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Proof. By Theorem 8 it suffices to prove that Ij(4) is a band. To this end,
suppose that {x;ji} =I3(1) and x = \/ x; exists in 4; we must prove that x e Iy(1).

It follows easily by convexity that x~ e I}(1). On the other hand, [a|x* = \/ |a|x;"
i

holds for every a e A by p-distributivity. But |a|x;" <1, Vi, Va € 4, and, therefore,
x* e Ig(l).

Let us recall that an ordered ring with unity 1 is of bounded inversion if every
element greater than 1 is a unit. If 4 is a commutative f-ring with unity and S is
the set of non-zero-divisors, (S5 4, +, +, <) will denote the total ring of fractions,
ordered by the cone (S5'4)* = {a/s| as=0}. Then we have

COROLLARY 8. Given a commutative f-ring A with unity, each of the folloWing
conditions is sufficient for J(A) to be a band.

(a) The mapping A Sy '4, x v x/1 preserves all suprema of subsets of A.

(b) 4 is of bounded inversion.

(c) Every non-unit is a zerodivisor.

Proof. Each of these conditions implies p-distributivity [6].
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Intersections of separators and essential submanifolds of I
by

Darryl McCullough * and Leonard R. Rubin (Norman, Okla.)

Abstract. A compactum X in IN = I™ x I" is essential in the first m directions if and only if
the projection of X to I™ is a stable map. Similarly define ¥ to be essential in the last » directions.
We discuss conditions under which X and ¥ must have nonempty intersection. If me {1, 2} then
X Y # @, while for m, n> 2 examples of disjoint essential compacta are constructed. We give
applications, including an apparently new characterization of dimension in terms of mappings
into R", and a generalization of the Cantor manifold concept.

1. Introduction. The boundary S¥~! of IY can be written as the non-singular
join of two distinct canonical lower dimensional spheres Sm=1 and S""* for each
choice of m, n with m+n = N. These spheres bound convex balls D™ and D" whose
intersection is nonempty. The balls are examples of compacta which are essentially
embedded in the sense that DF does not retract' to S*™!, kem, n. Suppose we
replace D™ and D" by different essentially embedded compacta X and Y; then is
it possible that X n ¥ = @7 Indeed this is possible as we shall show in Section 4,
while in Section 3 we shall show it is impossible whenever m & {1, 2}. A final result
in Section 3 is an apparently new characterization of dimension in terms of map-
pings into R". In Section 5, we will generalize the Cantor manifold concept.

It is not known whether all infinite dimensional compacta have infinite co-
homological dimension. A solution to this longstanding problem would be equi-
valent to a solution of the CE-map dimension raising problem and related problems
[E1]. In 3.1 of [W] it was shown that any compactum which can be written as the
intersection of separators of co-infinitely many faces of the Hilbert cube has infinite
cobomological dimension. In Section 4 we shall show that, at least in finite di-
mensional cubes, there are essentially embedded manifolds which cannot be written
as intersections of separators in the non-essential djrections. This situation is related
to the one described above, concerning non-intersecting essentially embedded
compacta. It may shed light on the question of which compacta in the Hilbert
cube can be written as the intersection of co-infinitely many separators of faces
of the Hilbert cube. We note that quite recently Roman Pol [P] proved the existence
of a compact metric space X which is neither countable dimensional nor strongly

* Partially supported by a University of Oklahoma College of Arts and Sciences Summer
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infinite dimensional. The latter implies X cannot be shown to have infinite cohomo-
logical dimension by methods of [W]; nevertheless since X contains closed sub-
spaces of arbitrarily high finite dimension, its cohomological dimension is infinite
anyway.

2, Preliminaries.

2.1. Noration. Let IV = [] {1,] 1<k<N}, where [, = [—1, 1]. In the N-cube
T, let 4, be the set of points whose kth coordinate is —1, and let B, be the set
of points whose kth coordinate is 1, 1<k<N. S¥ "'V will denote the (N—1)-
sphere boundary of I, and S¥~*x[0, 1] will be a fixed collar of S¥~! in IV,
S¥=1x {0} being identified with S¥~1. For 0<es], let /Y = IN—(S¥"1x [0, &),
with 4} = A, x{e}, Bf = B, x{¢} taken to be the faces of the cube I}.

2.2. DEFINITION. Let ¥ be a-finite or countably infinite set and

F = {(, B keX}

be a collection -of disjoint pairs of closed subsets of a space X. By a separator of
(1, B,) we mean a closed subset of X which separates o7, and 4, in X. We say
F is an essential family in X if for each choice {S;| k € X}, where S, is a separa‘tor
of (y, B), N {Sil ke X} # B. Let Yo X, I'<Z, and suppose {(¥ n o), Y N 4&,)|
keI} is an essential family in Y. Then we say Y is essential in.the directions T.
Note that if X = I", then {(4,, B)| 1<k<N} is an essential family for X by 2.4
of [R-S-W]. . i
2.3, DermuTION. If Y<IM is essentialin the directions {1, ..., k}, i.e., the
first k& directions, then we say Y is properly embedded if Y (SY™1x[0, e])
= §¥"1x[0, ] for some £>0. If ¥ is essential in %k directions different from ‘the
first k, then we also say Y is properly embedded if the above is true under canorical
exchange of coordinates.
2.4. LemMA (see 5.2 of [R-S-W]). If X<I¥ is a compactum which is essential
in the direction k, then X contains a continuum from Ay to B,.
2.5. LemMa (see 4.3 of [W]). Let X be a compactum, let {(A}, By): 1<k<n}
be a family of disjoint pairs of closed subsets of X, and let fi: X — I, with Ay = f;” (1),
Bl = fi”N(—=1). The family {(4k, BW) 1<k<n} is essential if and only if the mapping
[i X = I" defined by = (fi,...,[,) is stable. ‘
.2.6. LeMMA. Suppose X<IV is a compactum and X n S¥~* = §" L. Then
" X is essential in the first m directions if and only if there does not exist a retraction
of X to S"L.
Proof. This can easily be derived from 2.5.

2.7. LeMMA. Suppose X is a polyhedron embedded in IV so that X  0IN = §"~1,
Then the n-skeleton X is essential in the first n directions if and only if the homo-
morphism

iy: H(X,S"™ )~ H,I", 8"

induced by inclusion is not the zero map.
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“ Proof. Suppose X™ is not essential; then by Lemma 2.6 there is a retraction
ri X" — S"~1, Therefore in the commutative diagram

Hn -1 ( X(r»))

T

e .
= H(X) = H(X, 8"") ~ H,_y($"™") > H,_4(X) —

Ty =
0= Hn(IN) had ]{n(IN’ Sn_l) % }In—'l(snnl) - Hn—l(IN) =0

the map @ is the zero map. Therefore i, is also the zero map.

Conversely, suppose i, is the zero map; then so is 8. We ‘will use obstruction
theory to construct a retraction r: X — $"7%, Since S""! is (n—2)-connected,
we can construct a retraction r: X®1 o §""1 Let ¢, & H'(X, $*74; m,.,(S""1)
& H'(X,8""*; Z) be the obstruction to extending r to X™; then it suffices to
show ¢, = 0. But by Proposition 13.1 of Chapter VI of [Hu],

¢, € image(d: H" Y(S" Y, Z)—» H'(X, S""'; Z)).
Since § = 0, this image is zero.

2.8. LEMMA. Suppose m-+n = N, X, Y<I" are compacta, X is essential in the
first m directions, Y is essential in the last n directions, and X n Y = @. Then there
exist properly embedded polyhedra Xy, Y, such that dimX; = dimX, X, is es-
sential in the first m directions, dim Yy = dim Y, ¥, is essential in the last n directions,
and X, 0 Yy = @.

Proof. Choose a small ¢>0 and let g: I — IV be a “radial” homeomorphism.
Assume ¢ moves no point more than some preassigned distance 6>0. Let % be
an open cover of X of fine mesh and of order dim X'+ 1, and let N(%) denote the
polyhedron . of the nerve of %. There is a canonical map f: X > N(%) and then
a PL map g: N(%) — IV so that gf(X) n IV is essential in the first m directions
of IN. Then X, = o(gf(X) n I7') is a polyhedron essential in the first m directions
of IV, and dim X, <dim:X. The maps ¢, g, f, are to be chosen so that X; N ¥ = @.

m

Move Y off the faces | (4, B); then change Xj to be properly embedded.
i=1

When we use the term n-manifold, we assume the possibility of boundary.
Also, by an N-manifold lying in 7 ¥ we mean a triangulated subcomplex of a triangu-
lation of I in which it is assumed that all faces of IV are subcomplexes. Let X’ ) de-
note the n-skeleton of X, In our proofs, we shall implicitly assume that triangu-
lations are fine enough to meet necessary criteria, leaving it to the reader to fill in
routine details.

All homology and cohomology will use integer coefficients.

3. Essential compacta that must intersect. Assume N>2 unless otherwise
specified. The proofs of the next two theorems will use some lemmas that are stated
and proved later in this section.
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3.1. THEOREM. Suppose X,Y<I" are compacta, X is essential in the first N—1
directions, and Y is essential in the last direction. Then X N Y # @

Proof. Assume X n ¥ = . Use 2.4 to replace Y by an arc § so that X' n f§
= @. Let o be a polyhedral neighborhood of X in I¥ so that a N f = @&. By 34,
&1 i3 essential in the first N—1 directions, By 3.6, a®™ ™ n § # @, so we must
conclude that X n Y # @.

3.2. THEOREM. Suppose X, Y<IN are compacta, X is essential in the last two
directions, and Y is essential in the first n = N—2 directions. Then X N Y # @.

Proof. Assume X n ¥ = @, and using 2.8, assume X and Y are properly
embedded polyhedra. We shall show that X n ¥™ 3 @, contradicting the as-
sumption that ¥ n ¥ = @.

By 3.3, X® is essential in the last two directions, so if we can show that ¢
is essential in the first  directions, then 3.6 will yield, X® n Y™ # @. If N = 4,
then n = 2, and we are finished; so, assume N5 and that Y™ is not essential
in the first n directions.

Let f: Y™ — I" be the restriction of the projection map I¥ - I". Then fis
as in 2.5, so f is not stable. Hence there exists a map g: Y™ - §"=1 such that
g = fonf ~1(S""Y). Extend g to G: I —» I" so that on S¥~*, G is just the coordinate
projection. We may assume G is PL, G is transverse at 0eI”, and O¢ G(Y™.
The component S of G™*(0) containing S* is an orientable 2-manifold with boundary
St and §n Y™ = @.

Put S in general position with Y™~V If ¢ is an (N—1)-simplex of
then S n ocinto consists of a pairwise disjoint finite collection of unknotted,
unlinked simple closed curves. By removing small open annular neighborhoods of
these curves in' S, and then sewing on disks which do not intersect Y (V=1) (apply
this process to each o), we create an orientable 2-manifold S, which does not
intersect YW1, Let S* be the component of S, that contains S*. Any properly
embedded surface homeomorphic 'to S¥ is ambient isotopic to S§ rel(S¥™*) by
Unknotting Theorem 24, Chapter 8 of [Z] (or see page 177 of [R], but note that
the last reference to M there should be #Q). Then S§ can be written as the inter-
section of separators in the first n directions by 3.5, yet by 3.4, ¥Y™~1) is essential
in the first n directions. !

3.3. LeMMA. Suppose X<IV is a polyhedron essential in the first two directions.
Then X® is essential in the first two directions.

Proof. Assume X is not essential in the first two directions, and let f: X - I*
be the restriction of the coordinate projection. Using 2.5, there is a map g: X' = §*
so that g = f on £ 1S X@. Let G be defined as the map of X** U f~(S")
to S* that equals g on X and f on £ ~1(S?). Since m(S!) = 0 for all k32, there
is no obstruction to extending G to. the entire polyhedron X. But because X is es-
sential in the first two directions, this contradicts 2.5.

0]

Y(N—l)’

3.4. LeMMA, Suppose X< I" is a polyhedron essential in the fitst n< N directions.
Then XW~1 s essential in the first n directions.

icm
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Proof. We do this by induction on the number of N-simplexes of X, the
result being certainly true if there are none. We may assume XnAdy=@
= X N By; thus there is an N-simplex ¢ of X having an (N —1)-face 7 lying in the
topological boundary of X. Let X, = X—(inte U int7). Then X, is also essential
in the first n directions. For suppose Sy, ..., S, are separators of (4, B,),...
voes (A, B), and N {S)] 1<i<n} n X, = @. Tsotop N {S)] I<i<n}no of X
through the face 7= (with support in a small neighborhood of ¢), thus removing
any intersections with o, but creating no new intersections with X. This contradicts -
essentiality of X. By induction, X< X¥1 is essential in the first n directions.

3.5. Lemma. Let N=4 and kz0. Then there exist embedded (N—1)-cells
Ty, Tas oo, Tyn in IV such that
(1) T; is a separator of (4;, B) for 1<i<N-2,
N-2

(2) N Ty is a properly embedded 2-disc with k 1-handles attached.
i=1

Proof. Let S; = {(x;, %3, ..., ¥y)| X; = 0} be the standard separators. Then
N-3
NS, ={0,0,..,0,Xy_z, Xy—1, %)} = D> is a 3-cell. We will embed I""*
i=1

in IM so that its image intersects D? in the desired surface.
Let f: I~ be a map such that
(a) f equals projection to the first coordinate outside [—e, g]* =I® for some

~ small e,

(b) £ ~10) is a 2-disc with & 1-handles attached.
The embedding g: IV~ - I¥ is defined by

gy, Xap ey Xy—y) = (xl, X1 vvos Xyt SN =30 Xn—2s Xn—1)> T(Xn-3)s Xn-25 xN—l) .

Then

g™ ) n D* = {©,0,...,0, Py-2s V-1, )| —%<Syy-2<% and
J@yy-2> Yn-1500) = 0}

is a properly embedded 2-disc with k 1-handles attached. It is easy to see that
Ty-o = g(I¥"1) is a separator of dy_, and By_,; in fact, it is properly isotopic
in IN—(dyy U By.;) to Sy_,. Letting T, = S, for 1<i<N-3, the lemma is
proved. '

3.6. LEMMA. Let m and n be positive integers with m+n = N. Suppose X and Y
are compacta in IV such that X is essential in the first m directions, Y is essential
in the last n directions, diimX = m, dim¥ = n. Then Xn Y # @.

Proof. By 2.8 we may assume X and Y are properly embedded polyhedra.
InorN = a(I"™x I"y = S""ixI"y Imx S, letJ,, = S™1xI"andJ, = I"x S""L,
Let y,, = [I" % 0] generate H,(IV,J,) = Z and let y, = [0x] " generate H,(I™,J,)
= Z. Consider the bilinear intersection pairing I(_, <) Hy(I", J,)x H{I", J) ~
Hy(IYy = Z (Lefschetz-dual to the cup product pairing H w8 Ty x "IN, )~
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HY(IY, 8I")). Since I™x0 and 0xI" intersect transversely in.one point, 1(y,,, y,)
= +1. Applying Lemma 2.7 to X and Y, we obtain relative cycles x € H,(X, Sm1y
.and ye H, (Y, S""!) so that i (x).= ay, and i(y) = By, with o, f # 0. Because
I(ix(x), ix(3)) = I(ey,s Br,) = +af %0, x and 'y must intersect. Therefore
XnY+#6.

The following question was related to us by F..D. Ancel. Does. there exist
n>1 and a.compactum X of dimension n so that every map of X into R®" has
arbitrarily close embeddings? The answer is no, as shown by the next theorem.

For a compactum X, we use C(X; R") to denote the space of continuous maps
of X to R™ with the compact-open topology and E(X; R")c C(X; R") to denote
the subspace of embeddings.

3.7. THEOREM. Let X be a compactum;, then dimX<n if and anly 7fE(X R
is dense in C(X; R*").

Proof. If dimX<n, then Theorem V2 of [H-W] shows E(X; R*") is dense
in C(X; R*"). Conversely, suppose E(X; R®" is dense in C(X; R*"). We want to
show that dim X' <n, so suppose dim X = n (If dim X>n, then replace X by a closed
subspace of dimension r). Let f: X — I" be a stable map. Choose a map g: J"— R*"
having the property that g~*(0) consists of two points a, & while g7(x) is either
singleton or empty for x s 0. Assume further that there are two disjoint 5-cubes
0,4, 0p contained in 7" so that a e Intaa, b € Into, and so that g(o,) N I*" = I"x0
while g(o;) N I?" = 0xI". Let ¢ = %; then the following is true. Let A: X — R*"
be continuous and let L = h~1U2 A f Y oy), M = k72 A f " Hoy). If b s
sufficiently close to gf: X'— R®", then k(L) is essential in the first n directions of
12" and k(M) is essential in the last » directions. Choosing i to be an embedding
contradicts 3.6.

4. Disjoint essential compacta. If X and Y are properly embedded compacta
in IV with X essential in the first m directions and 'Y essential in the last n = N—m
directions, we have seen that X and ¥ must intersect if me {1,2, N—2, N—1}.
The following examples show that X and Y can be disjoint when m>3.

4.1. ExampLE. Let X be the complex projective plane, obtained from S? by
attaching a 4-cell D* using the Hopf map h: S® —» §2 If N is sufficiently large,
we can embed X in IV so that X n /Y = S? and int(D*) is smoothly embedded
in int(I™). Let D" be the standard convex n-cube (n = N—3) in I" which is essential
in the last n directions; then D" n X <int D*. By a small ambient isotopy we move D"
into general position with int D*, Their intersection will be a disjoint union of a finite

collection o4, ..., 6} of circles. Choose a small tubular neighborhood M = int D* %
k

x D¥~* 50 that M N D" = U x DV=%, There are disjoint 2-discs E;, Ej, ..., By
<

in int(D* with 0E; = o, j<k. Form the manifold

k k
V= (D" U oxintDV"*) u () E;x0D¥"%),
=1 , =1

icm
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Since a manifold cannot be retracted to its boundary, ¥ is essential in the last # di-
rections by Lemma 2.6, yet X n V' = @. Since X is essential, ¥ cannot equal, or
even contain, an intersection of separators of the first 3 faces.

To produce similar examples essential in the first m directions for any m3>3,
embed the k-fold suspension X*X in I*xI¥ = X*IV g0 that 3*X A (I x M)
= S¥2 = 3%§2, and Z*X n ({0} xI") = X. Since the k-fold suspension of the
Hopf map is essential, Z*X is essential in the first m = k-+3 directions. Taking
the same ¥ as above, V<{0}xI¥N<I**¥ we have V essential in the last N—3
directions and Z*X n V = @.

In the above examples, the m-skeleton of X*X is inessential but the (m+1)-
skeleton is essential. The following generalized construction produces examples,
for m odd and arbitrarily large r, of disjoint essential compacta X and ¥ such that
the (m+r)-skeleton of X is inessential while V is an »#-manifold.

4.2. LeMMA. Suppose given r20 and m2z3. Then for sufficiently large N, there
exists a subcomplex X <IN with the following properties:

1L Xnor =gsm. v

2. The (m-+r)-skeleton of X retracts to S™ 1.

3. X is essential in the first m directions.

Proof. Choose my>=m+r so that =, (S™ ') # O (this is always possible,
see e.g. [Hu], Corollaries 9.3 and 13.3 of Chapter XI) and a nonzero element
¢ €, (S™Y). Form X by attaching an (m; +1)-cell to S™ ! using @. Choose
N so large that X can be embedded in IV with X n aI¥ = S™%, Since X with
any interior point of its (m, +1)-cell removed (deformation) retracts to S™"1, its
(m+r)-skeleton retracts to S™ *, But since ¢ is nonzero, X does not retract to
S™=1: hence X is essential by Lemma 2.6.

4.3. THEOREM. Let m be odd, m>3. Given X<I¥ satisfying the conclusion of
Lemma 4.2, there exists an n-dimensional manifold V<I¥ (n = N—m) such that
V is essential in the {m+1, m+2, ..., m+n} directions but V n X is empty.

Proof. Let K, be a K(Z,m) CW complex obtained from S™ by attaching
cells of dimension m-+2 and higher.

LemMA. Let m be odd, m=3. Given >0, there is a positive integer k and a cellular
map F: K, — K, such that F|S™ S™ - S™cK,, is a map of degree k and
FRmT Dy e gm,

Note. Using the homotopy extension property, we may assume F|S™ is any
specified map of degree k.

Proof of the lemma, Let k, = 1 and let &; be the order of 7,4 ,(S™) for
i>0. Since m is odd, each k, is finite. Let f;: S™ — S™ be the identity map.

Induction hypothesis (i): There are maps fy, f;; ..., f; from ™ to S™ such that

(1) degree (f)) = k; for 0<j<i,

@ fiofi-yo. °fz °f, ofy: S™-».S™ extends to a map from K& to S™

For i =0, K" = g™ 50 the hypothesis holds. Assume it holds for i
Choose fj,;: S™ - S™ of degree k;,. Let: F;: Ko*™ 5 S™ be the extension

5 — Fundamenta Mathematicae CXVI/2
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of f o fi—1 @ ... o fo. For each (m+i+2)-cell D of K, with attaching map ¢: 8D —

o KD he composite fj4q o Fyo¢ is null homotopic, since (F;e o)

€ i 141 (S™) has order dividing k;4y - Therefore f;,; o F; extends to D. Proceeding

cell by cell we extend f;, o F; over all of K™**®. This completes the induction.
1

P
Let k= []k; and let F=f_yofg-z2°.oft o fy. We have seen that F ex-
i=1

tends to a map from K& to S™cK,,. Since the homotopy groups of K;, vanish
above dimension m, we can then extend F to a cellular map F: K, — K,,. This
completes the proof of the lemma.

Let y be a generator of H,(I",J,) & Z. Since the (m+r)-skeleton of X re-
tracts to S™1, H,(X, S™"1) — H,(I",J,) is the zero map by Lemma 2.7. There-

fore in the exact homology sequence
i‘
Hy (X, S" ™Y = H(IY, J,) » H (I X 0 Jy)

the second map is injective. Let y, be the image of y in HIY, X uJ,); then y, has
infinite order. Therefore there is a homomorphism in Homz(H, (I, X U J,), Z)
which is nonzero on 7;. In the commutative diagram

H™(¥, X U J,) - Hom(H,(I", X U J,), Z)~ 0
i* Hom (i)
H™(IY, )~ Hom(H,(I", J,), Z) = 0
we pull this homomorphism back to a cohomology class {1} e H m(N, X U J,).
Then if ¢ is the restriction of ¢, to an element of H™(I", J,)), ¢ has a nonzero value on y.
Let @ € H™(K,,*) be an m-characteristic element (p. 425 [Sp]); that is,
choose. ¢: H,(K,,, *) = Z to be an isomorphism. Then choose ¢ to be the preimage
of ¢ under the isomorphism H™(K,,, *) - Hom(H,, (K, *), Z) of the universal
coefficient theorem. Hence,
b ()
T Ko ¥) = H(Kyy, ¥) = Z

is an isomorphism (where 4 is the Hurewicz isomorphism). By Theorem 8.1.10 of
[Spl, the map

P: (X, A); (K, 9] — H'(X, 4)

defined by ¥({g)) = g*(¢) is a natural bijection when (X, 4) is a relative CW
complex. Therefore we have a commutative diagram

i*
H™(IY, X U J,)~— H"(I"N, T,)

vt v

oy
[T, X U T,); (Ko 0] = [V, 15 (B %]

icm
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If {g)> e [V, J,); (K,,, ¥)] corresponds to {c} = i*{c,}, then (g} is in the image
of i*. Therefore we may assume g(X U J,) = *. Changing g by a homotopy (all
homotopies of g will be fixed on X U J,,) we may assume g is cellular; in particular,
g((MH™=1) = ;" For any m-simplex 4™ of (I", X L J,,), define Fym by g|4™: 4™ —

g N
Am(o4™ = S™ — S"c<K,. The condition g*(p) = {c} implies that, after perhaps
changing ¢ by a coboundary, we have

degree (Fym) = ¢(4™).

Assume that IV is oriented and g maps an open neighborhood U of (IM)™ to S™.
Then for any p e S™ with g transverse to p on U, g~ Y(p) n U consists of n-di-
mensional oriented manifold components (n = N—m) that intersect the m-skeleton
transversely, and whose intersection numbers with the m-skeleton give the homo-
morphism ¢: C, (I, J,) — Z.

Using the lemma, we obtain a map F: (K,,, *) — (K,,, *) so that

1. F|S™: S™ — S™ has degree k # 0,

2. FEMecsicK,. 4

We may assume Fog is transverse to a point pe S™ with p # * and that
F™Yp) N S™ = p, Up, U ..U p, are regular values of g|U. Then (Fog)~'(p)
=g Y p)ug i py) U ..ug Hp) will be a properly embedded n-manifold
V such that the intersection number of ¥ with each m-simplex A™is k-c(4™). Since
(Fog)(Xul,)=* VA(Xul,) =0, so [V,oV]eH,U",J), and the inter-
section number of [I¥, 8V] with y is k+c(y) # 0. Therefore [V, dV] # 0 and V is
essential in the last n directions.

4.4. COROLLARY V does not contain an intersection of separators of the
{1,2, ..., m} faces.

5. Dimension drop. We have seen (4.2, 4.3) that there are many examples of
subcomplexes X and ¥ of IV with X essential in the first m directions, Y essential
in the last n = N—m directions, and X n Y = @. We noted that such a ¥ cannot
be written as an intersection of separators §; of (4;, B), 1<i<m. Let W be are-
gular neighborhood of X, so that W is an N-dimensional submanifold of V. Sup-

m
pose that Z = () ;. Then W and Z must intersect, and Z must have dimension

=1
=n. We would expect that Z would intersect W in a set of dimension >n, but the

following example shows that this needs not be true.
5.1. ExampLE. Let X, N, D", o;, M, and E; be as in Example 4.1. Now D" is
3

an intersection () S, where S; = {(¥;, ..., xy)| x; = 0} is a separator of (4,, B;)
=1

for 1<i<3. Consider the disjoint (N—2)-cubes E;x DY ~4= M. There is a quotient
map n: IV — I which collapses each E; x {x} = E;x DV~*to 0x {x}, where 0 is the
center of the 2-disc E,. The image 7(X) is still essential and (M) is still a manifold
neighborhood. Let T; = n(S). It is clear that T; is still a separator of (4;, B,
5+
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k
and n(D") = F\ T, intersects # (M) in the set ,gln(E‘XO)XDN‘ ~4 One of the
dimensions of’ _1;" N M has beén collapséd away and the dimension of the inter-
section is N—4 rather than the expected N—3. This is not an isolated example:
as is shown by the next result.

5.2. THEOREM. Suppose X, Y<I¥ are compacta, X is essential in the first n di-
rections, Y is essential in the remaining N—n directions, and X Y = &. Then
there exists k € {n, N—n} and an N -manifold M I essential in the first k directions

and separators Sy, ..., Si of (A1, Bi)s «wes (Aiy B respectively, such that
dim[M n N {S] 1<i<k}ISN~k~-1.

Proof. By taking polyhedral neighborhoods, we may as well assume X and ¥
are N-manifolds. Using 3.6, we may assume that X“ is not essential. Choose
%=n and M = X. Now choose separators S%, ..., S¥ so that M® S = @,
where S = () {S¥ 1<i<k}. Let K denote the k-skeleton of I¥ and L denote the
dual (N—k—1)-skeleton.

' We consider I™ as a subset of the nonsingular join of K and L; we will denote
the segments of the join of K and L whose union makes up Y by [—1, 1] where
—lek, 1eL. let T=MnS. Then TnK =0, and we may_ assume that
Tn[-1,1]<[0, 1] for each segment [~1, 1] of the join structure.

We now describe a monotone map f of IV onto itself by requiring that for
each segment [—1, 1] of the join, f will carry [0, 1] to {1} =L and [—1, 0] lincarly
and homeomorphically onto [—1, 1]. Note that for any subcomplex W, f(W) = W
and f(IN—W) = I"—W.

Let S; = f(S¥), 1<i<k. If o is a continuum from A4; to B; that misses S,
then f ~*(c) is 2 continuum from 4, to B; missing S§. Hence S, is a separator of
(4;, B). It is routine to check that M n () {S;| 1<i<k}<L. This concludes the
proof, since dimL = N—k—1.

An n-dimensional Cantor manifold (see Definition VI 6 of [H~W]) is a compact
n-dimensional space, n3>1, which cannot be separated by a subset of dimension
<n—2. By Theorem V1 11 of [H~W], an irreducible compact separator of R**"!
is an n-dimensional Cantor manifold. One can show that an irreducible compact
separator of I"*! that separates two boundary points of I"*! is an n-dimensional
Cantor manifold (first pass to §"** by forming the quotient I"*1/$™). On the other
hand, an arbitrary compact minimal separator of a compact (n-1)~manifold need
not even be connected. Qur next result can be construed as a generalization upon
the concept of Cantor manifold.

" 5.3. TueoreM. Let M <IN be an N-manifold which is essential in the first 2 di-
rections. If Sy, S, are separators of (A, By), (A, B,) respectively, then

dm(M A Sy A Sp)=N=2.

icm

Proof. Let § =8y nS, and suppose, on the contrary, that dim(M n S).
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<N-3. Fix 2<k<N and consider the coordinate 7, = [—1,1]. There is a linear
homeomorphism of /, to [—%, 3] sothat =1 - —}and1 — . This homeomorphism
determines an embedding H of IV into I which is fixed on each coordinate but
the kth. It is not difficult to see that H(M) is essential in the first 2 directions. We
want to replace Sy, S, by separators Ty, T, so that dim(H(M) n T, A T,)<N-3.

We will write each 7; as the union of three sets, 7}", T, TX. Let T = H(S)).
Apoint (x;, ..., xy) will be in T/ if —1<x,< ~Fand (1, oy Xy, =41 Ba g5 ooy X))
e H(S); it will be in T7if $<x,<1 and (xy, ..., Xpm1s ~Fs Xy 15 n Xy) € H(S)).
It is left to the reader to show that for each i, T} is a separator of (4;, B)). Noting
that T; n H(M)=H(S)), then dim(H(M) ATy A T,)<N~—3. Hence there is no
loss of generality in assuming that from the very beginning, M A= =Mn B,
Furthermore, if M N 4, = @, then H(M) n 4; = @, so the process can be re-
peated in such a way that M n 4, = @ = M B, for all 2<k< N, and we assume
M has this property to begin with. Since ;N A4; = & = S, B, for i = 1,2,
we have M n Scintl?¥, :

Let P=M be a copy of M obtained by pushing M inward along a collar
neighborhood of dM n intZ¥. There is an ambient isotopy of I* which carries P
to M. By this fact, we may assume that there is a neighborhood U of M such that
dim(U n S)KN-3.

We are now going to alter M in such a way as to produce a 2-complex K
which is essential in the first 2 directions, but which does mot intersect .S, This
contradiction of 3.3 will prove the result.

It is convenient here to make use of the dimension theory of [E2]. Since
dim(U n S)<N-3, then dem(Un S) in U is either N—3 or N—2. Hence we
may assume that S n MY = @

For each 2-simplex o of M such that o N S # @, let N, U be a small neighbor-
hood of into, so that

(a) if 7 is also a 2-simplex, then intN, N int¥, = @ and

> (b) N, can be written in the form o x DY~ where DV~ is a closed (N—2)-ball
and o x {0} identifies with o.

Let p,: 0 x DY - DV=2 be the natural projection. Now o n Scinte, and
dim(int N, n §)<N—3. Therefore we can find a map ¢,: o x D¥~2 — DN=2 which
agrees with p, near bd (s x D¥~2) and such that g; '(0) 1 § = @. We may assume
4, is PL and transverse at 0 so that g, *(0) is an orientable 2-manifold whose only
boundary component is bde. Let K, be the component of g, *(0) containing bdo.
Now remove the part of M that lies in intdN, and replace it by K, n int¥,.
Having done this for each o, we arrive at our new 2-complex K, and K~ S = .
It remains only to prove that X is essential in the first 2 directions.

Suppose K is not essential in the first 2 directions. Let : I" — I* be the co-
ordinate projection, and wusing 2.5, let f: X — S* be an extension of the map
nln~!(S*) N K. Our goal now is to show that for each o € M®, the map f|bdo:
bde — S* is null homotopic. Before accomplishing that, let us see how that would
be used to complete the proof,
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We will construct 2 map g: M® — S* which agrees with 7z on 7~ 1(S?) A M,
By 2.5, this will show M is not essential in the first 2 directions, a contradiction.
If ce M™ and o=S¥4, then cn™i(SY) because M N A, = & = M n B, for
2<k<N. The map g will equal f on such a o. In fact g will also agree with 7 on
MW K. Hence, if the above null homotopy property is true, ¢ will extend to M2
in such a way as to agree with = on 7~ (S) A M@

We only need to consider a 2-simplex ¢ such that ¢ n S # &. The exact
cohomology sequence of the pair (K,, bdX,) = (K,, bde) yields:

HY(K,) — H'(bd K,) —» H*(K,, bdK,) ~ H*K,)

l |
i P
The map Z — Z, being a surjection, must in fact be an isomorphism. Hence the
map H(K,) - H'(bd K,) is the zero map. On the other hand, if £ |bd X, : bd K, — St
has non-trivial degree, then by Hopf’s Extension Theorem [H-W], the map
HY(X,) - H(bdK,) cannot be the zero map. This concludes the proof.

For further references to the notion of Cantor manifold, see [Al] and [A2].
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