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‘Thus the map g, © ngﬁ,* 9 {s homotopic (relatively to the base point) to a map which
coincides the map ¢ s "og,, on the k-skeleton X g,’;},+ o of Xpsg- By Cor-

ollary (8.2) the maps g% g, optin™ and giIi™ o g, ; are homotopic (relatively
to the base point). Thus the maps g, ° eI and g © Guss are homotopic (rela-
tively to the base point), where J, = dn-s° In-

Thus the maps §,, where n = k-s+1, ke J, define a morphism (in procategory

homotopy) of X in a subsequence of Y. Since.

nk(gn) = nk(q:——s) © Py,

we can define required f.

References

[11 K. Borsuk, Theory of Shape, Warszawa 1975.

2] J.Dydak andJ. Segal, Shape theory, an introduction, Lecture Notes in Mathematics vol. 688,
Springer-Verlag.

31 S.T. Hu, Cohomology and deformation retracts, Proc. London Math, Soc. 53 (2) (1951),
pp. 191-219.

[4] — Homotopy Theory, Academic Press, Inc., New York 1959.

5] A.XKadlof and S. Spiez, Remark on the fundamental dimension of cartesian product of
metric compacta, to appear.

6] S.Marde$ié and J. Segal, Shapes of compacta and ANR-systems, Fund. Math. 72 (1971),
pp. 41-59.

171 M. Moszynska, The Whitehead theorem in the theory of shapes, Fund, Math. 80 (1973),
pp. 221-263.

181 S. Nowak, On the fundamental dimension of cartesian product of two compacta, Bull. Acad.
Polon. Sci. 24 (1976), pp. 1021-1028

1] — Algebraic theory of fundamental dimension, Dissertationes Math. 187 (1981).

[10] S. Spiez, 4n example of a continuum X with FA(X % §*) = Fd(X) = 2, to appear.

[11] — On uniform movability, Bull. Acad. Polon. Sci. 22 (1974), pp. 43-45.

[12} N.E. Steenrod, Homology with local coefficients, Ann. of Math. 44 (1943), pp. 610-627.

[131 — The topology of fibre bundles, Princeton University Press, Princeton 1951.

[14] J.H. C. Whitehead, Combinatorial homotopy II, Bull. Amer. Math. Soc. 55 (1949),
pp. 453-496.

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES

INSTITUTE OF MATHEMATICS
DUNIVERSITY OF WARSAW

Accepté par la Rédaction le 28. 4. 1980

icm

On a Problem of Silver

by
Arthur W. Apter (Newark, N.J.)

Abstract. We show that it is consistent, relative to an @ sequencev of measurable cardinals,
for N to bea Rowbottom cardinal and for DCy, to hold, where 7 is an arbitrary natural number.

Of all of the large cardinal axioms which are currently known, the axioms
which assert the existence of Rowbottom and Jonsson cardinals are amongst the
more interesting hypotheses. Most large cardinal axioms assert, at least when the
Axiom of Choice is true, that the cardinal in question is strongly inaccessible. This,
However, is not true about Rowbottom and Jonsson cardinals. Indeed, Devlin
has shown [3] that it is relatively consistent for 2% be a Jonsson cardinal,
and Prikry has shown [6] that, assuming the consistency of a measurable cardinal,
it is consistent for a Rowbottom cardinal of cofinality  to exist.

The above results inspire the following question: How large is the least Row-
bottom cardinal? Silver in his thesis [7] hypotheses that it is relatively consistent
that the answer is §,, assuming the Axiom of Choice.

~ The answer to Silver’s question is still not known, and is the only remaining
unsolved problem from Silver’s thesis. We have obtained a partial answer to Silver’s
question by showing that it is consistent, relative to the existence of an w sequence
of measurable cardinals, for x, to be a Rowbottom cardinal and for a large portion,
though not all, of the Axiom of Choice to be true. Specifically, we have proven
the following:

THEOREM 1, Assume that the theory “ZFC + There is an @ sequence of measur-
able cardinals” is consistent. Let ny € @ be a fixed (though arbitrary) natural number.
Then the theory “ZF 4 DCyy,+ 8, carries a Rowbottom filter” is consistent.

Note that some strong hypothesis is needed to obtain a model which witnesses
Theorem 1 since an unpublished result of Silver shows that if &, is 2 Rowbottom
cardinal, then it must be measurable in some inner model. Note also that other
partial results on Silver’s problem have been obtained. In particular, Bull in his
thesis [2] showed that, assuming the conmsistency of a measurable cardinal, the
theory “ZF+Vnew[2® = §,.;]+8, s a Rowbottom cardinal +71AC,” is
consistent.

Before beginning the proof of Theorem 1, we briefly mention some back-
ground information. Basically, our notation and terminology are fairly standard.
3 — Fundamenta Mathematicae CXVI/1
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We work in ZF, both with and without AC. Lower case Greek letters o, f, y, ...

denote ordinals, with the letters », 4, and § generally being reserved for cardinals.

V denotes the universe. For x a set, |x| denotes the cardinality of x, and 2% denotes

the power.set of x. For a<f, [B1**= U {f: f is a strictly increasing function
d<u

from 8 to B}. For f a function, f } x is f restricted to x, and f"'x is the range of f
on x. For o an ordinal, %7 is the ath least cardinal > x.

‘When we talk about forcing, I will mean “weakly forces” and || will mean
“decides”. p<g means that ¢ is sironger than p.

For x a cardinal, DC, is the following assertion: Assume that X is a set and
that R is a binary relation on X so that for {x,: «<f<x) a sequence of elements
of X, there is some x € X so that {x,: a<f <») Rx. There is then a function f: % — X
so that Ya<x[f | aRf(&)].

‘We recall Levy’s notion of forcing, Col(x, 4), for collapsing an inaccessible
cardinal 1 to the successor of a regular cardinal x. Col(x, ) = {f: /> ¥xA =4
is a function so that |dmn(f)|<x and so that <o, ) € dmn( f) = f() <f}, ordered
by set-theoretic inclusion. Any compatible collection of conditions of cardinality
<% in Col(x, ) thus has an upper bound.

Finally, we assume that the reader is familiar with the notions of measurable
cardinal and Rowbottom cardinal for which we refer the reader to [8] and [4].
We only mention what a Rowbottom filter is. For % a cardinal, we say that F is
a Rowbottom filter over x if Fis a filter and for §<x, H: [x]“® — §, there is a set
CeF so that |C| = % and [H"[C]°"|<w.

We now turn our attention to the proof of Theorem 1.

Proof of Theorem 1. Let ¥k “ZFC+{x,: n<w) is an increasing o sequence
of measurable cardinals”. Let i, be a fixed normal measure on x,.

Our proof extends ideas found in [1]. First, fix #, € © an arbitrary natural number
no. Next, define a sequence {P,: n<w) of partial orderings by Py = Col (80415 %),
and for n>0, P, = Col(%,_;, x,). We then define our partial ordering P as TP,

New
ordered componentwise, i.e., for p, ge P, p = {p,: n<w), q = {gy: n<w), p<q

iff Vn[p,<q,]. Note that we are allowing a condition p to be nontrivial infinitely
often.

Let G be V-generic on P. By the product lemma for product forcing, the pro-
jection of G onto its nth coordinate, G,, is V- generic on P,. Also, for & & (8,51, %o}
or a e (%, x,) (we use standard interval notation here), G, ba ={peP,: peqG,
and dmn(p)sx,_, xa} is V-generic on P,} o.

We are now in a position to describe the model N, a certain submodel of VIGT,
which will be the desired model. First, let I, = (8ng+15 %0) and for n>0, I,
= (#_1,%,). Let I= T, and let K={f: f* @I so that S el}. For

new

a particular fe K, let G } f = [ G, } f(n). N will be the least model of ZF ex-

neo

tending ¥V which contains each G } f for Se K. More formally, we define N as
follows: Let L; SL, where L is the forcing language with respect to P, be a ramified

iom®
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sublanguage which contains a predicate symbol ¥V (to be interpreted as V(v) <
<« pe V), symbols p for each ve ¥, and symbols G b f for each fe K. N is then

defined by

NO = ﬁ B
N, = UN, for 2 a limit ordinal,
o< A
N,p1 = {x&N,: x is definable over N, by a formula @ e L, of rank <o},
N= U N,
e Ordinals

Standard arguments show that Nk ZF. Also, note that we may assume that
each v for ve V is invariant under any automorphism of P, and that any term k4
which— only mentions G | f is invariant under any automorphism of P 1fvhich is
generated by a function which is the identity on ordinals o such that e e (%,_1, f(n))

€ (8ngs1,S(0))
o ?N(:Tc;iv{b(eg)i)n the proofs of a sequence of lemmas which show that N is our
desired model.

Lemma 1.1. If x is a set of ordinals so that x € N, then x € VIG } f]for somefeK.

Proof of Lemma 1.1. Let t be a term which denotes x, and assume that
pIF“cca” for some a. As T denotes a set in N, © will mention only finitely many
G | f terms. These can all be coded with one such term; if G } f1 s s G VS are®
the terms which appear in 7, then we can define f(n) = sup fi{n) and use G | f to

ism

define 7. Thus, without loss of generality, we assume that = mentions one G | f-

Let g=p be so that g “fec”. We claim that g }f = <{g rf(n):“necu”}
where g, | f(n), the function g, restricted to (M:.i, (m)), is such that g } fir“g et”.
If this is not so, then let r3¢ | f be so that ri-“f¢<”. Using the standard properties
of Levy conditions, there is an automorphism 7, of P, which is generatc.:d by a fu.nc-
tions which is the identity on (11, /(1) oF (Ss+15f1 (0)) so that 7,(q,) is compathle
with r,. 7 = {m,: n<w) is then an automorphism of P so that 7(g) is c.ompatlble
with r. However, n{g) I “fet” and r - “B ¢ ", and this is a contradxctxcin. T}}.us,
in V[G } f]we can define x, assuming p € G, by x = {f<e:qqeG b flg-“Be 3.
This proves Lemma 1.1. B

Lemma 1.2, Let A = U %,. Then NE“L = 8,

new

Proof of Lemma 1.2. By definition of N, for each 0 € (M1 o) ©OF
a&(y,%,)G, } «eN. Hence, there are no cardinals present “in any ”of. these
open intervals. Therefore, Nk “A<&,” Thus, to show tha.t NE“A = R,”, it suf-
fices to show that ), and each x,.; for n>1 remain cardinals.

As any set of ordinals in N must be in V[G } £f1 for some f by ]‘demr,na 2.1,
if we can show that V[G } f1E “xy, and each x,.; for n>1 are cardinals”, then
we are done. To do this, let us view P | f (where P } fis defined similarly to G } )
as [] Q,, where Q, is a subordering of P,. Each such Q, will have the same

new
3%
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closure properties of P,, i.e., each 0, will be so that for n = 0, any collection of
compatible conditions of cardinality %,, has an upper bound and for n>0, any
collection of compatible conditions of cardinality »,_; has an upper bound.
Now P | f can be viewed as ( ] Q) x([] Q). Since any ge [] Q; is such
i<n i i

izn izn
that its jth coordinate is a function in an ordering which is at least »,_ 1 closed,
and since g can be non-trivial infinitely often, 1 ©; is a partial ordering which

izn
is 2, closed. Thus, forcing with this partial ordering will preserve the fact that
¥p-1 18 a cardinal. By definition of Q;, | [] Q)l<%,-;. Thus, forcing with this
i<n

partial ordering will preserve the fact that x,_, is a cardinal. Since by the product
lemma, forcing with P } f is the same as first forcing with I1 @ and then forcing

izn

with [ O, the above shows that in VIG t f1, each x,_, is a cardinal. The above

i<n
arguments also show that P | fis »,, closed, since P, is. Thus, 8, Temains a cardinal
in V[G | f]. This proves Lemma 1.1. B

LemMA 1.3. Nk “s, carries a Rowbottom Silter”.

Proof of Lemma 1.3. In N, let F = {4ci: dnVmznlu,(d nox,) = 1]
As each u, is a measure on x, in ¥, F is clearly a filter. To show that F is 2 Row-
bottom filter over A(= &,) in N, let §<A, and let g e N be so that g: [A1°9 = 6.
As g can easily be coded by a set of ordinals, by Lemma 1.1 g e V[G } f] for
some f'e K. Thus, as ¥[G } f]< N, we will be done if we can find 4 ch Ae VGt f]
so that 1g"[A]™°|<o and so that ImYazm{u, (4 A %) = 1].

- To show this, we first note that in V[G } 1, each », is a measurable cardinal
with 'normal measure = {ASx,: AB< A[u,(B) = 1]}. This is since, using the
notation of the previous lemma, we can write P as HoxIT0o. [10is %,

iz i<n

izn izn

closed as we have already observed, so forcing with it will add no new subsets
to x,_, and hence preserve the fact that %,y 18 measurable with normal measure
yoq. | ]:I Ol <w,_,; this is since £(0) e (8015 %0) and for n>1, f(n) e (%5 %)

I<n o ’

s0 as each x, is strongly inaccessible, [Qd <2, s0 | [T Oyl <x,_;. Hence, by the
. . ) i<n
results of Levy-Solovay [5], forcing with IT Q; leaves »,_; a measurable cardinal
i<n

w%th normal measure u_, as defined above. Since by the product lemma, forcing
with P | f can be viewed as first forcing with [] Q; and then forcing with. ] @,,

. . : izn i<p
and since n above is arbitrary, each %, Will in ¥[G } '] be a measurable cardinal

with normal measure y.
) By a theorem of Prikry [6], in V[G } ] F' = {Asi:InVmzalui(d A x,) = 17}
is a Rowbottom*ﬁlter on A, so in this model let A=) be such that lg" AT "< w
and InVmznui4 n %) = 1]. For such an n and for any m2n, there is a set
B,=4nxn, so that u,(B,) = I; use AC in V[G }f] to pick such sets B

m
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B= U B,, will then be so that |g"[4]"°|<w, FInVm=n [p::(Bm x,) = 1], and

mzn

AnVmzn|p,(B N x,) = 1]. This proves Lemma 1.3.
LemMMA 1.4. NEDCy, .

Proof of Lemma 1.4. First, note that, by arguments as in Lemma 1.2, since
each P, is at least &, closed, and since a condition p € P can be non-trivial infinitely
often, P is §,, closed, so &,, is the same in ¥, N, V[G], or V[G }f] for any fe K.
Now, let py - “XeN is a set and Re N is a binary relation on X so that for
Xyt < <8,y a sequence (in N) of elements of X, there is some x e X so that
(X, a<f<w,»Rx", and assume that p, I “zo e X™. Define (in V) inductively
a sequence {7, a<,> of terms and a sequence {p,: u <, > of forcing conditions
as follows: p,. is a condition which extends p, so that p,y, I “{tp: B<ap R,
and 7,4, is such a 7. For § a limit ordinal, p; is a condition which extends each p,
for o< and 7; is the sequence {r,: a<8D; note that the closure properties of P
ensure that p; exists.

Finally, let p extend each p,. As above, the closure properties of P imply the
existence of p. By the fact that each P; is a Levy collapse ordering, pe P } f for
some fe K (each p;where p ={p,: i<w) is an element of Col(x,,+ 1, &) for @e(s,,, %0}

“or Col{;_4, o) for ae (2¢;_y, %;)). Thus, p I “t,: & <,,» is a sequence in N so that

for B<ty,,{7,: a<f)Rtg”. This proves Lemma 1.4. B

Note that in the above lemma, we assumed that X and R could be evaluated in
N. However, as X, Re N, an fe K such that pe P } f and X and R may be evalu-
ated in N certainly exists.
Lemmas 1.2-1.4 complete the proof of Theorem 1. B

In conclusion, we note that DCy, ,, is false in N. This is since any set of
ordinals must be in V[G { f] for some fe K, but G, (which can be coded by a set
of ordinals) lies in no such V[G }f].
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On a shape characterization of some two-polyhedra
by

Stanislaw Spiez (Warszawa)

Abstraet. The main purpose of this paper is to give a shape characterization of surfaces.

Introduction. X. Borsuk has formulated the following problem: give a shape
characterization of manifolds. We solve this problem in a very special case: for
surfaces (i.e. closed 2-dimensional manifolds). We will prove (Corollary (2.11) and
Theorem (3.23)) the following: )

THEOREM. A continuum (metric) X has the shape of a surface if and only if X is
pointed movable, the shape dimension FA X is 2, the second Cech homology group
H.(X,Z,) = Z, and the first shape group 7,(X) is isomorphic to a fundamental
group of a surface.

In fact, in § 2, we give a shape characterization of two polyhedra of a class
which contains all surfaces with the trivial second homotopy group (Theorem (2.9)).

In § 3 we give a shape characterization of a bouquet (one point union) of the
projective plane and 2-spheres.

If X is a connected compact FANR with vanishing “Wall obstruction”, then
X has the shape of a pointed finite simplicial complex with dimension max(3, Fd X),
see [8]. There is no shape characterization of the class of all (finite) two-polyhedra.
If X is a connected compact FANR with vanishing “Wall obstruction”, FdX = 2
and 7,(X) & Z,, then X has the shape of a (finite) 2-polyhedron; X has the shape
of a bouquet of the pseudoprojective plane of order p and 2-spheres.

‘We assume that the reader is familiat with the basic notions of shape theory
for metric compacta (see [2], [4] or [17]).

1. Shape of pointed movable continua with fundamental dimension 2 and with
finitely presented 1-shape group.J. Krasinkiewicz has proved ([12], Theorem 3.1,
p. 151 and Theorem 4.2, p. 152) that if (X, x) is a pointed 1-movable continuum
then there exists a pointed ANR-sequence (X, x) = {(X,, X,), Py} associated with
(X, %) (.e. lim(X, x) = (X, x)) such that the corresponding sequence of fundamental
groups 7;(X, x) is an epi-sequence; if (X', x') = {(X", x), py"} is any ANR-se-
quence associated with (X, x) then X, can be obtained from X, by attaching to X,
a finite number of 2-cells. Tt is easy to see ([3], proof of Theorem 2, p. 616) that
if G=1{G,,q}} is an epi-sequence of groups such that the inverse limit imG is
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