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Remark. The proof of the first theorem of this paper was found by the author
during Spring 1979. Announcements in Notiziario della Unione Matematica Ital-
iana, August-September 1979, N. 8-9, p. 19; and in Atti Accademia Nazionale dei
Lincei (Rome), Rendiconti Cl. Sc. Fis. Mat. Nat., Ser. VIII, 67.6 (1979), pp. 383-386.
We refer the reader to [MS1], as well as [MS] and [Mul-6], for further information
about Robinson’s theorem, amalgamation, JEP and other soft model theor-
etical properties.

The author wishes to express his gratitude to Jon Barwise and Solomon
Feferman. '
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A note on the isomorphic classification of
spaces of continuous functions defined on
intervals of ordinal numbers

by

M. Labbé (Saint-Jean, Quebec)

Abstract. Let o, denote the first uncountable number, and let I"(a) denote the interval of
ordinal numbers not exceeding a, endowed with the order topology. For each natural number z
an isomorphic classification of the space of continuous functions C(I‘(w,-n)) is given among the
spaces C(S) for which every point of S is either a P-point or a Gs-point. For n = 1, this classifi-
cation yields a characterization of I'(w,).

Introduction. For each ordinal number o, let I'(«) denote the topological
space of non-zero ordinal numbers not exceeding «, endowed with the interval
topology (cf. [5], p. 57). Let @ and , denote the smallest infinite ordinal number
and the smallest uncountable ordinal number respectively. As customary, for any
compact Hausdorff topological space S, C(S) denotes the supremum-normed
Banach space of continuous complex-valued functions defined on S. Two Banach
spaces are said to be isomorphic provided there is a one-one bounded linear operator
from one space onto the other space. A point p in a compact Hausdorfl space S is
called a P-point provided every G;-set containing p is a neighborhood of p (cf. 4],

. 63).
? In [10], Semadeni showed that the Banach spaces C(I'(w;'n)) for 1<n<w
were mutually non-isomorphic. In this paper, we obtain an extension of this result
by giving an isomorphic classification of these spaces among the spaces C(S) for
compact Hausdorff topological spaces § in which every point is either a G;-point
or a P-point. A characterization of I'(w,) in terms of isomorphisms of spaces
of continuous functions is also thereby obtained.

Before bstating our first result, we need to introduce a few more notions. A topo-
logical space is said to be dispersed (scattered) provided it contains no dense-in-
itself non-empty subset (cf. {I11], p. 147). Let S be a compact Hausdorff dispersed
space and let m(S) denote the Banach space of bounded complex-valued functions
on S equipped with the supremum norm. Then, according to a theorem of Rudin [9];
the conjugate space of C(S) is isometric to the Banach space 1(8) = {g: g e.m(S)
and ¥ |g(s)] < oo} equipped with the usual /;-norm so that the second conjugate

s
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space of C(S) can be identified with m(S). Let X = C(S) and let X* and X**
denote the first and second conjugate space of X, respectively. It then follows that
for each x** in X ** there corresponds a unique function % in m(S) such that x** (x*)
= g(5)h(s) whenever g is a function in ;(S) which corresponds to x* in X*. As
in [10], we let X denote the linear subspace of functionals in X** which are se-
quentially continuous relative to the weak* topology of X*. Then, defining m(S),
also as in [10], to be the linear subspace of functions in m(S) which. corresponds
to linear functional in X, it follows that m(S) is a norm-closed subspace of m(S)
which evidently contains C(S). Thus, we can consider the quotient Banach space
m(8) . : . . . my(S) .

Ok is defined by isomorphic invariants, it follows that c® is
my(T)

isomorphic to e

whenever T is a compact Hausdorff space with C(S)

isomorphic to C(T). The dimension of this quotient space is therefore also an
isomorphic invariant and consequently plays a crucial role in the isomorphic
classification of the space C(I'(wy-n)) for each natural number 7.
Our first result was proved in [10] in the case of intervals of ordinal numbers.
THEOREM 1. Let S be a dispersed compact Hausdorff space in which every point
is’ either a Gy-point or a P-point. Then a function h in m(S) belongs to m(S) if and
only if h is sequentially continuous on S.
Proof. Suppose & belongs to m(S) and let {s,> be a sequence of points in
S which converges to so. For eachn = 0, 1, 2, ... let g, be the characteristic function
of the singleton set {s,}. Then g, belongs to ,(S) for n = 0,1,2, ... and the se-
quence {g,» converges to g, relative to the weak* topology of 1,(S). It follows that
lim A(s,) = Ilm(}: 1(s)g,(s)) = (]lmZh(s)g,,(s)) = h(sy)

n=co

whence lim %(s,) = (so). Thus £ is sequentially continuous on'S.

Conversely, suppose that A is sequentially continuous on S. To show that A
belongs to my(S) it suffices to show that the subspace

K={g: geli(S) and Zf(s)h(s) = 0}
of 1;(S) is sequentially closed relative to the weak™ topology of /,(S) as in The~
orem 1 of [10]. Suppose that the sequence {g,> of functions belonging to X con-
verges to g, relative to the weak* topology of /,(S). Since Z |g.(s)| converges for
n=0,1,2,.. it follows ‘that the set

4= U {s: s€.S and g,(s) # 0}

is countable By hypothesis each pomt of S is either a Gj-point or a P- pomt S0
that each point of Cl(4), the closure of A in S, must then either be a G;- pomt ‘or
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a relatively isolated point in Cl(4). Hence, Cl(4) is a compact, dispersed, first
countable (cf. Corollary 7.1.17 in [11]) space which must be homeomorphic to I'(e)
for some countable ordinal o by Theorem 8.6.10 of [11]. So %4 is continuous on
Cl(4) since it is sequentially continuous on S and the relative topology on Cl(4)
can be defined completely in terms of sequences. By the Tietze extension theorem,
there exists a function f belonging to C(S) whose restriction to Cl(4) coincides
with A. It then follows from the definition of A4 that:

Z 9o()A(s) = Z Go@)f(s) = 11m (Z 9 )) = lim ( ZS 9x($)h(s)) =0

Hence,

PHOLIOELS

so that g, belongs to K, as desired.

LemMma. Let S be an uncountable compact Hausdorff space in which every paznt
is either a Gz-point or a P-point. Then there exists an open set I in S and a P-point p
in S such that CUINI = {p} and CI(I) is homeomorphic to I'(w,).

Proof. S must contain at least one P-point since, otherwise every point of §
is a Gg-point and S, an uncountable space, is then homeomorphic to I'(x) for
some countable ordinal « by Corollary 7.1.17 and Theorem 8.6.10 of [11]. Since S is
dispersed, there exists a P-point p in S which is isolated from all other. P-points
of S. By Theorem 8.54 of [11], S is zero-dimensional and so an easy application
of transfinite induction yields a transfinite sequence {W;>i1<1<a, Of clopen sets
each containing p as its unique P-point such that W; is a proper subset of W
whenever A<p<w;.

Next, set T'= () (W\W),). Then p belongs to CI(T’ ) (an uncountable set)

A<on
since otherwise every point of Cl(T) is a Gs-point which implies that CI(T) is
homeomorphic to 2 countable interval of ordinals by an argument already used
in the first paragraph of this proof. This contradiction shows that p belongs to
CI(T). Now, if g # p and ¢ belongs to CI(T)\T, then g is a G,-point and so there
exists a sequence of countable ordinals {4, and a sequence of points {S,> belonging
to S\W,, for 1<n<o such that lims, = ¢.

n<m

Hence, setting 4 = sup{l,: 1<n<ow} which is smaller than ey, it follows
that s, belongs to S\W), for all n<w. The point ¢ then belongs to the clopen set
S\W, which is a subset of T. This contradiction together with what has been shown
above establishes that C1(T) = T u {p}.

The desired subset I in S with CI(Z7") homeomorphic to I'(w;) will be constructed
in'T. Since T'is open in S and CI(T) = T U {p}, the required topological properties
of T relative to C1(T) will be the same as the required topological properties of I
considered as a subspace of S.

Set U, = W, n CI(T) for each A<e,. Then the transfinite decreasing sg-
quence of sets {UsDi<o, 15 a base of clopen’ neighborhoods for p in the relative
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topology of CI(T") since ﬂ Ul = {p} and CI(T) is compact. Moreover, for each

A<wy, the set Cl (T)\U,, is a clopen subset of S all of whose points are Gs-points
of S. By Corollary 7.1,17 and Theorem 8.6.10 of [11], CI(T)\U, is homeomorphic
to a compact space of ordinal numbers for each A<w;. Consequently, for each
A<, there is a well-ordering <, on CI(T)\U;. The family of sets {U,) 1<op Wl
be used to construct a family of sets <I;>,<,,, and the required set I in T" will be
defined by setting I = U ;.

A<y
Let I; = {s,} where s, is any isolated point of S contained in T. Suppose 1<a
<w;, and the set I, has been chosen for all A<¢ satisfying the followmg
(i) I is clopen and I;<I,=T whenever 1<i<pu<a.
(ii) The set Iﬂ\ U I, consists of precisely one point whenever 1<f<a.
(iii) CI( U 1) is open and the set CI( U IN( U L) consists of at most

’<a
one point.

(iv) If 1€A<q and 2 is not a limit ordinal, let u[A] denote the smallest ordi-
nal 4 such that I is a subset of CI(T)\U, and (CI(T)\U,)\I, is an infinite set.
Then I, is an initial clopen interval in CHT)NU, relative to a well-ordering on
CI(T)\U,q;; which induces the relative topology on CI(T)\U,;. Moreover,
if A= X'+n for some natural number 7 and A’ is not a limit ordinal, then p[4]
=plland <,p = <.

If o = f+1 and B is a limit ordinal, let u[2] denote the smallest ordinal p such
that J; is a subset of CI(T)\U, and (CI(T)\NU,NJ, is an infinite set. Then since
I; is a clopen set by (i), there exists a well-ordering < w00 CHT)N\U,p,y which
induces the relative topology of C(T)\U,, and, relative to which, I; is an initial
clopen interval. Let s be the smallest element of the set (CL(T)\U; m)\lﬁ relative
to the well-ordering <, and set I, = I U {s}. It is then a routine matter to verify
that 7, satisfies conditions (i)~(iv) for all A<a.
~ If = B+1 and B is not a limit ordinal, then there exists a natural number
n such that o = y+n, and either y = 1 or y is a limit ordinal. In either case, it
follows from (iv) that

ply+1] = ply+2] = ... = ply+(@—-1)]

and

Sup+1] T <2 = e = <ppyaeny -

In addition, I, (-1, is an initial clopen interval in CL(T)\U up+ 1) Telative to the
well-ordering < ,p,.1; on CI(T)\T, wiy+1) 8gain by (iv). Let ¢ be the smallest element
of (CUTINU, s y)Ny+(n-1y telative to the well-ordering < ap+1; and then set
Lyin=Iyii-1) Y {t}. As before, it is an easy matter to verify that I, satisfies
conditions (i)~(iv) for all A<a.

Finally, to define I, for « a limit ordinal, set I, = CI( U I). By (iii), I, is

clopen and FAN U I,) consists of at most one point. Since ] il # I, for each A<ua
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by (i), it follows that I,\( U I) consists of precisely one point. Hence, 7, satisfies

A<a

conditions (i)~(iv) for all A<

After having defined I, as above for each A<w, set I = {J I,. Then [ is an

A<y

open uncountable subset of § by (i) and (ii). So, p belongs to CI(J) since otherwise
all points of CI(I) are G;-points and Cl(J) is homeomorphic to I'(x) for some
countable ordinal « by Corollary 7.1.17 and Theorem 8.6.10 of [11]. On the other
hand, if s belongs to CI(J) and s # p, then s is a G;-point (because J=T) and so
there exist a sequence of points {s,»> and a sequence of countable ordinals {1,>
with s, belonging to I, for each 7 such that lim s, = s, from the definition of L

n<w

Since A = sup A,<w,, it follows from (i) that s, belongs to I, for each n. Conse-
i<n<o

quently, s belongs to I, which is a clopen subset of I. Hence, CI()\I = {p}, as
desired.

Finally, we will show that CI(Z) is homeomorphic to I'(w,) via a result due
Theorem 2) which characterizes compact intervals of ordinals among
dispersed compact Hausdorff spaces. It suffices to show that Cl{J) is homeomorphic
to an interval of ordinals since Cl(J) is an uncountable compact space having p as
its unique non-Gj-point and I'(w,) is homeomorphic to I'(x) for o, Ka<w, 2
by Baker’s theorem.

Each point in the dispersed compact Hausdorff space CI(7) which is different
from p has a countable base of neighborhoods by Corollary 7.1:.17 of [11]. Con-
sequently, to show that Cl{J) is homeomorphic to an interval of ordinals, it suffices
by Baker’s theorem cited above to show that the point p has a base of neighbor-
hoods in C1(J) which form a transfinite decreasing sequence {¥;;<,, of sets clopen
in the relative topology of Cl(J) such that the set () (V;\V}) contains at most

i<p

one point for each limit ordinal f<w;. In order to obtain the desired family of
sets, set V, = Cl(/)\J; for each A<w,. Then the transfinite sequence of sets
V1> 1<w, is decreasing and forms a base of clopen neighborhoods for p in the
relative topology of CI(Z) by (i). Since

0 vy = 0 [CAONNCDNG] =INU L for 1<p<ay,
A<p A<p <

it follows from. (if) that the set () (V;\V}) consists of precisely one point for each
A<

ordinal f less than ;. ‘

THEOREM 2. Let S be a compact Hausdorff space. Then S is homeomorphic to
I'(w,) if and only if C(S) is isomorphic to' C(I'(w,)) and each point of S is either
a Gs-point or a P-point. ;

Proof. If S is homeomorphic to I'(w,), then the conditions of the theorem
are obviously satisfied.

Conversely, suppose that S is a compact Hausdorff space such that C(S) is
isomorphic to C(I'(,)) and each point of § is either a G,-point or a P-point.
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According to [8], § is dispersed if and only if every infinite-dimensional subspace
of C(S) contains an isomorphic copy of C(F(a))). Since this latter property is
evidently preserved under isomorphisms, and I'(w,) is dispersed, it follows that
S is also dispersed. From Proposition 7.6.5 of [11], it follows easily that S is un-
countable. Hence, by the lemma there exists an open set I in S and a P-point p
in S such that CI(J) = I'u {p} and CI(J) is homeomorphic to I'(w,). It will next
be shown that p is the unique P-point of S.

Suppose ¢ is any P-point of S. Then the characteristic functions of the two
singleton sets {p} and {g} each belong to my(S) by Theorem 1. Moreover, these
two functions are linearly dependent modulo C(S) since the dimension of the
quotient space %((Fi((%j—)%) is equal to 1 by [10], and C(S) is isomorphic to
C(I'(w,)). It then follows easily that p = g, so that pis the unique P-point of S.

Having obtained a subset Cl(J) in S homeomorphic to I'(w;), it will finally
be shown that S\CI(J) is a clopen subset of S which is homeomorphic to I"(x)
for some countable ordinal «. It will then follow that I'(w,) is homeomorphic
to S since I'(w,) is homeomorphic to the disjoint union of itself with any compact
interval of countable ordinal numbers by Theorem 2 of {1].

Set F = S\CI{I). If this open set is not also closed in S, then p belongs to
CI(F) since I is open in S and ClI(J) = U {p}. Hence, CI(F) = F U {p}. Let f
and g be the characteristic functions of the sets F and I respectively. Then f and g
are each sequentially continuous on S so that each of these functions belongs to

N
m(S) by Theorem 1. Since the dimension of 72;(5)) is equal to 1 from the second

paragraph of this proof, there exist scalars @ and b not both zero such that the
function & = af+bg belongs to C(S). Then, a = h(p) = b since p belongs to
CI(F) n Cl(I) and F n I = @. On the other hand, k(p) = 0 since p does not belong
to FuU I This contradiction proves that F is closed in S. Thus, F is a dispersed
compact Hausdorff space and every point of F is a Gs-point. By Corollary 7.1.17
and Theorem 8.6.10 of [11], F is homeomorphic to I'(¢)) for some countable ordinal
o as desired. .

The following definition will be used in a characterization of the compact
Hausdorff spaces S, all of whose points are Gs-points or P-paints, for which C(S)
is isomorphic to C(I'(wy)).

DermirioN. For a natural number n, let k,<k,< ... <k, be a sequence
of m natural numbers not exceeding n. Set k, = 0. Define an equivalence relation
on the space I'(w, n) as follows. For & and j belonging to I'(w, 'n), « is equivalent
to Bif and only if @ = B, or ¢ = w,-i and f = w,+j with k,_,<i, j<k, for some
natural number /<m. The resulting quotient space equipped with the quotient
topology ([5], p. 94) will be denoted by

T'(wg-n)
[kysksy oy len] ™
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THEOREM 3. Let S be a compact Hausdorff space in which every point is either
a Gs-point or a P-point and let n be a natural number. Then C(S) is isomorphic to
C(I'(w;*n) if and only if S is homeomorphic to the quotient space [kri)l—l—)—] Jor
SRR
a finite sequence of natural numbers k;<k,< ... <k,<n. "

Proof. In order to prove the sufficiency, suppose that S is homeomorphic to
I'(wqn) )
[ks s oons ol
cording to [2], for any compact Hausdorff space 7' containing a convergent se-
quence having an infinite number of terms, the Banach space C(T") is isomorphic
to the linear subspace of functions in C(T)) which vanish at every point of any fixed
finite subset of T. It follows immediately that the spaces C(S) and C(I'(w,n))
are each isomorphic to the linear subspace of functions in C(I'(w; 1)) which vanish
at each P-point of I'(w,-n), and hence these spaces are isomorphic to each other.
In order to prove the converse, let S be a compact Hausdorff space such that
C(S) is isomorphic to C(I'(w;'n)). Then S is dispersed (as in the proof of the
myS)

preceding theorem) and the quotient space CS

for a finite sequence of natural numbers k;<k,< ... <k,<n. Ac-

has dimension n since the

corresponding quotient space for I'(e; -n) has dimension n by [10]. Furthermore,
the characteristic function of a singleton set comsisting of a P-point belongs to
m(S) by Theorem 1. Since such functions corresponding to distinct P-points are
linearly independent modulo C(S) (cf. the proof of the preceding theorem), it
follows that S cannot contain more than n P-points. However, an argument also
used in the preceding theorem shows that .S is uncountable and must contain at
least one P-point. Hence S has precisely m P-points p,, p,, ..., p,, for some natural
number m<n. ‘
Since S is 0-dimensional by (8], there exist m mutually disjoint clopen (un-
countable) neighborhoods S, S5, ..., S, of the P-points py, ps, ..., p,, Tespectively
m

such that S = (J ;. Then S; is a dispersed compact Hausdorfl having p; as its
i=1

unique P-point for { = 1,2, ..., m. We will show that S, (and therefore each S;)
is homeomorphic to a quotient space of I'(w, k) for some natural number k.

By the lemma and because S, is clopen in S, there exists a set J; in S which
is open in § such that CI(I,) = I; v {p,} and CI(I;) is homeomorphic to I'(e).
Now, if the set F, = S;\CI(,) is not closed in S, then p, belongs to C1(F;) since
I, is open and CI(I}) = I, L {p,}. In this case, CI(F) is an uncountable dispersed
compact Hausdorff space having p, as its unique P-point. An application of the
lemma to this set then yields an open set I, in F; such that Cl()) =1, v {p:}
and CI(I,) is homeomorphic to I'(w,). If the set F, = §;\(Cl(J; v 1)) is not
closed in S, then as before, we see that CI(F,) = F,u {p;} is an uncountable
dispersed compact: Hausdorff space having p, as its unique P-point. As above,
there exists an open set I, contained in F, such that C1(Z;) = I; v {p,} and Cl(Z5)
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is homeomorphic to I'(w,). This process is continued until &, open sets I, I, ..., L,
have been obtained with C1(J}) = I; U {p;} homeomorphic to I'(w,) for j = 1,2,
ky

...» kg such that the set Fy, = S\CI( |J I)) is closed in S. Note that this set is
=t ,

my(S)
C(S)
characteristic functions corresponding to the sets I; all belong to my(S) by The-
orem 1, and these functions are linearly independent modulo C(S) (cf. the last
paragraph of the proof of Theorem 2).

Now F, is a compact set in S and each point of Fj, is a G;-point. It follows
that F,, is homeomorphic to a compact interval of countable ordinals by Corol-
lary 7.1.17 and Proposition 8.6.10 of [11]. Thus, we have the following decompo-
sition of S:

has finite dimension and the

obtainable in a finite number of steps since

ky
Sy = _Uljj CRIZS AP 9
i=

where
D LnI=@fori#j;

(i) Cl(Z}) = I;u {p,} is homeomorphic to I'(w;) for j=1,2,..,k;

(iify F, is a clopen set which is homeomorphic to I'(x) for some countable
ordinal o. '

Since I'(w,) is homeomorphic to I'(w, +a) (cf. [1], Theorem 2), it is an easy
matter to deduce that S is homeomorphic to the quotient space obtained from
I'(w; -ky) by pinching the set {o;, ®;2, ..., ®;k;} to one point.

By applying the argument above to each of the sets S,, Ss, ..., Sy, (m—1)
natural numbers /5,5, ..., [, are obtained such that S; is homeomorphic to the
quotient space obtained from I'(w,-/) by pinching the set {w,, w,°2, ..., @, L}

i

to a point for i = 2, 3, ey . Next, set k; = k,+ Z [;for i =2,3,...,m. Then
; &

S; is homeomorphic to the quotient space obtained from the compact interval
of ordinals I'(wy -k)\I'(w; k;-4) by pinching the set {w, -(k;—; +1), @y (k;—; +2),
e @y (ki—y+1)} to one point, for i = 2,3, ..., m. Since S is partitioned by the
m clopen sets Sy, S, ..., Sy, it follows that § is homeomorphic to the quotient
I'(wy k)
[y s k)
sufficiency part of the proof of the present theorem, it is clear that C(T) is iso-
morphic to C(I'(w;k,)). Consequently, C(I'(w,n)) is isomorphic C(I'(®, k)
and it follows that k,, = n by Theorem 2 of [10].

Remarks. 1. The condition in Theorem 3 stating that every point of S is
either a G;-point or a P-point can be replaced by the (stronger) condition requiring
that every point of S have a base of neighborhoods linearly ordered with respect
to inclusion. Indeed, these two conditions are equivalent for compact Hausdorff
spaces having the same weight ([11], page 105) as I'(w,).

space T = . It only remains to show that k,, = n. By arguing as in the
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2. Theorem 3 is false for compact Hausdorff spaces in which there are points
which are neither G-points nor P-points. In fact, for each natural number # there
are uncountably many mutually non-homeomorphic compact Hausdorff spaces
S such that C(S) is isomorphic to I'(w;-n) and S is not homeomorphic to any
quotient space of the type given in Theorem 3. In order to see this, for each count-
able ordinal  let S; denote the quotient space obtained from I'(w, -7) by pinching
the set {oy, @2, ..., 1 -1,0" '} toa point. Then C(S7) is isomorphic to C(I'(w, -n))
since each of these spaces is isomorphic to the linear subspace of functions in
C(I' (1)) which vanish on the set {w;, w;°2, ..., w;-n, @1} (cf. [2] and the
proofs of Theorem 1 and Theorem 3). It is a routine matter to verify that S} is not
homeomorphic to S whenever a<f<w; by a comparison of the derived sets
([11], p. 147) of these spaces.
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