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Spaces defined by topological games, IT *

by
Rastislav Telghrsky (Carbondale, TI1.)

Abstract. The paper reports some results on the game G(K, X) introduced in [7]. The main
results: 1, The space favorable for Player [ is the union of countably many K-scattered subsets.
2. Reduction theorems for actions of Player 1. 3. Covering characterization of the spaces favorable
for Player II. 4. Indeterminacy of the game in ZFC.

The main object of this work is the topological game G (K, X), so the present
paper is a continuation of [7]. Some of the results included here were announced
earlier in [8] and [9]. The game G(K, X) was used recently for proving general
sum theorems for the dimension dim by the author and Y. Yajima [10] and for
the dimension Ind by Y. Yajima [12]. Furthermore, a general product theorem
for paracompact spaces involving that game was established by Y. Yajima in [13].

Section | contains the following: if Player J has a winning strategy in G(K, X),
then X is the union of countably many K-scattered subsets. In sections 2 and 3
there are introduced auxiliary games G*(K, X) and G*(K, X) in order to prove
reduction theorems concerning the actions of Player 7. Section 4 introduces a con-
venient equivalent form of the game G(K, X), denoted by G'(K, X). A modification
of that game involving G, sets and thus denoted by G°(K, X) is studied in section 5.
The dual game G*(K, X) to the game G'(K, X) is introduced in section 6; it pro-
vides, as a by-product, a covering characterization of spaces favorable for Player II.
Finally, in section 7, the indeterminacy of G(K, X) in ZFC is established.

For the topological background and undefined notions we refer to R. En-
gelking's monograph [1]. Each space considered here is assumed to be completely
regular. N denotes the set of positive integers. 2% denotes the family of closed sub-
sets of the space X. K denotes a class of spaces such that (i) X contains all singletons,
and (ii) K is invariant with respect to closed subspaces, i.e., X e K implies 2¥< K.
1, F, C and D denote the classes of all singletons, finite'spaces, compact spaces,
and discrete spaces respectively. DK, LK and SK denote the classes of spaces being
free unions of spaces from K, locally K, and K-scattered, respectively. Inspite of
the notation used in [7], I(K, X) (II(K, X)) denotes the following statement:
Player I (Player II, resp.) has a winning strategy in G (K, X). For the modifications

* This paper was completed during the author’s sabbatical year 197980 from the Institute
of Mathematics, Wroclaw Technical University, Wroclaw, Poland.
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of the game G(K, X), the statements on winning strategies are defined similarly,
e.g., II*(K, X) means that Player IT has a winning strategy in GYK, X).

1. K-scattered subsets.

1.1, DErTioN. A family & of pairwise disjoint closed subsets of a space
¥ is said to be scattered if for each nonvoid subset H of |J & there is S'e & such
that S A H is a nonvoid H-open subset of H.

1.2. LemMa. Let Y and Z be closed subsets of a space X, where Z=Y. Then
there is a sequence

(&Y, 2), ST, D), )

of scattered families of sets so that
v-Z = {U&AY,Z): neN}.
Proof. We define a transfinite sequence
(G4, Gys s Ges oot E<yy
of families of subsets of Y—Z and a transfinite sequence
(Eg, Eqy s By ot E<y) -

of closed subsets of ¥ as follows. We set 4, = 0 and E, = Y. Let o be an ordinal
such that ¥, and E, are already defined for each ¢<o. We choose ¥,., to be
a family of pairwise disjoint subsets of E,—Z so that each G e %, is an E,-open
F,-setin E, and | 9, is dense in E,—Z. Furthermore, we set Eypy = E,—~U%s1-
Let A be a limit ordinal such that %, and E, are already defined for each £ <1. Then
we set @, = 0 and E, = () {E;: £<A}. It is easy to show that each E, is closed
in X and each G & %, is a F,-set in X. Clearly, there is an ordinal, say 8, such that
E, = Z; let y be the least ordinal with that property. Let us put @ = {%: E<y).
For each G € @ we choose a sequence {F;(G), F,(G), ...) of closed subsets of X so
that G = |J {F,(G): ne N}. Finally, we set ¥,(¥,Z) = {F,(G): G e ¥} for each
ne N. Now, we have

U{U &Y, Z): neN} = Y-Z.

Let ne N and let H be a nonvoid subset of J&,(Y,Z). Then there is the least
ordinal &<y such that H n F,(G) # 0 for some G& ¥, Since G N Eyyy = 0 and
F(G)=G, the set F (@) is relatively open in E, n U £,(Y, Z). Hence F(G)nH
is H-open nonvoid subset of H. The proof is complete.

1.3. THEOREM. If Player I has a winning strategy in G(K, X), then X is the union
of a countable family of its K-scatiered subsets. .

Proof. Let s be a winning strategy of Player I in G(K, X). Without loss of
generality we may assume that s(Eq, Ey, ..., Ey) # 0 whenever (Eg, Ey, ..., Eqy
is a partial play of G(K, X) with Ej; # 0. For each finite sequence ¢ of natural
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numbers we define a family I (p) of subsets of X, and subsets X(g) and Y(g)

of Xa:s follows. We set 7 (@) = {{X>}, X(©) = X and Y(®) = s(X). Fork, e N
we sef

7 (k) = {<Bo, Ey, E;): Ey = X, By = s(Ey) and E, € #,,(E,, E)},
X(ky) = U {Es: <o, By, By e T (k))}, and
Yk = U {s(Bo, Ey, Eg): <Ey, By By e T (ky)},
where &, is defined in Lemma 1.1. Proceeding by induction, we set
T (Foy s aes s Kyey)
= {<E0= Eh waey E2u: EZn-l'lﬁ EZn-I-z>: <E05 El: seea E2n> Eg—(klz .
Eanvy = 5(Eq, By, oy Byy) and Epyp€ L1t Ezns Eagr 1)}
X(kls R kn: kn-l‘l)
= U {Lu+2? <Eo, Ey, ., By, Eoni1s Eznssd €T (kys vos ks Kyt r)

(3] kn) 3

and
Y(kl EILEE] kn: kn+1)
= U {s(EO’ El» ey EZna E2n+1> E2n+2):

<EO! El» ey EZm E2n+1: E2n+2> € .7.(]61, ey kns kn+1)} .
Let us notice that

XUeyy o) = Yy, s k) U U {X(Kyy s Ko, K): k€ N}

Now, we claim that the sets ¥(¢) constitute a cover of X. For, suppose there is
a point x4 in X which is not covered. Then x, ¢ Y(J) = s(X), and therefore there
is a kyeN and <E,, Ey, E;» € T (k) so that x,e E,. Since E,< X(k;) and xq
¢ Y(k,), there is a k, € N and sets E; and E, with (E,, E;, E,, E3, E;) € T (ky, k2),
so that x, & E,. Since E,cX(ky, ky) and x, ¢ Y(ky, k), we can find k; € N and
{Eo, Ey, ., Es, Egy € T (ky, Ky, k3) with x5 Es, and so on. Continuing in
that manner we get a play <Ey, £, ...> of G(K, X) so that E; = s(Ep) and Ej,44
= §(Eqy, iy, .., Ey,) for each neN. Since s is a winning strategy, we have
(\ {E5: ne N} = 0. On the other band, we have x, € ) {E,,: ne N}, that yields
a contradiction. Thus our claim is true. Finally, we shall show that Y(p) is
K-scattered for each ¢. Clearly, Y(@)e K. Let ky € N and let H be 2 nonvoid
relatively closed subset of Y(k,). Since Y (k)< X(k,) and X (k) is the union of
the scattered family (Ko, Ey), where E, = X and E; = s(E,), there is E,
€ &1, (Ey, E,) so that E, n H is nonvoid and relatively closed and open in H. Since
Y(k) N Ey = s(Eo, Ey, E;) # 0, it follows that

HAs(Ey, By, E)#0, Hns(Ey, Eq, E)ek,
and H n s(Ey, E,, E,) is relatively closed and open in H. Thus Y(k,) is K- scattered.

4 — Fundamenta Mathematicae CXVI/3
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Proceeding by induction, assume that for some ne N, the sets Y(ky, ..., k,,) are
K-scattered .whenever {ky, ..., k,»> € N™ and m<n. Let by, oos Ky Kyi1d € NnFL
and let H be a nonvoid subset of Y(ky, ..., k,41) 80 that H is relatively closed in
Y(ky, ...r Kpa ). Since '

) kn+l)CX(k1= sty kn+1)cX(k1: seen kn)c A CX(kln kZ)CX(kI) >

there is E, € % (Ep, Eq) so that E; n H # 0 and B, 0 H is relatively closed and
open in X(k,); there.is E, € %y,(E,, Es), where Ej = s(Eqy, Ey, Ej), so that
E,nH+#0, E,cE,, and E, is relatively closed and open in X(k;, k;); ...; there
iS Eyy € Py (Eon—2s Egpy)s Where Ey,_q = 5(Eg, Ey; vy Eppg), 80 that By n H
%0, E;CEyy g, and E,, is relatively closed and open in X(ky, ..., k,); and,
finally, there is Eapiz € P, (Ean» Eaps1)s Wheie By = s(Eg, Eq, vy Eny), 50
that Eyyya N H #0, EyyipcEyy, and Ep,y, is relatively closed and open in
Xy s kpay)- Since Epppy 0 Yoy o, kyyy) = Eapiys, Where Eopygy = 5(Eg, ..,
vy Eonio), and H. Eyyyy # 0, it follows that H 0 Eypps # 0, H O Egpizek,
and H N E,,, 5 is relatively closed and open in Y(ky, ..., k,+1). Therefore all Y(p)
are K-scattered, and so the proof is complete.

1.4. Remark. In terms introduced by H. H. Wicke and J. M. Worrell, Jr
in [11], the above theorem reads: If Player I has a winning strategy in G(K, X),
then X is - K- collectionwise scattered.

Yy, ..

1.5. Remark. Assuming that each open subset of X is the union of a o-locally
finite family of closed sets (in particular, that X is totally normal or hereditarily
paracompact), the proof of Theorem 1.3 can be modified to get the following con-
clusion: X is the union of a countable family of its K-scattered closed subsets (cf.
[71, Theorem 11.1). That would be the desired result, however, it is not clear how
to release the additional assumption.

. From Theorem 1.3 above and Corollary 10.2 of [7] we get a partial solution
to Problem 1 in [6].

1.6. COROLLARY. If X has a closure-preserving cover consi}tiﬂg of compact sets,
then X is the union of a countable family of its C-scattered subsets.

Similarly, by 1.3 above and 10.5 of [7] we get

1.7. CorOLLARY. If X has a closure-preserving cover by finite sets, then it is the
uniott of countably many scattered subsets.

1.8. Remark. Theorem 6 of [6] provides a stronger conclusion than Corol-
lary'1.7: the scattered subsets are moreover closed in X. Hence it follows that Theo-

rem 1.3 needs to be essentially improved to get a characterization of spaces favor-
able for Player I (the problem in [7], p. 222).

2. The game G*(K, X) and paracompactness. Let G*(K, X) denote the follow-
ing modification of the game G(K, X): Player I chooses a locally finite closed
cover {X(z): t €T} of X and thén Player IT chooses 4 ¢, in T. After that Player I
chooses a closed subset Y(¢,) of X(¢,) with Y (¢,) € K, and Player II chooses a closed
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subset Z(¢y) of X(t) with Z(¢,) n Y(¢,) = 0. Again Player I chooses a locally
finite closed cover {X(¢y, t): teT} of Z(t;) and Player II chooses a ¢, in T, After
that Player I chooses a closed subset Y (¢, t,) of X(ty, ;) with Y(1y, t,) € K, and
Player II chooses a closed subset Z (¢, ;) of X (¢, t,) with Z(ty, 1) N Y (¢, 15) = 0,
and so on. Player I wins the play if
N{x,, ..

otherwise Player I wins.

2.1. LemMa. Let X be a paracompact space and let Y and Z be closed subsets
of X, where 0 # Y<Z and YeSK (ie., Y is K-scattered). Then there is a locally
finite closed cover {X(t): teT } of Z so that for each teT there is an ordinal o(t)
Jor which 0 # (¥ n X (t))"""))eK (recall that A in that context denotes the
K-derivative of A of order o (cf. [7], p. 205)).

If X, ¥, Z and {X(¢): te T} satisfy the requirements of the lemma, we shall

1) neNJ =0;

. say that {X(¢): teT} is a good cover of {Z, Y.

Proof. Let o be the least ordinal for which Y® = 0. Proceeding by trans-
finite induction we may assume that the lemma is true for any K-scattered closed
set ¥, with Y = 0 for some o, <a.

Case 1: o = f-+1. Then O # Y™ e LK and thus there is a locally finite family
{U(t): teT} of Z-open seis in Z so that YW Y {U@): teT} andgf\Y("‘ N
AUW®)<YP AU ek for cach teT. Hence we have 0 # (Y Um)PeK,
because YD A U@ (Y A U@)® and (Y0 U@))Pe YO A U@E). Let ¥,
- Y- U{U@): teT} and Y, =U{U(): teT} Then Y=Y, u Y, and
Y¥ = 0. Now, {Z, ¥;> has a good cover {X(¢): teT,} by the inductive as-
sumption, while {ZfT{) teT} is a good cover of <Z, Y,), where Ty nT = 0.
Clearly, o

{(X(2): teTy} v {U@): teT}
is a good cover of {(Z, Y.

Case 2: o is a limit ordinal. Then {Z— Y™®: B<o} is a Z-open cover of Z.
Let {¥(t): teT} be a locally finite closed refinement of {Z— Y".”: B<a}. Then
(Y A Y()P = 0 for some ff<q, whenever teT. By the inductive assumption,
{Z, Y ~ Y(t)) has a good cover, say {X(t,2,): I, € T,} (without loss of generality
we may assume that Y A Y(£) 5 0 for each ¢ T). Finally, {X(t, ;) 0 Y(1): teT
and #, €T} is a good cover of <Z, ¥). The proof is complete. -

2.2. Prorosimion. If X is paracompact and Player I has a winning strategy in
G(SK, X), then Player I has a winning strategy in G*(K, X). ‘

Proof. Let s be a winning strategy of Player I in G(SK, X). We describe
a winning strategy of Player I in G* (K, X) as follows. Let, as usual, Ey = X and
E;, = s(E). Let Player I choose a good cover {X(z): teT} of {Ey, Ei> angml)c)t
Player II chooses a t, in T. After that Player / chooses Y(t,) = (By 0 X (),
where a(?,) is choosen for the same purpose as in the lemma, and Player IT chooses

4%


GUEST


194 R. Telgérsky

a closed subset Z(1,) of X(t;) with Z(#,) N Y(t;) = 0. Proceeding by induction,
assume that for some 7321 the sets X(#,), Y (11), Z(t;), s X(t1, o0 t), Y(ty,.n ),
Z(tys sty Eos Eqy ey Egi—y bave been chosen, where E, = X, E; = s(E,),
E, = Z(ty,rti)y  Ba=5(Eo, By, By), ~ Ep= Z(tyy eees iy eoes T)s ey Egpy
= Z(ty, s i)y Eag—1 = 5(Eo, Ey, s Eap_g), and 1<iy<i;<...<i<n. There
are two cases to be considered.

Case 1: Z(t, s ty) N Eg—q # 0. Then Player I chooses a good cover
{X(ty, s tys £): 1T} Of {Z(t1, ., 1), Z(ty, iy tn) O Bgp—g), and Player IT
chooses a #,4; in T. After that Player 1 chooses

Y21y eees tys bywr) = (XC1s veos s B ) O Ezk—1)('1(“""""’!"“))
in agreement with the lemma, and Player I7 chooses a closed subset
Z(tgs eees tys tygr) OF  X(tys ey tys tst)
with
Z(tys cves tys tyag) O Y{tys ooy by tyar) = 0

Case 2: Z(t;,...,1,) O Eqy_; = 0. Then Player I chooses a good cover
{X(ty, ntys £): t€T) of {Epy, Eopery, Where Ep = Z(ty,..;t,) and Eg,
= s(E,, E1, ..., Eq), and Player IT chooses a t,,, in T. After that Player J chooses

iyt
Yty sty = (X s lya) O Egjpgy)(Ctretnesd

in agreement with the lemma, and Player IT chooses a closed subset Z(t;, ..., fy+y)
Of X(fyy.es tyyg) With Z(ty, o, fyey) 0 Y{t;, ooy fyyy) = 0. Finally, it remains
to show that the above procedure yields a winning strategy, i.e., () {X(fy, ..., t,):
ne N} =0. Since

N{X(@y,....t): neN} = N{Z{,....t,): neN},
{Eyp:keNyc{Z(ty,...,t,): neN} and (J{Ey: keN}=0,

it suffices to point out that Case 2 occurs for infinitely many n e N. For, suppose
n is the last number for which Case 2 had the place. Then Z(¢,, ..., t,) N Egpy = 0,
Ep=Z(tys o5 ty)y Eapey = 5(Eo, By, .0y Egp), {X(tg, ..., by, t): teT} is good
for <{Ey, Eprrds Y(tys s tasr) = (X 1y oo tygs) O Egpr )™+ in  agreement
with the lemma, where we write «,,, for short, and '

Z{ty, s by DEX @y eens yg1) = YlE1 s eany Byan) -
Hovwever, for each m>n we have Z(ty, ..., £,,) N Eypq % 0, {X(t,,
is a good cover of <Z(fy, s t), Z(tys eves tw) O Engyy D,
F(t1s eoes ) = (Xt ooy ) O By ),

where Oy = GC(tl’ ey tm)& and Z(tj 3 00y tm+1)CX(tl 3 uees tm+1)_ Y(Ils ety tm+1)'
Hence a4 >0,45>a,43> ... The contradiction indicates that Case 2 must occur
after finitely many moves again. The proof is complete.

s By t): tE'T}
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2.3, Lemma, Let {X(ty, o, 8,): {ty, ., t,> € T" and ne N} be a family of sub-
sets of a set X, where {X(ty, ..., 1,): {t(, ..., t,y € T"} is pointfinite for each ne N
and X(tyy vrs ts by 1) S X (g, ooy 1) for each {ty, ..., t,.1> €Tt and ne N. Then

N LU X s 8): iy s ) €T} nENY
= U{N{XW, . t): neN}: {ty, 1y, . DT},

The proof requires just a standard application of Tihonov product theorem

* (the product of finitc spaces is compact) and thus it is omitted.

2.4. PROPOSITION. If Player I has a winning strategy in G¥(K, X), then he
has « winning strategy also in G(K', X), where K' is the class of all spaces having
locally finite closed covers by sets of K.

Proof. We shall describe a winning strategy of Player I in G(K', X) as follows.
Let E, = X. Having {X(t,): t;eT} and {Y(t)): t; € T}, we set

Ey = U {¥(): n,eT}.
Then E, is closed in X and E, € K'. Let E, be a closed subset of X with E; n Ey = 0.
For each ¢, in T we set Z(t;) = X(#;) n E,. Since Z(1,) is a closed subset of X(z;)
and Z(1,) " V(1) E, N Ey = 0, there are {X (41, 1,): 1, € T} and { Y1, t,): t,eT}
such that U {X(t;, 1,): t, €T} = Z(t,), Y(t;, ;)= X(t;, 1;) and Y(ty, ;) e K. We
set Ey = U {Y(t;,15): <t1,1;>€T?}, and so on. Suppose to contrary that
() {E,,: ne N} # 0 and pick x, € () {Ez,: ne N}. Since

Ey= X E, =\ {X(t) 0 By tyeT} = U{Z(t): t,€T},
E =E,nE,=U{Z@)nEy: t;eT}=U{X(t, 1) 0 Byt (g, 1) eT?}
= U{Z{, 1) (> €T,
and so on, we have
xo€ V{U {Z(ty, wr ta): s sty €T eN}.
Hence, by Lemma 2.3, there is {ty, t2, ..y € T" with Xe & (1 {Z(ty, ..., )i 1€ N}
On the other hand,
(V{Z 0y, wor ) neNY = N {X(E 0 B): neN}=0,

because Player [ has used the winning strategy in G*(K, X). The contradiction
indicates that () {Es,: n& N} =0, The proof is complete.

2.5. THrOREM. Let X be a paracompact space and let K be a class of spaces in-
variant with respect to finite closed unions (e, if ¥ =U {¥,;: 1<i<n}, where Y, is
closed in Y and Y, € K for each i<n, then YeK). Then the following conditions
are equivalent:

2.5.1. I*(K, X). /

252, I(LK, X). ‘

2.5.3. I(SK, X).
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Proof. I*(K, X) implies J(LK, X) by Proposition 2.4. In order, I(LK, X)
implies J(SK, X) because LK< SK. Finally, I(SK, X) implies I*(K, X) by Prop-
osition 2.2. The proof is complete.

Since LI = LF = D, we get from Theorem 2.5 the following.

2.6. THEOREM. For a paracompact space X the following conditions are equivalent.

2.6.1. I*(1, X).

2.6.2. I*(F, X).

2.6.3. I(D, X).

2.6.4. I(SF, X).

2.7. LeMMA. If X is paracompact and locally compact, then X = X' U X",
where X' and X' are unions of discrete families of compact sets. .

Proof. Under the assumptions, X has a discrete cover {X(¢): t e T'} consisting
of ¢-compact, locally compact sets. Furthermore, for each ¢ e T, there is an open
cover {U(t,n): ne N} of X(t) so thatﬂU(t, n) is compact and U(t, )< U, n+1)
whenever n e N. Finally, we set

X'(t) = Ut, D u U U, 20+ 1)~ U(t, 2n): ne N},
X(6) = U{U@, 2)-U(t, 20—1): ne N},

=U{X'(): teT} and X" '= U{X"(t): tel}.

Now it is easy to check that X’ and X"’ satisfy the requirements of the lemma. The
proof is complete.

2.8. PROPOSITION. If X is paracompact and Player I has a winning strategy
in G(LC, X), then he has a winning strategy in G(DC, X). (The converse implication
is immediate, because DC<LC.)

Proof. If X is paracompact and s is a winning strategy for Player I in
G(LC, X), then a winning strategy for that player in G(DC, X) can be defined
using Lemma 2.7. Indeed, if E, = X, we set E; = s(E,)’ (by the lemma we have
§(Ep) = s(Ep) v s(Ep)"). If E, is closed in X and E, N E, = @, we set E,
= E, ns(E,)”, and so on. However, the proposition follows also from 4.1 of [7],
because LC A 2XcFDC by Lemma 2.7 (the games G(K, X) and G(K 2%, X)
are equivalent). The proof is complete. : )

From Theorem 2.5 and Proposition 2.8 we get

2.9. TeeorREM. For a paracompact space X the followmg conditions are equi-
valent.

2.9.1. I*(C, X).

2.9.2. I(DC, X).

2.93. I(LC, X).

294 I(SC, X).

2.10. Remark. In terms of [7] the last theorem can be restated as follows:
Let X be a paracompact space. Then X is DC-likeiff X is LC-likeiff Xis SC-like.
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Furthermore, Theorem 2.9 constitutes an improvement of Theorem 11.4 in [”/].
Finally, according to Theorem 2.9, the product theorem of Y. Yajima ([13],
Thm. 2.1) is in fact a refinement of Theorem 14.6 in [7] (cf. also § 4 of [13] for
strongly rectangular product spaces).

3. The game G"(K, X) and Lindel6f property. This game is a modification of
the game G(K, X): Player I chooses a countable closed cover {X (k)7 ke N} of X
and Player IT chooses a k; in N. After that Player I chooses a closed subset Y(k,)
of X(ky) with Y(k,) e K, and Player IT chooses a closed subset Z(k,) of X(k,)
with Z(k() n ¥{k;) = 0. Then Player I chooses a countable closed cover
{X(key, k): ke N} of Z(k,) and Player IT chooses a k, in N. After that Player T
chooses a closed subset Y(k,, ky) of X(ky, k,) with Y(k,, k,) € K, and Player IT
chooses a closed subset Z(ky, ky) of X(ky, ky) with Z(ky, k) 0 Y(ky, ko) = 0,
and so on. Player I wins the play if () {X(ky,..,k,): neN} = 0; otherwise
Player IT wins.

3.0, LevMa. Let A = U (N ie N}, dyy = {Ceqy s ki) €N ey + o+ Ky = 1),
and A, = \J {4,,;: i<n}. Then there is the unique one-to-one function f from A onto N
so that

3.1.1. flA,,; preserves the lexicographic order of A, ,,

3.1.2. maxf(d,,;)<minf(4, ;) for i<j<n, and

3.1.3. maxf(4,)<minf(4,) for m<n.

Since the sets A4, , and 4, are finite, the lemma easy follows.

3.2. THEOREM. Player I has a winning strategy in G* (K, X) iff he has a winning
strategy in G(K, X).

Proof. We shall prove the nontrivial part of the theorem only. Assume that
Player J has a winning strategy in G* (K, X). We define a winning strategy s for
the player in G(K, X). Player I starts in G*(K, X) by choosing {X(k): ke N}
and {Y(k): ke N}. We set E, = X and E; = Y(1). Then Player JJ chooses a closed
subset K, of X with E, n E; = 0. Proceeding by induction, assume that
Eg, Eyyucy By g, where n>1, are already chosen, We define £y, as follows.
If n = f(k), then k>1, and we put Ey,_y = Y(k) N Egyg. Wn =y, s ki 1),
then we put Z(ky, ..., k) = X(ky, ..., k) N Ep,n. Now, the strategy of Player I
in GY(K, X) provides the families

{XUey, oy by k) keN} ’ and  {Y(ky, ... k;, k): keN}.
We set Ky, _q = Y(ky, .., ks 1). Finally, if n = f(ky, ..., ky, ki), where ki >1,

then we set Ey,.q = Y(ky, ., ky, kyjgg) O Egpep. We claim that the strategy s,
defined by sctting $(Eg,.os Eayes) = Eap—q, I winning, For,' suppose that

N{E;: neN} #0,
and pick x,, € () {E,,: neN}. Since Ey=X=U {X(k): ke N}, there is k, in N
such that x,e X(k,). Let us put n, =jf(k;,1). Then Z(k;) = X(ky) 0 Eogpy—a
and thus x, € Z(k,). Since Z(ky) = U {X(ky, k): ke N}, there is k, .in N such
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that x,, € X(ky, ko). Let n, = flky, ko, 1). Then Z(ky, ko) = X(ky, ko) N By,
and thus x,, € Z(k;, k). Since Z(ky, k;) = U {X(ky, ks, k): k € N}, there is ky
in N such that x, € X(ky, k3, k3). Continuing in that manner we get an infinite
sequence ki, ko, ..> e NV such that x,e () {X(ky,....k): neN} and this is
a contradiction. The proof is complete.

3.3. LEMMA. If X is a Lindeldf space and Player I has a winning strategy in
G*(K, X), then he has a winning strategy in G (K, X).

Proof. If X is a Lindelsf space, then each locally finite family in X is count-
able. Thus each winning strategy of Player J in G*(K, X) is a winning strategy for
that player in G*(K, X) as well. The proof is complete.

By 2.5, 3.2 and 3.3 we get

3.4. THEOREM. Let X be a Lindeldf space and let K be a class of spaces invariant
with respect to finite closed unions. Then the following conditions are equivalent,

34.1. I(K, X).

3.42. I*(K, X).

3.43. I*(K, X).

3.44. I(LK, X).

3.4.5. I(SK, X).

By 2.6, 3.4 and by 4.1 of [7] we get

3.5. THEOREM. For a Lindeldf space X the following conditions are equivalent.
3.5.1. I1, X).

3.52. I(F, X).

3.5.3. I'(F, X).

3.54. I*(F, X).

3.5.5. I(D, X).

3.5.6. I(SF, X).

By 2.9 and 3.4 we get

3.6. THEOREM. For a Lindeldf space X the following conditions are equivalent.
3.6.1. I(C, X).

3.6.2. I'(C, X).

3.6.3. I*(C, X).

3.6.4. I(DC, X).

3.6.5. I(LC, X).

3.6.6. I(SC, X).

3.7. Remark. Since each one of the conditions 3.5.1, 3.5.2,.3.5.3, 3.6.1, and

3.6.2 implies the Lindeldf property of X, we may use that to rephrase slightly Theo-
rems 3.5 and 3.6.

3.8. Remark. It is easy to check that II*(K, X) implies‘ II(K, X). We con-
jecture that the converse implication holds as well. Its proof, however, requires
a new proof-technique, which is not intended to be developed here.
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4, The game G'(K, X). The game G'(K, X) is defined as follows. Player I
chooses a closed subset E; of X with E; € K, and after that Player II chooses an
open subset Uy of X with Uy E;. Again Player J chooses a closed subset E, of X
with E, € K and Player IT chooses an open subset U, of X with U,>E,, and so on.
Player I wins the play (E(,Uy, By, Uy, ...) of G'(K, X) if U{U,: neN} =X;
otherwise Player II wins.

If K = {0} u {{x}: » e X}, then the game G'(K, X) coincides with the point-
open game G(X) introduced and studied by F. Galvin [3].

For the proof-technique it is convenient to consider the strategies in G'(K, X)
dependent on the opponent’s moves only, i.c., a strategy s of Player I is defined
for @ and <Uy, ..., U,>, while a strategy ¢ of Player IT is defined for (Ey, ..., E,>.

Let us note that the scheme of playing G/(K, X) can be generalized in various
ways, €.g., to consider X as bitopological space, or to eliminate the topology com-
pletely replacing K and the family of open sets in X by certain families of subsets of X.

It is an casy exercise to point out the following.

4.1, THEOREM. The games G'(K, X) and G(K, X) are equivalent, i.e., Player I
(Player II) has a winning strategy in G'(K, X) iff Player I (Player II, resp.) has
a winning strategy in G(K, X).

5. The game G*(K, X) and G, sets. This game is an easy modification of
G'(K, X): for each n e N, Player II at his nth move chooses a G,-set U, in X with
U,oE,.

5.1. THEOREM. Pluyer I has a winning strategy in G*(K, X) iff he has a winning
strategy in G'(K, X).

Proof. We prove the nontrivial part of the theorem only. Let s be a winning
strategy of Player I in G'(K, X); we shall define a winning strategy # for the player
in GXK, X). We set (@) = s(). To define t(Uy, ..., Uy), where Uy, ..., U, are G,
subsets of X, we need two auxiliary functions: the function which assigns to each
G set U a fixed sequence {U(1), U(2), ...) of open'sets so that U = (\ {U(n):n € N},
and the function f: Nx N — N of Cantor, ie., f(1,1) = 1, f(1,2) = 2, f(2,1) = 3,
SU,3) =4, f(2,2) = 5, (3, 1) = 6, and so on. Note that f(m, n) = k>1 implies
m<k. Now, for k =1, we set t(U;) = s(U;(1)). Let k>1. Then k determines
the unique sequence

<<m(/c, 10, nik, 135, <mk, 2), nle, 2%, .., <mlk, p(k)), n(k, p))>,
where y
Fmle, 1), n(k, 1)) = k1, f(m(e, 2), n(k, 2)) = m(k, 1)=1, ...
ey flm{k, p)), n(ke, p(9)) = m(k, p(k)—1)—1, and m(k, p(k)) = 1.
Clearly, ‘
k>mk, 1)>me, 2)> ..>mk, p(e)—1)>m(k, p(K)) = 1.
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Now, given G; sets Uy, ..., Uy, where k>1, we set

t(Uy,..,Up) = 5'( m(k,pm))(”(k p), . m(k,l)(n(]": 1)))

We claim that ¢ is-a winning strategy. For, suppose in contrary, there is a point,
say x,, which is not covered by {U,: ne N}. Let us set m(l) = 1. Since x, ¢ Uy,
there is n(1) € N such that X, ¢ U,y (n(1)). Let us set m(2) = 14+f(m(1), n(1)).
Since xo & Uy, there is n(2) e N such that xo ¢ U,)(n(2)). Let us set m(3)
= 1+f(m(2),n(2)), and so on. Finally, we get the play

< m(1)» m(l)(n(l)) m(2) 2 I"(Z)( (2)) >

of G/(Ks X)’ where Em(l) = El = S(g)v Em(k+1) = s(Um(I)(”(l))i R U’m(k)(”(’@)):
and f(m(k), n(k)) = m(k+1)~1 for each keN. Hence U {U,u(n(k)): keN}
= X, and thus x, € U, (n(k)) for some ke N. We get a contradiction and there-
fore our claim is true. The proof is complete.

52. Remark. Clearly, II'(K, X)=II"(K, X). The converse implication,
however, cannot be proved in ZFC. For, let us consider the games G'(Z, X) and
G(1, X), where X is a subset of the real line R. It is easy to verify that I°(1, X) <
< card X<y, and II%1, X) < card X>#8,. Assuming MA, F. Galvin [3] has
constructed X< R such that G'(, X) is undetermined. Hence /I "(1, X)#II'd, X)
for X<R under MA. On the other hand, assuming the Borel Conjecture holds
(and this is consistent with ZFC as was established by R. Laver [4]), we have
(1, X) < cardX>»s, for each XcR (cf. [3]). Hence II'(I, X) < II’(1, X)
for X< R also is consistent with ZFC.

For any space X, let X, denote the set X endowed with the topology generated
by the G; subsets of the space X.

5.3. THEOREM. Player I has a winning strategy in G(F, X;) iff he has a winning
strategy in G(F, X).

Proof. We shall prove the nontrivial part of the theorem. Assume that Player T
has a winning strategy in G(F, X). By Theorem 4.1, Player I has also a winning
strategy, say s, in G(F, X). We shall define a winning strategy ¢ for the player in
G(F, X;) as follows. For each finite subset £ of X; and each open subset of U of X
there is a G, subset V(E,U) of X so that EcV(E,U)cU. We set

t(@ = S(ﬁ) and t(UL: ey Un) = S(V(El.a UI): ey V(Eus Un)) ’

where

E =5(9), E, = S(V(E1sU1)) R S(V(-E13U1), s V(Eyoys Un—~1.))'

=et (E, Uy, By, U,,..> be a play of G(F, X;) where E, = t(&) and E,.,
LU, ..., U,) for each neN. Then <{E;, V(E,,U)), E,, V(E;, Uy, ...> is a play
of GF, X), where E, = s(9) and E,,, = s(V(E(,U)), ..., V(E,,U,)) for each
ne N. Therefore | {V(E,U,): ne N} = X, and also |J {U neN} = X. Hence ¢
is a winning strategy. The proof is' complete,
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Let us recall that X is said to be a P-space if each G; set is open in X, i.e.,
if X = Xj.

5.4. LemMA. If X is a Lindeldf subspace of a P-space Y, then X is closed in Y.

The proof of 5.4 is standard and thus omitted. ‘

5.5. TueoreM. If X is a Lindeldf subspace of Y and Player I has a winning
strategy in G(F,Y), then he has a winning strategy in G(F, X).

Proof. The theorem easily follows by Theorem. 5.3, Lemma 5.4 and, moreover,
2.4 of [7].

6. The game G*(K, X). Let us recall that a family % of open sets in X is said
to be a K-cover of X if for each closed subset E of X with E e K there is an Ue %
so that EcU ([7], p. 200).

The dual game G*(K, X). is defined similarly as by F. Galvin [3]. Now, Player II
“opens the game” by choosing a K-cover %, of X. After that Player I chooses
a U, e ;. Again Player II chooses a K-cover %, of X and Player I chooses
a U,e%,, and so on. Player I wins the play <#%,,U;, %,, U, ...) of G¥(K, X)
if Y{U,: neN}=2X; otherwise Player IT wins.

The next lemma and theorem are a generalization of the corresponding state-
ments of F. Galvin [3].

6.1. LemMma. Let {%,, ..., U,y be a sequence (possibly void) of K-covers of X
and let s be a strategy of Player I in G¥(K, X). Then there is a closed subset E of X
with Ee K so that for each open set U containing E there is a K-cover U of X so that

=8(Uys e, Uy, U).

Proof. Let ¥ be the family of all open sets in X that are not of the form
SUy s .., Uy, %) for some K-cover % of X. Then it follows that ¥~ is not a K-cover
of X, because otherwise s(%;, ..., %,, ¥") € ¥ what contradicts the definition of ¥".
Now, suppose each closed subset £ of X with £ e K has an open nbhd ¥ from %",
Then, again, ¥ is a K-cover of X and this is a contradiction. The proof is complete‘.

6.2. THEOREM. The games G*(K, X) and G'(K, X) are equivalent, i.e., Player I
(Player II) has a winning strategy in G*(K, X) iff Player I (Player II, resp.) has
a winning strategy in G'(K, X). ]

Proof. Let s be a winning strategy of Player I in G*(X, X). A winning stra-
tegy ¢ of the player in G'(K, X) is defined as follows. We set (@) = E; where E; is
any closed subset of X with E; € K and with the property: each nbhd of E; has
form s(%) for some K-cover % of X. Lemma 6.1 assures the existence of E,.
Let U, be any open set in X containing E;. Then there is a K-cover %, of X so
that U, = s(%,). Again by Lemma 5.1 there is a closed subset E, in X with
E, € K and with the property: each nbhd of £; has form s(%,, %) for some K-cover
Y of X. We set (%) = E,, and so on. Finally, we get the play (E,, %, E», U3, -
of G'(K,X) and the play (%, U;,%,, U,,..> of G*K,X), where U;
= 8(U,, ..., U,) for each n e N. Thus ¢ is a winning strategy of Player [ in G'(K, X).
Conversely, let 5 be'a winning strategy of Player  in G'(X, X). We define a winning
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strategy ¢ of the player in G*(K, X) as follows. Let %; be a K-cover of X. Then
we set #(%,) = U, where U, is any set from %, containing s(&). Let %, be
a K-cover of X. Then we set ¢(%,, %,) = U,, where U, is any set from %, con-
taining s(U,), and so on. It is easy to see that this procedure provides ¢ to be winning.
Now, let s be a winning strategy of Player I7 in G¥(K, X). Then a winning strategy
for the player in G'(K, X) is defined as follows. Let E; be a closed subset of X with
E, € K. Then the K-cover s(@) of X contains an open set U, containing E,. We
set £(Ey) = Uj. Let E, be a closed subset of X with E, € K. Then the K-cover s(U,)
contains an open set U, containing E,. We set #(£;, E,) = U,, and so on. Since
U{U,:ne N} # X, it follows that ¢ is a winning strategy. Finally, let s be a winning
strategy of Player II in G'(K, X). We define a winning strategy of the player in
G*K, X) as follows. We set %, = {s(E): Ee2*n K} and (&) ='%,. Let
U, € %,. Then there is a closed subset F; of X with E, € K and s(E;) = U,. Now
we set U, = {s(Ey, E): Ee2*n K} and t(U,) = %,, and so on. As is easy to
verify, we have {J {U,: ne N} # X. Thus ¢ is a winning strategy. The proof is
complete.
An analysis of the above proof leads to the following characterization.

6.3. THEOREM. Player II has a winning strategy in G*(K, X) iff there is an in-
dexed family

{U@ys oy 1): {ty, sty €T" and ne N} .

of open sets in X so that
63.1. {U(t): teT} is a K-cover of X,
6.3.2. {U(ty, ..., t,,t): teT) is a K-cover of X for each {t, ...,
ne N, and )
6.33. U{U(ty, ..., t): neN}# X for each {t,,t,, ...
In particular, for K = 1, we get
6.4. COROLLARY. Player II has a winning strategy in G*(1, X) iff there is an
indexed family

t,yeT" and

SeTh,

{v@y, ...,

of open sets in X so that

6.4.1. {U(r): teT} is a cover of X,

6.4.2. {U(ts, ..., t,, 8): €T} is a cover of X for each {t,,...
neN, and .

64.3. U{U(ty, ... t,): neN} # X for each {t,,1,,..>eT"

Another characterization of a space favorable for Player I7 has been established
by F. Galvin (unpublished):

6.5. THEOREM. Player II has a winning strategy in G*(I, X ) iff there is an open
cover U of X such that

65.1. If Ue¥ and x € X, then there is Ve with Uvu {x}<V, and

65.2. if UicUjc ..., where {U,: ne N}, then | {U,: neN} # X.

t): ty, s > €T" and ne N}

sty eT" and
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6.6. Remark. If X is not a Lindelsf space, then Player I7 has a winning strategy
in G*(I, X). Indeed, taking always %, = %, where % is a fixed open cover of X
without countable subcover, he wins every play. On the other hand, if X is a Lin-
deléf space, then we may put T = N in Corollary 6.4 (and assume % is countable
in Theorem 6.5). ‘

6.7. Remark. If ind X’>0, then Player II has a wmnmg strategy in G'(1, X).
For, let x be 2 any point of X with ind,X>0 and let U be an open nbhd of x so that
there is no closed-open nbhd of x contained in U. Since X is completely regular,
there is a continuous map f: X ~ [0, 1] such that f(x) = | and f(X—=U) = 0
However, f(X) = [0, 1]. Hence Player II can use sets f~*(a, b) for his win (cf. [7],
3.6.2 and 5.11).

6.8. Remark. By preceding remarks we may assume in Corollary 6.4 that
X is a zerodimensional Lindeldf space and replace “cover” by “countable closed-
open partition”. This version of 6.4 suggests we can define a natural map from X
into N". However, in a different way, a more general result can be derived.

6.9. THEOREM. Let X be a Lindeldf space. Then Player II has a winning strategy -
in G*(1, X) iff there is a continuous map f from X onto a metric separable space Y
such that Player II has a winning strategy in G*(1,Y).

Proof. Assume that Player /I has a winning strategy in G*(I, X), where X is
a Lindelof space. Then, by 6.4, we have a family of open sets

{Uky,s osky): gy ooy kppeN® and nelN}
in. X satisfying the conditions 6.4.1, 6.4.2 and 6.4.3 (T = N). Using the Lindel5f
property again we may assume without loss of generality that each U(k,, ... ,,)

is a cozero set, i.e., Ulky, ..., k) = fil. kn R—{0}). Since the family {f,,l
CkyyonskyyeN" and ne N} is countable, the weak topology generated by
that family is pseudometric and separable. Finally, the natural quotient map
yields the required metric separable space Y. Clearly, the resulting map f from
X onto Y is continuous and, moreover, all sets f(U(ky, ..., k,)) are open in Y.
Since each map preserves set-theoretical unions, we infer by 6.4, that Player IT has
a winning strategy in G*(I, X). The converse implication was proved in [7], Theo-
rem 3.5. The proof is complete. )

The next theorem also makes use of 6.4. It has been established by E. K. van
Douwen (cf. 6.11 below).

6.10. TueorReM. If X is a Lindel0f P-space, then Player IT has no winning strategy
in G*(1, X).

Proof. Let X be a Lindelsf P-space. Suppose Player IT has a winning strategy
in G*(I, X). By 6.4 and 6.6 there is a family {U(k,, ..., k;): <k{,....,k,y e N*
and ne N} of open subsets of X satisfying the conditions 6.4.1, 6.4.2, and 6.4.3,
where T'= N. Let % (@) = {Uk): ke N} and

Ukys s o) = {Uky, ..o, ks K): k€ N}
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for each <k, ..., k,y e N* and ne N. Then {#(k;, ..., k.): <kyi,...k,> € N" and
720} is a countable family of countable open covers of X. Since X is a Lindelsf
P-space, there is an open cover ¥~ = {V,: ne N} of X which is a common refine-
ment of all covers %(ky, ..., k,). Hence, there is k; € N such that V; < U(k,), there
is k, € N such that V< U(ky, k5), and so on. Therefore we get (ky, kp, .0 e N¥
such that ¥,cU(ky, ..., k,) for each neN. Since | {V ne N} = X, we have
U{Ulky, .., k,): ne N} = X and this is a contradiction. The proof is complete.

6.11. Remark. The preceding theorem can also be derived from 6.9. For,
it suffices to verify the following: Let f be a continuous map from .a Lindeldf
P-space X into a metric space Y. Then f(X) is countable.

7. TIndeterminacy of G(I, X) and G(C, X) in ZFC. Assuming MA, F. Galvin
[3] has constructed a subset X of the real line so that the game G(I, X) is undeter-
mined, and asked whether there is a topological space ¥ for which G(I,Y) is un-
determined -in ZFC (Problem 2). We describe here the space Y constructed by
R. Pol. [5] (the space was constructed for another purpose) and prove some ad-
ditional properties of ¥ to get the following.

7.1. THEOREM. The games G(I1,Y) and G(C,Y) are undetermined in ZFC.

There are several authors whose contribution to this section is essential,
T asked R. Pol if a Lindel6f P-space must be the countable union of its scattered
closed subspaces. After that K. Alster and R. Pol have verified that the space
constructed earlier by R. Pol [5] provides a counterexamplé to my conjecture.
Finally, E. K. van Douwen has observed the property stated in 6.10 (cf. [9],
Note added).

The rest of this section is occupied by the proof of 7.1.

The space Y is a subspace of ({0, 1}**);, or equivalently, a subspace of the
%, -box product of &, , copies of {0, 1}, and is defined as follows. For any y € {0, 1}**
we define car y = {a<w,: y(¢) = 1} (the carrier of y). Let 4 denote the set of all
limit - ordinals A<w;. For each AleAd we pick a fixed increasing  sequence
{ay(A), #y(4), ...y of ordinals with lim o«,(1) = A, and define a point y, to be the

n-o0
unique point of {0,1}** with cary, = {o(%): neN}. Finally, we sct ¥,
={yirded}, ¥; ={ye{0,1}*: card carp<ny}, and ¥ = ¥, u ¥,. The (sub-
space) topology of Y is determined by the basic closed-open neighborhoods of
the form Uyy) = {y' e ¥: y'(£) = y(&) for each ¢<a}, where ye ¥ and a<w;.
From the construction of ¥ we have immediately
7.2. Y is a P-space of cardinality ».
From 7.2 it follows that
- 1.3. Y is hereditarily paracompact.

i’
If 4 is a countable subset of {x: a<w,}, then the set {ye ¥: y(x) = 1 for
each ae 4} is closed-open in Y. Using this observation we get
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1.4. Y, is an open discrete subset of ¥ and {y € Y: cardcary = n} is a discrete
subset of Y. Hence Y is o-discrete.

7.5. Y is a Lindelof sjmce.

Proof. Let o be an open cover of Y. Without loss of generality we may as-
sume that «/ consists of basic open sets, i.e., 4 = Uy(y,) for each A . For
each Ae o we put 4* = {ye ¥: caryca(d)}. Clearly, the set A* is countable
for each deof. Let 4, be any set from & for which 0 e 4, (0(e) = 0 for each
a<w;). We set s, = {4,}. Since 4¢ is countable, there is a countable sub-
family o7, of & such that 45 < () of,. Theset |J {4*: 4 & #Z,} also is countable,
Thus there is a countable subfamily &/, of & so that J {4*: dest }c | o,-
The set {J {4™: 4 es,} is again countable and thus it is covered by a countable
subfamily &5 of &, and so on. Finally, we put § = sup{a(4): 4 € &, and n3>0},
and consider two cases. ’

Case 1: f¢ 4. Then ( {«,: n>0} covers ¥. For, let y € Y. There are again
two cases.

Case la: fncary is finite. Then there is »"e ¥, with cary’ = f N cary.
Since § ¢ 4, we have f = a(A) for some 4 € o, and n>0. Hence 3’ € A" and thus
y' e d’ for some 4’ € o, . Since y(&) = y'(¢) for each £<f and a(d})<p, we
have ye d'. ‘

Case 1b: f n cary is infinite. Then y = y, for some 1< and therefore ye 4™,
where Aesf, and a(d) = B. Again, there is 4’ e,y with ye &’. Hence
U {«,: nx=0} covers Y.

Case 2: Bed. Then {4,}u U {#,: n=0} covers Y, where A, is any set
from &/ contamlr_xg yg. For, let ye Y—{ yﬁ}. Then there are two cases according
to whether 8 n cary is finite or infinite. Since this case is similar to the former,
we shall not repeat the reasoning. In both cases we have found a countable sub-
cover of 4. The proof is complete.

A subset S of w, is said to be stationary if it meets each closed unbounded
subset of wy. For the lemma on regressive functions (Pressing Down Lemma) used
below we refer to G. Fodor [2].

7.6. Y is not the union of a countable family of its scattered closed subsets.

Proof. Suppose ¥ = J {S,: ne N}, where each S, is a scattered closed sub-
set of Y. Then there is ke N such that {Aed: y,e S} is stationary (in w,).
Since S has the Lindeldf property, there is a point y in S, such that

{Aed: yyeS.n UM}

is stationary for each a<w,. Since S is scattered, we may choose such a point y
with the lowest rank and a basic nbhd U,(y) of y so that for each ¥’ € S, A U, (y)—
~{y} there is &’ <, for which {Ae 4: y, e Si 0 U(¥) N U3} is not stationary.
Thus we may assume, without loss of generality, that y is the unique point of S
such that {4 e 4: y, e S, N U»)} is stationary for each a<w;. Let o be any ordinal
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with ¢>supcary. Since the set ¥ = {AeA: >« and y,€ 8} is stationary and
the function f: 3 - o, defined by f(1) e {0, (): ne N}~ is regressive (pressing
down), there is a stationary set Z,=Z such that f(Z,) = {B}. (Clearly, f>a).
Hence § e cary, for each 1 € X, and therefore theset {eA:y,eS, and Be cary;}
is stationary. Now, the set S=S,n{ye¥: fecar y} is closed and the set
{Ae A: y,e S} is stationary, because

{Aed: y,e S, and fecary,} = {Led: y,eS}.

However, S has the Lindelof property, because it is closed in Y. Hence there is
a point »' in S such that {leAd: y;eSn U,(»"} is stationary for each n<w;.
But S is closed-open in S,, y ¢ S and the existence of y’ contradicts to the choice
of y. The proof is complete.

7.17. Player I has no winning strategy in G(I, Y).

Proof. Suppose Player I has a winning strategy in GI,Y). By 7.3, Y is he-
reditarily paracompact. Hence, by Theorem 11.1 of [7], the space Y is the union
of a countable family of its scattered closed subsets. That, however, contradicts to
7.6 above. The proof is complete.

7.8. Player II has no winning strategy in G(I,Y).

The last statement follows immediately from 7.2, 7.5 and 6.10.

Since each compact subset of Y is finite, the games G(C,Y) and G(F,Y)
coincide. Moreover, the games G(F, Y) and G(I,Y) are equivalent by 4.1 and 4.2
of [7]. Hence both games G(I,Y) and G(C,Y) are undetermined.

Note added on May 13, 1981. T asked Fred Galvin if the stationary sets can be eliminated
from the proof of 7.7. Answering to that question he has given such a proof and, moreover, his
proof refers to the definition of the space ¥ only. Here it is. Let s be a strategy of Player I in G, Y).
Without loss of generality we may assume that Player JI chooses basic open sets only, i.e., the sets
Udy) = {y’ € ¥: (&) = y(&) for each £ < a}, where y € Y and a < ;. Moreover, we may assume
that Player IT responds to a choice of a point y by giving an ordinal @ < w, (because y and a
determine Ux(»)). So we may assume that s is defined for any finite (possibly void) sequence
(@, ..., ayy .Of countable ordinals.

CLaM 1. There is a countable limit ordinal 2 = A(s) such that
supcars(@) <A and supcars(ay, ..., an) <A whenever a;<2,...,an<2 and n& N.

For, let & = supcars(@) and let Axq, be the least limit ordinal > A so that supcars(cy, ..., an)
<Akyy wWhenever @, ..., ay are <Ay. Then 4 = lim A has the required property, because the de-
k

finition of each Ax involves countably many sequences only.

CLAM 2. Player II can avoid covering the point y;, and tlierefore s is not a wining
strategy,

For, let x, = s(@). Since supcarx, <1 and a,(4) 74, there is n; € N such that supcarx, <an,(4).
Now Player II picks an a, such that an,(4) <a,<A. Since x,(a,,,(l)) = 0, we have y; ¢ Uy (). Let
X3 = s(oy). Then supcarx,<J, so there is 7, € N such that supcarx,<an,(4). Taking an o, with
an,(N << i, we have xy(any () = 0,50 1 ¢ Upy(xs), and 0 on. Finally, vz ¢ U {Us,(xn): ne N},
thus s is not a winning strategy.
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