easy to see
that the representation-theoretic part of Bott’s theorem fails in char. p also. (Bott’s
theorem holds for G of arbitrary semi-simple rank.)

Some vanishing theorems in char. p are known (111, 121, 3], [8), [9), [11]) but
no result valid for all G and L is yet available. Representation-theoretic results are
even scarcer and are essentially complete only for G of type 4.

The following notation will be used throughout the paper. k will denote an
algebraically closed field of char. p>0 unless otherwise specified. G will be a semi-
simple algebraic group defined over k. Unless otherwise stated G will be assumed
to be of semi-simple rank 2. B will be a Borel subgroup of G; P will be some para-
bolic subgroup containing B. L will denote a line bundle on G/B or G[P. T will
denote 2 maximal torus contained in B; weights will be taken with respect to T
W will denote the Weyl group of G and w will be an element of W.ay i=1,2)
are the simple roots of G. There are many references to these motions (e.g. [3],
[41, I5D.

The first step is to describe the various flag varieties explicitly. As noted in [3],
G may be replaced by any specific semi-simple algebraic group of the same type
for the purposes of these calculations. :
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Case I. G is of type 4, (which is the same as type .D,). In this case G may be
taken to be SL(3). SL(3)/B is well-known to be the space of flags in 4%: {(V,, V)|
VisV,c43, dimV, = i, V, being a vector subspace of 4> considered as a k-vector
space} ([5]).

If Py and P, denote the parabolic subgroups containing B then the canonical
maps SL/B —» SL/P; are simply. the maps (V;, V) —» V;. SL/P, = P% for i = 1,2.

SL(3)/B, like all other flag varieties, has a system of coordinates induced from
the Grassmann coordinates ([5], [10]).

Case II. G is of type C, (which is the same as type B,): In this case G may
be taken to be Sp(4). It is easily seen that Sp(4)/B is the following flag variety:
{(V, V2, V)| VicV,sVss4%, ¥V, as above, ¥, being orthogonal to ¥; with
respect to the alternating bilinear form left invariant by Sp(4)}. Since V3 is com-
pletely determined by ¥, it may be omitted, ' o )

The identification of this variety with Sp(4)/B proceeds by noting both are
of dimension 4. (The dimension of Sp(4)/B may be calculated from the Weyl group;
it is the maximum length of any element of W ([3]).) Since the flag variety is clearly
projective, the stabilizer of any points is connected, and since Sp(4) acts transitively
on it, the result follows from [5]. ‘ o

If P, and P, are as above, the canonical maps remain the same. Sp (4)/P; =~ P°.
To identify Sp(4)/P,, note that ¥, can be a term in some flag iff it is self-orthogonal
under the bilinear form. Hence Sp(4)/P; is a subvariety of Grass (2,4). If the bilinear
form is taken to be XYy +X,¥,~X,¥,—X, Y,, the self-orthogonality con-
dition is p;3+p14 = 0 in Grassmann coordinates.

Case IIL. G is of type G. In this case G may be replaced by the automerphisms
of the Cayley numbers (or octonoions) over k denoted by Aut(0). (Throughout
this paper, whenever G is of type G, the additional hypothesis that char(k) # 2
will be imposed.) From [3], G/P; is a quadric of codimension 1 in PS.

Consider G/P,. From [13], G can be imbedded in SO(7), hence in SL(7).
P, must contained in some maximal parabolic subgroup Pg;, of SL(7). Hence
G/P, =SL(7)/Pg;,, which is a Grassmannian. )

Returning to the general case, the maps of the type G/B — G/P will be the
principal tool used. The structure of H*(G/P, L) as 2 G-module and &' *(P/B, Ly
as a P-module must first be calculated. (The fibres of G/B — G[P are non-canoni-
cally isomorphic to P/B.) Since P/B & P' for the parabolic subgroups of interest
here, the latter structure is already known, but since it can be readily deduced from
the general theory given here I will do so. .

Assume X is-a projective G-homogeneous space (or P-homogeneous space)
such that i) PicX = Z and ii) X can be imbedded G-equivariantly in a Grassman-
nian (with some appropriate G-structure) such that X is a complete intersection
considered as a subvariety of the Grassmannian. Suppose L is a line bundle on X.
The degree of L is the integer associated to its isomorphism class.

LemMA 1. If the degree of L is non-negative, then HYX, L) = (0) for ¢>0
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HYX, L) is generated by the residues of monomials in appropriate Grassmann co-
ordinates.

- Proof. The first statement is really a special form of Kempf’s theorem ([3],
[11]). Since X is a projective G (or P)-homogeneous space, it is of the form G/P,
(or P/P,) where P, is a parabolic subgroup ([5]). Let /> G/B — G/P, be the canonical
map (or P/B - P[P,). By Kempf’s theorem H*(G/B,f*(L)) = (0) for ¢>0. Since
F(F*L)) = L and R (F*(L)) = (0) for ¢>0 (since f*(L) has degree 0 on the
fibers of ), HYX,L) = HYG/B,f*(L)) = (0) by the Leray Spectral Sequence,
for ¢>0.

To show the second statement describe X by a sequence Xp2X;2 .. 2X,,
= X, where X, is a Grassmannian and X; is a locally principal Cartier divisor
on X;_,. It may be assumed that m<dim X,, since the lemma is obvious for a finite
set of points. For any line bundle M on X,, H{(X,, M) = (0) for 0<g<dimX,
(this follows from the first part of the lemma and Serre duality). By taking the long
exact sequence in cobomology of

6] 0= L(-X)—=>L—-Ly -0

it follows that HY(X;, M) = (0) for 0<g<dim X, and that H°(X,, L) —» H%(Xy, L}
is surjective. By induction H°(X,, L) - H°(X, L) is surjective. Since H°(X,, L}
is generated by monomials ([15]) the lemma follows immediately.

Lemma 2. Every G-submodule of H°(X, L) ‘is generated by the residues of
monomials. .

Proof. This lemma is well known to be true if char(k) = 0 as well. Recalll
the argument: HO(X, L) is irreducible. For H(X, L) & H°(G/B,f*(L)) as in the
proof of Lemma 1 and the right-hand side is irreducible by a theorem of Weyl
(114D.

Now assume that char(k) = p. If X, is as in the proof of Lemma I, then
HYX,, L) has a monomial highest weight vector v which is in every submodule
(v is the highest weight vector of the unique irreducible submodule). ' .

Define kxz,Z/p® to be the universal object making the following diagram
commute:

Jo <

klepZ/Pe
a-al, T

Z/_[) quotient Z/pe

Define kxz,Z analogously. ‘

Extend G to kxz, Z[p® by base extension (resp. to .kxz/,,Z) and denote it by
G(Z]p°) or G(Z). v may be pulled back to a highest welg]?t vector of (f(Z/p”) or
G(Z) which is still a residue of a monomial. This vector will also be .wntten as v.
The translates of v are residues of polynomials in Grassmann coordinates of .thc
same rank with coefficients involving multinomial coefficients and polynom:als‘
in the entries of matrices representing G. These translates over G(Z/p%) may be
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obtained by reducing the coefficients of the translates over G(Z) modulo p® Call
the result y°.

Since k is algebraically closed y° is generated by monomials. Since v must
be in every submodule and since the preceding paragraph shows they depend only
on the power of p dividing the coefficients, all submodules are of the form 3 (and
hence form a totally ordered set). This proves Lemma 2.

Now assume m is a positive integer. Let 4(p™) denote any submodule of
HO(X, L) which is a Frobenius mth power of a submodule of H°(X, L), 0<deg L <p.
Let 4,(1), ..., 4;(p—1) be the various submodules of H %X, L) with degree L<p.
Let A(z™)% ... x A(p™) denote the Cartesian product. (4(p®) will mean any of
Ay(D), ..., 4(p—1).) Since there is a map ITTH((X, L)) — HYX, ®; L),
A(p™)Yx ... x A(p™) may be identified with a submodule of H°(X, ®} L) for
which the same notation will be used.

Lemma 3. 1) m;4,(p™) is a G-module.

i) If | = degree L, then all submodules of H(X, L) are of the form m,4,(p™)
where Y. degd;(p™) = I.

Proof. i) is clearly true, since G acts linearly. The only non-trivial point in ii)
is to show that every submodule is of the given form.

As shown in the proof of Lemma 2, any submodule is described completely
by its degree / and by a reduction modulo p® for some e>0. It will be convenient
to allow e to assume the value co with the convention that Z/p® is Z (not the
p-adic integers). The various submodules of the form 4(p™) can be partially ordered
in the following way: let ¢ be the smallest integer (or co) such that reduction mo-
dulo p° of H%(X(Z), L) (for appropriate L) gives 4(p"). X(Z) is the G(Z)-hom-
ogeneous space obtained by base extension as in the proof of Lemma 2. Use the
ordering on the various e’s.

For any submodule S, there is a minimal module of the type 4(p™) such that
ScA(p™ x H(X, L) for some L'. This follows immediately upon noticing that
ScH(X, 0(1)x H°(X, L(—1)) and that there are only finitely many 4(p™)’s of
degree </.

The lemma follows from the proposition below by induction on /;

PrOPOSITION. If A(p™) is a minimal module for S as above, then there exists
a submodule T of H(X, L) such that S = A(p™) xT.

Proof. Let e, be the largest integer (or co0) such that 4(p™) is obtained by
reduction modp®; let e, be the smallest such integer for S. It is clear that ¢, <e, .

Note that if v is as in the proof of Lemma 2 and if' }, z,v, is the translate of v
under a generic element of G (where z;€ Z and v; is a monomial with coefficients
in the. entries of a representative matrix of g € G), then the monomials present in
a submodule of H(S, L) corresponding to reduction modp® are the monomials
not vanishing in (3, z,0;) (after any reductions using the relations among the v,’s).
L' Singes

(% 20 = (T 20" (S z00) ™"
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reduction of the right-hand side modp™ must reduce (¥ z)”"to an expression
giving the monomials of A(p™) precisely, by the minimal property of 4 (p™). T is
then obtained from the reduction of the second factor. This proves both the prop-
osition and Lemma 3.

Remark. The product representation in Lemma 3 is by no means unique.

To apply Lemma 3 it is necessary to know the structure of the various 4 sub-
modules. For m>1, 4(p"™) is the appropriate Frobenius power of a submodule
of degree <p. Hence it suffices to calculate the latter.

Case I. G = SL(3). It suffices to calculate the expression () z;p;)" as in the
preceding proof. Since SL(3)/P; = P?, X is P? and H°(X, O(0)) is the homogeneous
elements of degree / in the symmetric algebra in three variables over k. If i = 1,
these variables are py, p,, p; (Grassmann coordinates). The case of i = 2, which
is essentially the same as the following argument, will be left to the readef.

From [10] the transformation formula

)] Py Z;41,P;

is obtained, where I and J are multi-indices of the same rank and A; ; is the function
from SL(3) to k given by taking the cofactor of the submatrix consisting of the
rows designated by I and the columns designated by J. It is an elementary fact
that the Ay ,’s are non-trivial functions.

The vector v may be taken to be p; (this is the highest weight if B is taken to
be the upper triangular matrices). Hence Y. z;0; = Ay,1p;+4;,2P3+44,3P5. Since
the A’s are algebraically independent, (Z z;v;) has no terms vanishing in char. p.
Hence the module H°(X, O(1)) is irreducible. Note this means that only 4°s whose
orders are of the form p™ (m:=0) need be used in Lemma 3.

Case Ta. G = SL(2). This case occurs when dealing with the fibers of the
maps G/B — GJP. Since P will be of semi-simple rank 1 in the applications, it will
be of type 4,, so may be assumed to be SL(2).

The argument is the same as case I (with two variables) and leads to the same
conclusion.

Case IT. G = Sp(4). As previously noted Sp(4)/Py = P3. Since the proper A’s
remain non-trivial and algebraically independent on Sp(4) this is essentially the
same argument as Case I: H(P?, O()) is Sp(4)-irreducible.

Sp(4)/P, is more interesting. It is isomorphic to the subvariety pys+p2sa =0
of Grass (2, 4). The relations defining Sp(4) in the 4 x4 matrices can be written
in terms of the A’s:

Agzr3+ 41204 =0,

3 Ayzaatdize =1,
Ayagzt+diaga =0,

Az3,13+ 423,04 =0,
AzsgstAzaze =1,
Azg3t+Adsae = 0.

The highest weight vector » may be chosen to be ps,; applying (2) and (3) yields:
4 P34 > Aza12P12 +2434,13 P13+ A3s,14P1at A34,23P23 F A34,34P34 -
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Since the p’s and 4’s appearing in (4) are algebraically independent (the only xe-
lation on the p's i§ PisPss—PisPaat+Piabas = 0 HO(Sp(4)/P2, o) is irre-
ducible if char (k) >2. If char(k) = 2, H °(Sp(@)/P,, Q(l)) has a codimension 1 sub-
module and only Frobenius powers of these two modules need be used in Lemma 3,

Case III. In this case direct calculation becomes much more difficult and the
discussion will be limited to quoting some results of Jantzen ([15], [16]). I am in-
debted to H. H. Andersen for bringing these results to my attention. Only G/P4
will be considered as Lemma 1 cannot be applied to G/P, anyways. If p=1,
H(G/P;, O(D) is irreducible unless 21+5>p>I+4, in which case it has a proper
irreducible submodule.

First note that H¥™B-1([~1®0) can be studied by Serre duality, once
HY(L) is analyzed (@ is the sheaf of differentials. By a theorem of G. Kempf [11]
it easily follows that H'(L) # (0) only if exactly one degree of L is negative. (The
converse is false, even in char. 0.) Let f be the canonical map G/B — G[P, with P
being the maximal parabolic subgroup such that the restriction of L to any fiber
of £ has negative degree. Let @ be the relative sheaf of differentials of f. By Kempf’s
theorem R%%4(L) = (0), so H(L) = H°(Rf(L)) by the Leray Spectral Sequence.
By Serre duality ‘

RY(DRFL Q) ~ RY(Q) = Ogpp

is a perfect Ogpp-pairing. Hence HYL) = Homg,, (f(L™'®9), Ogp) a5
a G-module. -

Assume i<0, j=0..The proofs below work for /0, j<0 with only the obvious
modifications. Assume G is of type 4, or C, only, as thése hypotheses conflict
with the previous conditions imposed with the case of type G,.

HY(L) = Homg,, (/L' ®Q), Ogp) can be written as a set of polynomials
in the gemerators of H°(G/P;, O(j)) and H'(G/Py, O())), where s = dimG/Py.
This follows “essentially because HY(G/P, 0(i)) is Hom (H°(0(e~1)), K), where
e is the degree of the sheaf of differentials on G/P;. ‘

Given submodules 4= H(G/P,, 0(/)) and C< HY(G/Py, O(D), the associated
module H(A, C) is defined as (4x C) n H*(L), H*(L) being understood as in the
previous paragraph.

THEOREM 1. Assume G is of type A or C, and that L is a line bundle on G|B of
degrees i,j with <0, j20. The submodules of H'(L) are all of the form

+  H(4;,C)
where 1) Aiman S gy -1 - 44,
‘C”l(mnx):’Cl(max)—“l,:D :CI:

i) 4, is a submodule of H°(G/P,, O())),
Cy is a submodule of H'G/Py, O().
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Proof. Let i be a submodule of H*(L). Let 4, be the largest submodule of
HP(G[P,, O(j)) generated by products of the Grassmann' coordinates of degree j
on G/P, appearing in terms of elements of h. Let C, be the largest submodule of
H¥G[Py, O())) so that H(4,, C,)<h. )

. Proceeding inductiyely? assume A, ..., 4,, Cy,..., C, are defined, Let 4,4
be the largest submodule of H°(G/P,, O(j)) so that: a) A, =4,, b) there exists
a maximal C.yq, CECrpy, With H(dpyy, Cop)Sh, If A, does not exist,
r = I(max). ' )

It is only necessary to show ks +H(4,, C)). Let F be any fiber of f. There is
a_restriction rp: HY(L) = HY(Ly). ry takes non-zero G-submodules to non-zero
Pp-submodules (Pr = stabilizer of F). i

. Let ce h. There exists a dense open set of fibers of f for which ry(c) generates
some submodule C'sH*(G/P,, O(i)). Take C’ to be as large as possible.

There are special fibers of f defined by the vanishing of all but one Grassmann
coordinate, say p, # 0, p, = ... = p, = 0. Then any fibre of f can be defined by
equations pf = ... = pf = 0 for some g e G (this is not canonical as the choice
of g is only defined up to the stabilizer of the fiber). ‘

i ¢ must contain an expression (p%)’by, Where by is a generator of C-which lies
in HY(F, 0(); in fact ¢ = (p%)’bpmod Iy, where Ir is the ideal of F in G/B. Hence
it follows that if 4’ is the Pr-submodule generated by (p%, thén A’x {b} is in
hmodl,. Hence ce H(A', C'Y&h, because all the monomials in 4'x C’ which
vanish on the ideal of the fiber (which is generic) appear. By construction H(d’, C')
"€ H(4,, C,) for some r, so ¢ H(4,, C,). This proves Theorem 1.

" As an application of Theorem 1, a method for computing the number of
composition factors will be given. In order to do this, more information on
H(4, C)is needed. (Throughout the rest of the paper, G is of types 4, or C, only.)

A, being a submodule of H°(G/P,, O(j)), must contain a unique irreducible
G-submodule with a highest weight x,. Let C’ be the annihilator of C in
H(G[Py, O(e—1)). It follows from the proof of Lemma 2 that C’ has a unique
irreducible quotient G-module, with highest weight x,.

Since the Weyl group of P, is a subgroup of W, the element of greatest length
(one!) in the Weyl group of P,, call it w3, is an element of W. Similarly there is
whe I¥. Let r be the sheaf of differentials on G/B relative to f: G/B = G/P,

LivMa 4. H(4, C) # 0 iff X,—wi(X,) is dominant.

Proof. This follows from the proof of Lemma 3 in [9]. The choice of G as

'SL(n) in that proof is irrelevant for present purposes. (The essential point of "the

cited proof is that if H(d4, C) # (0), it must contain an irreducible G-submodule
with X, —w2(X,) as highest weight.) Restatements of this lemma may be found

in [1].

Assume Agd,, CEC,, with 4,/4, C,;/C irreducible. _
LemMa 5. a) H(A, CYsH (A4, Cy) if the fallowi‘ng condition holds: let A° be
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the annibilator of A in [HY(Q()]° (the Serre dual); similarly define C®, C!. The
condition is that y;(A)—wi(x2(Cy)) and 12(CY—wh(x2(4")) are dominant.

b) H(4, OVSH(A, C) if 1) —wi(a(C)) and y,(CY—wp(xa(4) are

dominant.

Proof. Let = dimG/B—1. Then the annihilators of H(A,C), etc. lie in

H(L"*®Q,), where , is the absolute sheaf of differentials. Since H(L Q)
= Hom,(H*(L), k) the arguments of [9] still work. In fact the clements of the
various annihilators clearly can be written in terms of elements of A’, C° ete.

H(A, C)SH(4, C,) if their annihilators have a proper inclusion (in reverse

order). Suppose H(4, C;)° % (0). Then H(4,C;)’®C°sH(4, C)’, so the in-
clusion must be proper. Hence it suffices to check H(4, CY = (0) (if H(4, Cy)°
= (0), there certainly would be a proper inclusion). Using Lemma 4 gives one of
the conditions in a). The other expresses the (vacuous) condition that H(4, Cy)°
# HY(L)". This condition is included to show the symmetry between a) and b),
although it is vacuous by the preceding argument (or by direct analysis).

ducible submodule of H(G/P,, O()). Let 4, < ...

The proof of b) is entirely similar.

A composition series for H*(L) can now be constructed. Let C; be the irre-
< 4, be a sequence of submodules

of H(G/P,, O(j)) such that 1) A,,.1/4,, is irreducible, 2) H(d, C;) = 0if Ag4,,

3) H(4, C)) = H(4,, C)) if A,c4. Let C, < ...

=C, be a sequence of submodules

of H¥G/P;, O(i)) such that 1) C,./C, is irreducible. 2) H(4,, C)) = H YL).

Then by Lemma 5, H(A4, 41, Ci)/H(4,, Cy) # (0), but by Theorem 2 it is

irreducible. Similarly H(4,, Cps1)/H(4,, C,) is a non-trivial irreducible G-module.

@

Hence a composition series

H(4,, CYoH(A,, Couy) ... DH(A,, C))> ... DH(4y, C;)>(0)

is obtained.
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