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Some surgery formulae for maps into Q2*S*(RP®)
by

Ryszard L. Rubinsztein (Warszawa)

Abstract, We derive cohomological formulae for the Kervaire surgery obstructions and the

2
mod2 index obstructions for maps given as compositions of the form M -+ QPSP(RP®) » QP5®,
Here A is the James map.

Introduetion. If M is a smooth compact manifold of dimension m = 2n and
f: M - G/TOP is any map, then one defines the Kervaire surgery obstruction
silM, f) € Z]2Z of the map f. Similarly, if M is a so-called “Z/2Z-manifold” of
dimension m = 4n, then one defines the mod2 index surgery obstruction s;(M, f)
€ Z[2Z of the map f, [2].

Cohomological formulae for these obstructions proved to be very useful.
They were used, for example, in the determination of the structure of PL and TOP
bordism rings by G. Brumfiel, I. Madsen and R. J. Milgram, [2]. Those formulae
turn out to be easier to handle if the map f'is given as a composition of some map
f't M— SG and of the canonical projection i: SG — G/TOP.

On the other hand J. Jones and E. Rees, [4], have given a short proof of the
Browder theorem on the non-existence of z-manifolds with the Kervaire invariant
one in dimensions other than m = 2"—2. The proof is based on a factorization
of the respective map g : S™ — SG as a composition of a certain g’: S™ = Q*°S*(RP%)
and of the canonical map 1: Q*S®(RP*®) - SG.

The proof in question suggests that it may be useful to give some cohom-
ological formulae for the surgery obstructions sg(M,f) (resp. s{(M,f)) of maps
f+ M — G/TOP having an explicit decomposition of the form

J il
M > Q°S®(RP®) — G/TOP.

The aim of this paper is to derive such formulae.

We should perhaps mention that this research was partly motivated by our
attempt to find the image of the transformation iy: [RP®, SG] — [RP*®, G/TOPL
The cohomological formulae for the surgery obstructions obtained in this paper
turned out to be too weak for this purpose. And, afterwards, W. H. Lin’s proof
.of the completion conjecture for the group Z/2Z, [16], solved this problem anyway.
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2 R.L. Rubinsztein

Nevertheless, we think that the cohomological formulae themselves may be of
some interest. )

The paper is organized as follows. In Section 1 we recall the Kahn-Priddy
theorem. In Section 2 we express the Kervaire obstructions of maps f: M*" —
- QPSP(RP®) in terms of appropriate quadratic forms and of the suspension of
the Wu class. In Section 3 we express the index obstructions of maps f: M*" —
— Q®S®(RP®) in a similar form. Finally, Section 4 is technical and devoted ex-
clusively to the proof of Lemma 2.12.

‘We adopt the following notation: for a prime p and a space X, X, is the local-
ization of X at p, while Q°S®(S°), is the component of degree { maps.

1. The Kahn-Priddy theorem. In this section we recall the Kahn-Priddy
theorem [5], [10].
If X is a space with a base-point we shall write Q(X) for the space Q°S*X
- = HmQ"S"X, where Q"S"X is the n-fold loop-space of the n-fold reduced sus-
n

pension of X. If 1 X — Y'is a base-point preserving map, we write Q(f): Q(X) —
— Q(Y) for the map Q*S*(f).
Let A: RP® — SG = Q(S°), be the composition

r's j
RP* 5 50(w) >5G,

where A': RP® — SO(o0) is the map which.takes a line LcRY to the reflection
through its normal hyperplane composed with the reflection 4: RY — RY,
TAG s Xy ey Xy) = (—Xp, Xz, ey Xy)-

Let RPZ be the infinite real projective space with a disjoint base-point added.
We write

Ayt RPS = O(S°)
for the extension of A which takes the disjoint base-point of RPT to the base-point
of Q(8%,.
Let py: 0(Q(X)) - Q(X) be the natural infinite loop space transformation,
[7], p. 43. Consider the composition

Eso

I 0®PD) 23 0(0(s) 2 0(59).

7 is an infinite loop map since both Q(A+) and pgo are such. Furthermore one has
Q(RPY)=Q(RP®)x Q(S°). Let I: Q(RP®) — Q(RP?) be the embedding I(x)
=(x, 1), where 1 is the base-point of Q(S°);, and let

1: Q(RP™) - SG
be the composition 1 = 1oL

THEOREM (Kahn-Priddy). There is a map B: SG — Q(RP™) such that the com~
position %o B becomes a homotopy equivalence after being localized at the prime 2.
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The Atiyah-Hirzebruch spectral sequence arguments applied to the stable
homotopy theory show that the groups 7,(Q (RP®)), i=0 are all finite and 2-primary.
Hence Q(RP®)5y~ Q(RP™) and we get .

COROLLARY 1.1. For any CW-complex X
Aoyt [X, Q(RP®)] = [X, SGpl
is a split epimorphism.

2. The Kervaire obstructions of [M, Q(RPY)]. If me Z let Q(RPO,E),E denote the
subspace @(RP®) x Q(S%),,= Q(RP*)x Q(§°) = Q(RPF). Observe that J(QRP),)
= Q(Sn-

Let M2" be a closed manifold. Suppose we are given a map
f= (/1,12
where fi: M2" - Q(RP®), fo: M*" — Q(S%),. Let us consider the composition

g =iokof: M?*"— GJTOP.

f1 M?" > Q(RPT)y,

Tn this section we shall aim at giving a description of the Kervaire invariant
sx(M, g) € Z[2 of the map g.

To this end we shall use the theory of E. H. Brown, Jr., as described in {2;
Sec. 5]. Let us recall some of these results. {-, -} denotes stable homotopy classes
of maps and K, = K(Z/2, n). We use cohomology with Z[2-coefficients throughout
this section. The following is Theorem 5.2 of [2].

TueoreM 2.1. (1) There is an exact Sequence

k, fa
0 Z2 5 (M, K;} 5 HY(M) 0.

(i) The suspension s: H"(M) — {M, K,} is quadratic; that is, if x,y e H M),
then s(x+y) = s(x)+s(¥) +ks(x-3) e {M, K}.
Let ¢: M2 — SG be a map. There are associated a degree one normal map

‘-‘M"—‘”—"‘* o
‘l’ " ‘[
M ——M

where vy it the normal bundle of M, and a collapsing map D#R: STA(M,) —
= SIA(MY).

Let §: {M,K,} — Z/4 be a linear homomorphism such that k(1) = 2.
Then the functions % (DR)*s: HYM') — Zj4=Q[2Z and i (DAY*n*s: H'(M)—
— ZJ4< QJ2Z are quadratic over the respective cup product pairings in the sense
of [2; Def. 4.1] and, consequently, their Arf invariants A(H (M, U (DRY*s) € Z[8
and A(H"(M), {/(DR)*x*s) € Z[8 are defined (see [2; Thm. 4.3]).
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4 R. L. Rubinsztein

The following result is Theorem 5.3 of [2] applied to the special case of a map
@: M?*" - SG. ‘
THEOREM 2.2 (Brown). The Kervaire surgery obstruction sg(M,io @) e Z[2 of
ioq@: M — G[TOP is given by
45 (M, io @) = A(H'(M"), J(DRY*s)— A(H'(M), §(DRY*n*s) € Z/8,

where 4: Z[2 — Z|8 is the inclusion.

Finally, the following is Thm. 5.4 of [2].

THEOREM 2.3 (Brown).

A(H' (M), §s)— A(H"(M), §(DRY*n*s) = 2s((V(M)e*(a (V))),) € Z/8
where 2: Z|4 — Z[8 is the inclusion, o(V) € H*(SG) is the suspension of the Wu class
Ve H¥BSG) and V(M)e H¥(M) is the Wu class of M.

Let Ad(f): SYA(M,)—~ SYA(RPL), N-large, be the adjoint of the map
fir M- Q(RPD), f=(f1,f2). We may assume that Ad(f) is transversal to
RP°cSYA(RPY). Then M' = Ad(f)"YRP®)c=S¥A(M,) is a manifold of di-
mension 2n and there are a collapsing map D#: SYA(M,) = S¥A(M?,) and
a projection 71 M' — M. Furthermore, we have a decomposition of Ad(f)

Dn SN A0,
24 SYAM L) > S"A (ML) ——SV A (RPT),
where 0;: M'— RP® is the restriction of Ad(f). The composition
D7 SN
SN A (M) —> SN A (M) ——25 SY A (M)

is homotopic to the map 9: S¥ A (M) —» SY A (ML), $(x, m) = (Ad(f2)(x, m), m)
for x e S¥, m e M. Observe that the normal map corresponding to f, is of the form

b

Vi Ty
¥ x l
M —M

and its collapsing map is Di.
Suppose that §f: {M, K,} — Z/4is a linear homomorphism such that k(1) = 2.
Lemva 2.5. The Kervaire obstruction of the map g = ioXof: M — G/TOP
is given by .
4s(M, g) = 4se(M, 1) = 20s(V(M)F 30 (V)),) +

+ 20s({(V(M) (Ao £y (o (V)))) — 25 (DRY*s(( V(M')@yx*(a(m)),,)
e Z[8. :
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Proof. Suppose that there is a map 7: X — Q¥S¥(Y), where X, Y are based
topological spaces. Then the diagram
SNONSN(Y)
/!
N, // !
SNk HY
/ ;
/ i
SYXYam o SYY
commutes. Here uy: SYQVSN(Y)—» SVY is given by wy(t.f) =/@t), te s,
feQNSYY.
In particular, we have commutative diagrams (N large)

N3

SNf S
SN A M, —> SY¥Q¥ SYRPY™Y >SNQNSN
—_— |
T l“s"
Ad(Zef) — s

and

SNf
S¥AM, —>SVNQVSNRPY™Y)

HppN=-1
AQUIN, | RS

M
SRR
Moreover, since 1: O(RP®) —» Q(S°) is an infinite-loop map, we have a com-~
mutative diagram

SYQVSYRPYTY) S suggy
’ (]

L RPY-1 &5

S“’(]%Pﬁ"l) Adlh e
Consequently,
(2.6) Ad(lof) = Ad(D) - Ad(Sf) -

Since A factors through SO (o), it follows from (2.4) and (2.6) that the normal
map corresponding to g = iolofis of the form

o
V>V

Lo
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for a certain »' and the collapsing map of g is

" s . , by ,
SYAM, —>SYAM, —>SYAM,,

where 8,(t,) = (A 0))(®),») for teSY, ye M".
It now follows from Thm. 2.2 that

Q7)) 4se(M, g) = AH'(M"), F(DRY0%s)— A(H"(M), [ (DR)*0%m*s) .

We are now going to transform both expressions on the right hand side of (2.7).
From the second diagram on page 104 of [2] it follows that ¥ = G(DR)*:
{M , K} = Z[A is a linear homomorphism with k(1) = 2.
Now consider the map Ao 0y M’ — SG. Its corresponding normal map is
of the form :
Ve — I
M NV

where ¢ is the bundle map induced by 8. and 0 itself is the collapsing map of 4o 0.
Hence, according to Thm. 2.3,

(2.8)  A(H'M), Js)— A(H'(M"), Yoria*s) = 2s((V (MY o 0 )X a (V).

Since g factors through SG, we may also apply Thm. 2.3 to its Arf invariant
and then

(2.9) A(H"(M), Fs)— AH"(B1), §(DRYOFm*s) = 2Ts(V (M) (Lo fY*(a(V))))-
Finally, since 7o f, also factors through SG,
@.10)  A(H"(M), Js)—~ A(H"(M), F(DRY*z*s) = 2Ts((V(M)f3(c(V))),).
It follows from (2.7), (2.8) and (2.10) that
dsg(M, g) = A(H'(M"), §(DRY*s)—A(H"(M), Fs)+
+ 20s(VM) L o f)*(0 (V))n) =25 (DRY*s (¥ (M) (A = 0,) (o (V)),)
= dsg(M, )+ 2Fs((V (M) (Ao ) (@ (V))),) ~
— 2 (DAY (VM) (o 0,)%(a (V)) =205 ((V (M) 5(o (P),) .

COROL;LARY 2.11. If the map f, is null-homotopic then the Kervaire obstruction
of g =iolkof: M- GITOP is given by

4se(M, g) = 20s((V(M) (A =)o (VD)) =20 (DRY*s((V (M) O33% (0 (V))),)
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Let o*: H*(M') - H*(M) be the splitting of n*: H*(M) - H*(M") induced
by the normal map corresponding to f3, ie.
a* = IV o (DAY* o 2V,
where I is the cohomology suspension, and let K*(M") = Ker(@*) c H*(M").
Lemma 2.12. If f, is null-homotopic then
AP eV~ (e 0o (V) e K¥M).
‘We postpone the proof of Lemma 2.12 till Section 4.
"THEOREM 2.13. If f, is null-homotopic then

255(M, g) = FDR*) (VM) (Ao fom)* (@) +A o O*(@(VI)]) € 2/4.
Proof. Let us substitute a for (V(M YA ofom*(o(V))), and b for

(V(M ')(/“Lo@f)*(q(V))),,. Since ¥(D#)*s is a quadratic function over the cup
product pairing in H"(M),

U (DRY*s(a)—§ (DRY*s(b) = Y (DRY*s(a—b)+2(b, a—D)

{recall: 2: Q/Z - QJ2Z). Observe that a—b e K"(M"). This follows from (2.12)
and the fact that K*(M') may be characterized as the subspace of H*(M') or-
thogonal to Imn*c H*(M"). .

Now, V(M) = n*(V(M)) and aeImn*. Hence (4, a—b) =0 and (b, a—D)
= —(a—b,a—b)+(a,a—b) = —(a—b,a—b) = 0 since the cup pairing is even
on K*(M'), see [1; sec. IIL. 3]

Hence we get

(2.14) T(DRY*s(a+b) = T (DAY s(a)— T (DAY*s(D) .
Since f; is nuli-homotopic, the map (S™n)o (DR): SNAM. — S¥AM, is
homotopic to the identity. Consequently
a = (@) (Lo Yo VD)) = #* (VAN A S (V)
and
T(DR*s(a) = F(DRY*s(m*(V (M) (A f*o (VD))
= J (DAYt m*s((V (M) (Lo FY (e (V)))
= Bs(V TS V(M) -

The conclusion of Thm. 2.13 follows now from (2.14) and (2.11). B

Let x; = [P(M)((Xofom)*(@(V)+(@ o 0¥ (V)))]. € H*(M') and let s(xy):
SYAM', - S¥AK, bethe suspension of x;. Let Sgich oz (ZV() € H" NN AM L)
be the functional square of the map s(x;) o DA: SYAM, — SYAK,.
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COROLLARY 2.15. If f, is null-homotopic then
sg(M, g) = (Z7SeipmE (W) M e Z]2.

Proof. Since x, & K"(M"), the conclusion of Cor. 2.15 follows from [2; p. 105}
and Thm. 2.13. B

3. The index obstructions of [M, Q(RP®)]. In this section we aim at giving
a description of the index obstruction s{(M, g) of a map g: M — G/TOP in the
case where g is a composition g = io lof and f: M — Q(RP®). We assume that
M™ is a Z[2-manifold and dimM = m = 4n. Our main reference is [2; Chap. 2
and 6]. Till the end of the section we use the notation K, = K(Q/Z, t) unless
otherwise stated.

Let z,(M)e H*(M; Z) be an integral class such that its mod2 reduction is
the first Stiefel~Whitney class w,(M) of M. Suppose that z,(M) is represented by
a map z;: M — S' which has 1eS?* as its regular value. Let N = z7{(1)c M.
Then N is an oriented (4n—1)-manifold. Let

T NN) = H*'(N, Q/Z)[Image(H*""*(N, Q) — H*""'(N, 0/2)).
There is a nonsingular bilinear pairing
L: T Y(N@T*" YN) - 0/Z
induced by the pairing
L's H*7X(N, Q/Z)QH*" "N, 0/Z)~ 0/Z

defined by L'(x®y) = {x U By, [N]). Here u is the cup product associated to
the pairing Q/Z®Z ~ Q/Z and B: H*""Y(N, Q/Z) - H*"(N, Z) is the Bockstein
of the coefficient system 0 - Z — Q — Q/Z — 0.

Let me now recall [2; Thm. 6.2]:

THEOREM 3.1. (i) If N**~* is an oriented (4n—1)-manifold then there is an exact

sequence
0> QIZ = {N, Ky i} 5 H™"I(N, 0/2) 0.

(i) The suspension s: H**“Y(N; Q/Z) — {N, K,,_1} is quadratic; that is if

X,y € H* Y(N; Q/Z), then -
s(xt+3) = () +s() +1(L'(x, 3)) -
Let §: {N, K;,—1} = 0/2Z be a linear function such that
[ () @(Image{N,K(Q,2m~1)}) =0;

(i) the composition Giy: Q/Z — {N, Ky,—;} = Q2Z is the
isomorphism, multiplication by 2;

(32
(i) if f: S'AN - S'AK,,.; represents an element of
{N, Ky} then 03(f) = {f*(Z% v B1)), [STAND € 0/Z,
where g: Qf2Z — Q/Z is the projection.
(see [2; p. 111]).
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Let h: M** — G/TOP be a map. Then the index obstruction s{(M, k) € Z|2 is-
defined, see [2; p. 91]. If the map % factors through A': M 4" _» SG then the index.
obstruction s;(M, k) can be computed as follows. Let

b

Vap ™ >V
‘ j’
Vs

M — — M

be a normal invariant corresponding to A’, let Df: STAM, — STAM. be its:
collapsing map and let N' = n~*(N)= M’ (we assume that 7 is transversal to N).
Denote M, = M — (open normal bundle of N), My = M’ — (open normal bundle:
of N*). Thus M, = 2N, dM}y = 2N’ and we have a map of pairs n: (Mg, oMg) —
—(My, 0M).

THEOREM 3.3. The index obstruction of the map h': M*™— SG is given by

s:(M, i) = index(Mg)—index(Mo)+2{A(T >~ (N"), B(DAY*s)—

— AT (W), @S))+45s((V (N B |n)*(0(V)))2n-1) € 8Z[16Z= Z[2.

See [2; (6.7)].

Let me finally recall [2; Thm. 6.6]. Suppose that y: N — SG is a map, n: N'—+ N
is a corresponding degree one normal map and D#: STAN — STAN" is the collaps--
ing map.

THEOREM 3.4.
AT, §5)— AT W), G(DR*r*s) = 265((V (N Y*(@ (V))an-1) € Z18,
where the natural inclusions Z|2< Q|Z and Z|A< Q[2Z give a commutative diagram:

HZn—l(N; Z/Z)—-——-————~———>- HZn—I(N; le)

s s

v
Z/4 c o)z

2: Zj4 — Z/8 is the inclusion and ¢(V) e H*(SG; Z]2) is the suspension of the Wu
class Ve H¥(BSG; Z[2).

Let f: M — Q(RPY), be a map, f = (f;, /). As in Section 2, Ad(f) can be
factorized as

~

SIA0,
Ad(f): STAM, SUA M, ——> SUA RP?

and then D# is the collapsing map corresponding to f,, while 8o D# is the col-
lapsing map corresponding to Ao f.
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) Consider the map A¢0ly: N'— SG. Its corresponding normal map is of
~ the form

Yy > Uy
‘1

i

| .

Voo ¢
N N

where ¢ is the bundle map induced by 8|y, and 0y itself is the collapsing map
of 4o 0]y The function = F(DAlN)*: {N', Ky, 1} = Q/2Z satisfies (3.2). I—Ience,
according to Thm. 3.4,
(3.35)  A@T*THNY), P (Osdn)*s)

= AT W), $5)~23s((V(N') (h o Oplu)* @ (V)))aa-1) € 28

LeMMA 3.6. The index surgery obstruction of the map g = i° Aof: M — G/TOP
is given by )
s(M, g) = SI(Mafz)+4¢S((V(N) (Z.°f|N)*(°'(V)))2n—1)"
—4ps (VN30 (V))2n-1)~
—45(DRY*s (VN (R > Oglw)* (@ (V))2n-1)
e8Z/16Z = Z[2.
Proof. According to Thm. 3.3
si(M, g) = index(Mg)—index€M0)+
+2(A(T2"‘1(N’),@(Dﬁ)*@}s)—A(TZ"“l(N),g'ﬁs))+
+455((V @) (o f 15" (0 (V))an—s) '
and
s{M, f,) = index(My)—index (M) +
F2(ATP N, B(DRYS)— AT (N), 7)) +455((V(NFHE (V))ancs)
Hence
si(M, g) = si(M, f5) +2(AT*"(N"), §(DRY*07s)—~ A(T>" " (N"), §(DR)*s)) +
+4ps (VN o f 130 (V))an-1) = 45((VINIFF (0 F)))an-1) -
The conclusion of Lemma 3.6 now follows if we apply (3.5). H
COROLLARY 3.7. If f, is null-homotopic then

s (M, ioJof) = 4(@s(VN) Lo £l (e (V))an-1)—
—G(DRY((V(N') (o Ol (0 (V)))20-1)) € 8Z/16Z,
where 4: Z|AZ — 4Z[16Z is the isomorphism.
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THEOREM 3.8. If f, is null-homotopic then

si(M, io X of) = 4G(DAY (VN (Lo fo nly)* (o (V) +
+(ho O N')*(G'(V))DZ;:— 1)
e€82Z/16Z = ZJ2. ‘

Proof. Let us substitute a for (V(N')(Aefe mly)*(¢(V)))2s~1 and b for
(VN (Ao Oy (@(V)))2y—-1. Then a e n*(H*(N))= H*(N') and

as(VIN) e S 10 (V)))2n-1) = B(DR)*s(a)

since (D#)Y*n* = id. Denote ¢ = F(D#)*s. It follows from (3.7) that, in particular,
od)—pb)e Z2cZ/A=Q2Z.

According to Lemma 2.12 (see Section 4), a+be K*(N'). Thus L(a+b, a)
= {(a+b) U @, IN'Dy = {(a+b)Sq*(a), [N'Dy =0 since Sg'(a) e n*(H*(N))=
< H*(N').

Furthermore, since @ and b are clements of order 2,

o) = p(a+b)+o(@)+2L(a+b,a) = ela+b)+o(a).
Consequently, ¢(a)—¢(®) = ¢(B)—¢(@) = @¢(a+b) and
s, i0Xof) = Ho@—0®) = 4o(a+b).
Thus (3.8) is proved. B

4. The Wu. class. In this section we' prove Lemma 2.12. Homology and co-
homology with Z/2-coefficients is used and X, = K(Z/2, n) throughout the section.
For a given cohomology class x € H'(X) we may consider a cohomology class
0(x) e H(Q(X)). If x is represented by a map h: X - Kf then Q(x) is the co-

homology class represented by the composition Q(X )~—>Q(K )——>-K,, where the
map y, comes from the infinite-loop space structure of K,.
Let o(V) = Zo-( ;) € H*(SG) be the suspension of the Wu class V' = Z ;

e H*(BSG) and let w; € H/(BSG) be the jth Stiefel-Whitney class. Then a(vz,«)
=/0(wy) and o)) = 0 for j # 2", see [2; Remark 5.6] or [4; Sec. 3, Lemmal].
o(V) may be extended trivially to a cohomology class in H *(Q(S°)) We shall
write o(V) for this extended class as well.

There are two cohomology classes, Q((A.)*(c(¥))) and (7)),
H*(Q(RPT)). They are not the same. We shall now proceed to describe how they
both evaluate on the homology of Q(RP?%).

Let us first recall what Hy(Q(RPF)) looks like. Our main reference for thls
matter is [3; Part I]. For a finite sequence of integers I = (s, ...,s;) such that
5,20 we define

k k
dh =Y s, =k and e(d)=s—- 2 5.
j=1 Jj=2
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I'is said to be admissible if 25;2s;., for 2<j<k. The empty sequence I, is ad-
missible and satisfies d(Ip) = I(Ig) = 0, e(Ig) = oo.

Let e, H(RP®), i>0, be the nontrivial homology classes and let P(RPF)
= P[Q%(e))] i=0, I— admissible, e (1)>i, deg Q'(e))>0] be the graded polynomial
ring over ZJ2 generated by Q(e;)’s. Here deg Q¥(e;)) = i+d(I). Let us consider
the group ting Z/2[Z] as being trivially graded. Then

@.n Hy(QRPY)) = P(RED® 7222121,

see [3; Thm. 4.2 and p. 42]. Q¥(+)’s correspond to the Dyer-Lashof operations in
O(RP%). Let by € Z/2[Z] be the unit and let 1] be the element of Z/2[Z] given
by 1 & Z. The embedding j: RPY < Q(RPT) induces j,: Hy(RPT)— Hyu(Q(RPT))
and ju(e) = 0™@(e)®b, for i>0, jyleo) = 1®[1].

For aeP(RPY), be Z[2[Z] we say that a®b is decomposable if and only
if a is such. If a®b e P(RPY)®Z[2[Z] is decomposable then

(4.2) {Q(x), a®b> = 0

for any cohomology class x € H(RPY). Indeed, if 2 map #: RPY — K, represents x
then

{Q(), a®by = LQh)*1¥(1), a®b) = {1, 11, Q(R)s(a®D)),
where 1, € H(X,) is the characteristic class. Since both y, and Q(k) were infinite-
loop maps and a®b was decomposable, 7.0 (h).(a®b) is also decomposable.
Then (4.2) follows since ¢, is primitive for dimensional reasons.

Suppose now that I is a nonempty sequence and e(Z)>i. Then Q'(e,)®b,
= 0'(e;®b,), where Q(-) on the right hand side means the Dyer-Lashof oper-
ation in H,(Q(RPZ)). Since K, is connected,

70 (1)i(Q1 () ®B) = £(B) 7,2 2 (1)1 Q"(e2) ®o)

for any b e Z/2[Z], where ¢: Z[2[Z] — Z]2 is the augmentation. y,Q(h) is an in-
finite-loop map, hence 9,0 (), commutes with the Dyer—Lashof operations.
Furthermore, the Dyer—Lashof operations in Hy(K,) are all trivial, see [3; Lemma
6.1, p. 60]. Hence

7150 (1)+(Q(e) ®D) = &(b) 71, Q(M)(Q'(e:®b0))

= &(8) Oy Q(Mx(e;®bg)) = 0.
Therefore, for any x € H(RPZ)

(4.3) (@), Q'(ed®b) =0

if I is nonempty and e(I)>1i.
Finally, since the composition

RP? < QRP?) 22 (k) —25 K, is oqual to
(CX)) {Q(x), e;®b) = &(b)-<{x, €.
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Let us also recall that
4.5) {o(Wisi)s ged =1,
see [2; Lemma 3.5].

Formulae (4.2)-(4.5) describe completely the action of Q((l+)*(a(V))) on
H,(Q(RPS)). We shall now investigate the action of I*(a(¥)). The class o(¥) is
primitive for the loop sum product in SG, [2; Lemma 3.5], and Z is an H-space
map. Thus, if a®be H(Q(RP?)) is decomposable then
(4.6) ' Mo (), a®b> = 0.

Let us recall ([3; p. 42]) that H.(Q(S%) =& P(S°)®Z/2[Z], where P(S°)
= P[Q'[1]] I-admissible, e(I)>0, 4(I)>0]. Since 1 is an infinite-loop map and
L1(RP®)=SG, the induced algebra homomorphism L,: H(Q(RPT)) — Hy(Q(S®)
is of the form

Z*(Qf(e,-)@bo) = QI().*(ei))

and 3
Ax(1®b) = 1®b.
Furthermore A(e;) = Q'[1]* [—1], where * means the algebra multiplication in
H(0(8?), see [2; (8.13)]. Hence
o (7)), QUe)@b> = {a(V), 1(Q e)@b)> = {a(V), 1(Q'(e)) * b
= <o (V). QUOI] * [~1]) # B
= <o (), QUQTI = [—1]) = [1 -2V 2"V —1] % B)
/ = 22V =11% B)(a (), QHQT1] * [—1]) » [1-2""]),
where &y: Z[2[Z] — Z[2, go[m] = 0 for me Z, m # 0, and [0] = 1.
If I is nonempty and d(I)+i>0 then
0N (01]* [—1]) = QX Q1] * [-2"P] modulo decomposable elements in
H(Q(5%).
Thus, since (V) is primitive,
Ca(V), QUL * [—1]) » [1-2P]) = {a(¥), QNQT1D * [1=2"P* ]
It was proved in [15; (6.3)], see also [3; p. 127-128], that
(o), QUQTID * [1-2P*']) =0
except for the case when I is empty or i = 0.
Hence, if I is nonempty and i>0

4.7 He(7), Qe)®by = 0.
Finally, for i>0
48) Ko (1)), @b = (o (V), Iu(e:®b)) = <o (V), Ly(e) + b
= {a(V), Q1] *[~1]+b>
= &o(b)<a(V), QY11 [—11> = &B)<a(V), uled>.
Observe that gq(bg) = &(by).
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It follows from the formulae (4.2)-(4.8) that
L[ @), ¥y = <Ko (1), 7

if y e Hy(Q(RP%)) and either y is decomposable or y = Q'(e)®b with i>0 and ’

I nonempty, or y = e;®b, with i=0. ‘ ' .
Let dy: RPE — S° be the nontrivial map. Consider the induced homomorphism

0 (dy)s: H*(Q(RP:?)) - H*(Q(SO)) . )
i o rations, dy).(e;) = 0 for
Then Q) commits vith (10 e ot or the e of Q{00
and let D, = D n Hy(Q(RPS),). Then for any z€ Dy
“9) O[> = e ), 2.
Proof of Lemma 2.12. We follow the notation of Section 2. Lemma 2.12
will be proved if we show that
(4.10) (DAFE (Lo f o W) (1) = (hs 2 00 (M) = 0.
where ¥ is the suspension in-cohomology.
Since f, is null-homotopic,
411 (DAY Ao fYH (o (V) = (o DRI/ * (I4e (V)
= IV (Txo (V).
Furthermore (SYA @) o Dit = Ad(f), (see (2.4)), and Ad(f) = pppy-1° (S™),
(see the proof of Lemma 2.5), thus '
(DRI O%% (0 (V) = (ST A0 0 DAY VI (0 (V)
= Ad(FYE I (6 (V) = () *itgpy-2"I3 (6 (V)

Now, for any xe H(Y), Y being a space, one has
w3y = ZVO(x) € HH N (SYQYS™( ).

Here Qy(x) is the cohomology class represented by the composition

vy IS oNgNg sk, and b Y= K,

is the map representing x.
Hence
@12 (DHT e = S QW (1) = I QW (VD))
Since f, is null-homotopic, the composition Q(dp) of is null-h~omotopic as
well (indeed, Q(dp) of is always homotopic to f3). Consequently, fu(H(M))=D;.
It now follows from (4.9) that

FHREA( (M) = F*A*(@(V)
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and, consequently, from (4.11) and (4.12)
(DRI a0 fY¥ (o (V) = (DR*ZV0%2% (0 (V).
Thus (4.10) is proved and so is Lemma 2.12. B
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