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On a shape characterization of some two-polyhedra
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Stanislaw Spiez (Warszawa)

Abstraet. The main purpose of this paper is to give a shape characterization of surfaces.

Introduction. X. Borsuk has formulated the following problem: give a shape
characterization of manifolds. We solve this problem in a very special case: for
surfaces (i.e. closed 2-dimensional manifolds). We will prove (Corollary (2.11) and
Theorem (3.23)) the following: )

THEOREM. A continuum (metric) X has the shape of a surface if and only if X is
pointed movable, the shape dimension FA X is 2, the second Cech homology group
H.(X,Z,) = Z, and the first shape group 7,(X) is isomorphic to a fundamental
group of a surface.

In fact, in § 2, we give a shape characterization of two polyhedra of a class
which contains all surfaces with the trivial second homotopy group (Theorem (2.9)).

In § 3 we give a shape characterization of a bouquet (one point union) of the
projective plane and 2-spheres.

If X is a connected compact FANR with vanishing “Wall obstruction”, then
X has the shape of a pointed finite simplicial complex with dimension max(3, Fd X),
see [8]. There is no shape characterization of the class of all (finite) two-polyhedra.
If X is a connected compact FANR with vanishing “Wall obstruction”, FdX = 2
and 7,(X) & Z,, then X has the shape of a (finite) 2-polyhedron; X has the shape
of a bouquet of the pseudoprojective plane of order p and 2-spheres.

‘We assume that the reader is familiat with the basic notions of shape theory
for metric compacta (see [2], [4] or [17]).

1. Shape of pointed movable continua with fundamental dimension 2 and with
finitely presented 1-shape group.J. Krasinkiewicz has proved ([12], Theorem 3.1,
p. 151 and Theorem 4.2, p. 152) that if (X, x) is a pointed 1-movable continuum
then there exists a pointed ANR-sequence (X, x) = {(X,, X,), Py} associated with
(X, %) (.e. lim(X, x) = (X, x)) such that the corresponding sequence of fundamental
groups 7;(X, x) is an epi-sequence; if (X', x') = {(X", x), py"} is any ANR-se-
quence associated with (X, x) then X, can be obtained from X, by attaching to X,
a finite number of 2-cells. Tt is easy to see ([3], proof of Theorem 2, p. 616) that
if G=1{G,,q}} is an epi-sequence of groups such that the inverse limit imG is
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countable, then ¢® is an isomorphism for sufficiently large n (otherwise limG
contains the Cantor set). Thus we have the following

(1.1) ProposiTION. Let (X, x) be a pointed 1-movable continuum with a count-
able 1-shape group 7,(X,x). Then there exists an inverse sequence (X, x)
= {(X,, x,), P} of pointed connected polyhedra associated with (X, x) such that

(1.2) =X, x) is an iso-sequence and dim X, <max(2, FdX) for every n.

Let (X, x) be a pointed 1-movable continuum with Fd X = 2 and with 7,(X)
~ 7,(Q), where Q is a connected 2-polyhedron. Then there exists an inverse se-
quence of connected 2-polyhedra (X, x) = {(X,, x,), Pn} associated with (X, x)
satisfying condition (1.2). Since 7,(Q) = 7 (X) = n,(X;) for every n, by a theorem
of Whitchead [24] there exist integers k,,l, such that X, vk, S* and QvI,S?
have the same homotopy type (here Yv kS2 denotes a one-point union of a space
Y an k-copies of 2-spheres S2). Thus it is easy to obtain the following

_(1.3) PropostTioN. Let (X, x) be a pointed 1-movable continuum with
FdX =2 and 7(X) = n,(Q), where Q is a 2-polyhedron. Then there exists an
inverse sequence (X, x) = {(X,, x,), Pi} of connected 2-polyhedra such that

(14) Sh(X,x) = Sh(im(X, x), 7,(X, x) is an iso-sequence and X, = Qvis*

for every n.

2. A shape chracterization of surfaces with trivial 2-homotopy groups. Let ZG
denote the integral group ring over a group G, and let 4,(G) denote the fundamental
ideal, i.e. (n; gy +n2g,+...+1,9:) € 47(G) (where n;e Z and g,- e &) iff (ny+ny+...

.+m) =0. We say that 4,(G) is residually nilpotent iff ﬂ AHG) = 0. Let us
formulate the following

(2.1) LEMMA. Let f: @ ZG - @ ZG and g: (—BZG - @ZG be ZG-homo-
morphisms of ZG- modules such that imf = im(fo g) and thaz‘ imgc G) 4,(G)
< @ ZG. If Ay(G) is residually nilpotent, then f is trivial.

Proof Observe that imf = im(fo g)< @ A7(G) and if imfc EB AL(G) thcn

imf = im(fog)c @ 45 1(G). Thus imf< ﬂ A%(G) = 0, and so f is trivial.
k I=1
Now we will prove the following

(2.2) LeMMA. Let R be a principal entire ring and let E be a finitely generated
R-module. If {E,,f%} is an inverse sequence of R-modules such that

(23) E,=E@ F,, where F, is a free R-module,
@4) fUFENF, |

(2.5) the composition r, o fy oi,: E — E, where i,: E— E, is the inclusion and
r,: E, — E is the retraction which maps F, onto 0, is an isomorphism,
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(2.6) {E,,fu} satisfies the Mittag-Lefler condition,
(2.7 Um{E,,f3"} and E are isomorphic,
then for integer n there is an integer m such that fj(F,) = 0.

Proof. By (2.6), we may assume (we take a subsequence) that

(2.8) imf* = imf"*!  for every m>n.

. - . +1 ) . .
Since the image f,'" *(F,+,) is a free submodule of F,, F,,, is a direct sum of mod~
ules F.,, and F!, such that f"*YF,,; is a monomorphlsm and f7FYF), is.
trivial. Thus fi** = g, o #,.,, Where

Fars: Bye1 = E@ Frot ® Fpiy » E, = E® Fru

is the retraction which maps Fy\,, onto 0 and g, = f;**|E,. Observe that, by (2.4),,
(2.5) and (2.8), it follows that fi*(F, +1):>F’ So the map fi¥! = Fipyogury:
E,.., - E, is an epimorphism and f2*(F},,) = F,, . Observe that £, = E® Fy 4
can be embedded into the inverse limit lim{E,, f"} which is isomorphic to E (for
every n). Since E is finitely generated, F'., , is trivial for every n, and 50 f7¥ *|F, 4,
is trivial.

We will prove

(2.9) TueoreM. Let Q be a connected aspherical (i.e. wo(Q) is trivial) 2-poly-
hedron such that AZ(nI(Q)) is residually nilpotent. Let X be a pointed movable con-
tinuum with FdX = 2. If ,(X) = n,(Q) and Hy(X, R) = H,(Q, R) for a principal
entire ring R then Sh(X) = Sh(Q).

Proof. By Proposition (1.3) the continuum X has the shape of the inverse
limit of an inverse sequence {Q,, py} such that 0, = OvI,8? and ()4 is the
isomorphism of 1-homotopy groups. The composition 7, py o1,: @ — @, where
i, Q- Qv1,5% is the inclusion and r,: @, = QvI,8*— Q is a retraction,
induces an isomorphism of 1-homotopy groups. Since @ is a space of K(x, 1)-type
(i.e. m,(Q) is trivial for n>2), r, o pj o i,, is a homotopy equivalence. So the homo-
morphism

(rn °P:;" ° im)*: HZ(Qa -R.) —7H2(Q: -R)

is an isomorphism. The R-module H,(Q,, R) is a direct sum of H,(Q, R) and
F, = H,(I,8* R) = @ R. Since n,(Q) is trivial, the homomorphism

In

(p;n)*: HZ(Qnu -R) - HZ(Qna R)

maps F,, into. F,. The sequence {Hz(Qy, R), (p™)4} satisfies conditions (2.3)~(2.7).
Thus by Lemma (2.2), we may assume (if necessary we choose 2. subsequence) that.

(P™u(F,) = 0 for every m>n.
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We consider 7,(Q,) as the Z(n;(Q))-module @ Z(n;(Q)). Since (p)«(F,) = 0,
the image of the Z(m;(Q))-homomorphism b

(Pr)#,ﬁ 72 Q) = T2(Q,)

is included in @ 4(n,(0)). Since X is movable, we may assume (we choose a sub-
o
sequence if necessary) that im(pp)y, » = im(pﬁ“)ﬂ.,2 for every m>n, and so in
particular im((ph* g, 20 (PhiDs,2) = im(pi" 4, 2. Thus, by Lemma (2.1), the
homomorphism (pj* ")y, is trivial. Thus the map p;* is homotopically equivalent
to a map which maps every 2-sphere S? of Q,.q = QV/,4, 582 onto the base
point of @, = QvI,S% So the inverse sequence {Q,, py} is homotopically equiv-
alent to an inverse sequence {Q,py"} such that O, = Q and p;" is a map which
induces an isomorphism of 1-homotopy groups, and so p," is a homotopy equiv-
alence. So X and Q have the same shape.

Let o be a group property. We say that a group G is residually « if, for every

nontrivial element x € G, there exists a normal subgroup N, of G such that x ¢ N,

and the group G/N, has property o.

Let H be a normal subgroup of a group G of index p¥, where p is a prime
integer. If H is a residually “finite p-group” then G is also a residually “finite
p-group”. ,

The fundamental group of an orientable surface is a residually “finite 2-group”
{(see [9]). For every non-orientable surface M we have a two-fold covering q: M — M,
where M is an orientable surface. The image q4(n;(M)) is a normal subgroup of
7y (M) of index 2. Since ¢4 is a monomorphism, g4(n,(¥)) is a residually “finite
2-group”, and so also w;(M) is a residually “finite 2-group”. Thus we have the
following

(2.10) PROPOSITION. The fundamental group of a surface is a residually “finite
2-group”.

The problem of characterizing the groups G with 4,(G) residually nilpotent
has been solved by Lichtman (see [15] or [19], Theorem 2.30, p. 92). In particular
([19], Theorem 2.11, p. 84), if G is a residually “nilpotent p-group of bounded
exponent”, then 4,(G) is residually nilpotent. Since every finite p-group is nilpotent,
by Theorem (2.9) and Proposition (2.10) we have the following

(2.11) CoroLLARY. Let M be a surface with n,(M) = 0. Let X be a pointed

movable continuum. If FAX = 2, #,(X) = n,(M) and Hy(X,Z,) = Z, then Sh(X)
= Sh(M).

Since the free product of residually “finite p-groups” is also residually “fnite
p-group” (see [10] or [16]), we have the following

(2.12) Cororrary. Let Q be a finite bouquet of aspheﬁ'cal surfaces. If X is
" .a pointed movable continum with FdX =2, 7,(X) = n,(Q) and Hy(X, R)
= Hy(Q, R) for. a principal entire ring R, then Sh(X) = Sh( o).
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3. A shape characterization of a bouquet of the projective plane and 2-spheres.
The projective plane we denote by P and let p be the base point of the bouquet
PvkS® By Z we denote the group of integers Z with involution; so Z is a ZZ,-
module on which the group Z, acts nontrivially.

Let ¢, be the element of n,(P v kS?, p) induced by the composition of a cover-
ing map (S, 5) - (P,p) and the inclusion (P,p) — (PvkS% p). Let & be an
element of m,(PvkS?, p) induced by the inclusion (S2, s5) - (PvkS? p) which
maps S* onto the ith 2-sphere of PvkS2 The ZZ,-submodule M, of the ZZ,-
module m,(PvkS?, p) generated by ¢, is isomorphic to Z. The ZZ,-submodule M;
of my(PvkS? p) generated by ¢ is isomorphic to ZZ,. The ZZ,-module

k

7,(P v kS®, p) is isomorphicto @ M;. By a we denote the generator of the group
i=0

Z,. Now we will prove the following:
(3.1) Lemma. Let f;: (P, p) — (P v kS?, p) be a map which induces an isomorphism

- of the fundamental groups, i = 1,2. If (f)s,2 = (f2)#,2: TP, p) = no(PVES?, p)

then f, and f, are homotopic rel.p.
Proof. For a map f: (P,p) = (PvkS?, p), we can define a map ' = frel.p
"
(using Borsuk’s homotopy extension theorem) which maps the sum {J D; of
m j=1
discs Dy, Dy, ..., D, (D;=P\{p}) into &S* and maps (P\ U D;) into P. We can
=1
find a family of mutually disjoint arcs L;, j = 1,2, ..., m—1, such that
L; n D; and L; n Dy are the ends of L,
L; is disjoint with Dy, if j' # j, j+1,
J'IL; is homotopically trivial rel. the ends of L;.
Thus by Borsuk’s homotopy extension theorem we can get a map f*'=f " rel.p
which maps a discD into kS? (p € D) and maps (P\D) into P.
Let g: P — P/D = PvS? be the natural projection and let f: (Pv S%,p) —
— (PvkS?, p) be the map such that fog = f". Thus f = Jo g rel. p. By the de-
finition of f we have

(3.2) F(PyeP and f(SHckSE.
Observe that
(3.3) Gu.2(80) = go+{a—1)eg .

Since fy,, is a ZZ,-homomorphism, we have
(3.4 Fa2(80) = lo+1(a—1)es +...+hla—1)e,
where Iy, I, ..., J, are integers. By (3.2)-(3.4) we obtain

f#,z(ﬁo) = lp&o

.7#,2(51) =lig+hey+.. g

Since (f)u,2 = (f)4,25 we have (F)u,2 = (F2)s,2-
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Olum [18] has proved that maps of (P, p) onto itself which induce isomorphisms
of the fundamental groups and which induce the same homomorphisms of 2-homo-
topy groups are homotopic rel. p. Tt follows that the maps f; and f, are homotopic
rel. p. Thus f; and f, are also homotopic rel. p.

(3.5) Remark. Olum [18] has proved that maps of pseudoprojective plane
(Py,p) onto itself which induce isomorphisms of the fundamental groups and
which induce the same homomorphism of 2-homotopy groups are homotopic rel. p.
Lemma (3.1) will still be valid if we replace the projective plane P by a pseudo-
projective plane P;. The proof of this generalization of Lemma (3.1) is similar to
the above but a little longer.

Let Q be a polyhedron with H,(Q) = 0. By s; we denote a generator of the
group H,(Q vIS?) which corresponds to the ith 2-sphere of the bouquet Q v IS>,
Let g be the base point of the bouquet Qv IS2 We will prove the following

(3.6) Lemma. Let (Q,q) = {(Q,. 9), 3"} be an inverse sequence such that
0,=0vILS% If Q=1{0,.fI'} is a movable sequence then there is an inverse
sequence (@', q") = {(On, ), g5), O = @V k,S?, homotopically equivalent to (Q, q)
and a sequence of integers {k}}, ki<k,, such that

(3.7)  for every n there is an m(n) such that Op = Qe

(3.8) G Ods) =0 ¥ knpi<i<kyiq,
(3.9 @il =50 ¥ 1<ikyyy,
where (gi*™ '), is the homomorphism of the second lwi}wlogy group over the coefficient

integer group Z.

Proof. We may assume that for every n there is a map 7,1t Opuy = Ouis
such that £ ® or,,; = fi*! (if necessary we take a subsequence). Since H,(0,)
= H,(1,8%) is a free abe]lan group, for every n there is a free abelian group F, .,
such that Hy(Qui1) = Foii ® G,y where Gpiq = ker(f7*Y),. Observe that
(f2*Y,|F,+; is a monomorphism. Let

Foy1 = (fgif e rn+])*(Fn+1)

for every n. We know that

n+1)*(Fn+1) = (f"+2 © Fuart)a Fpiy) = (fz:‘“)*u—'mx) = im( "+1)

If @€ Hy(Qys), then (/¥ )u(@) = (f")u(b) and so a—beker(fI™Y), = Gy,
for somc element b€ F,. . Thus Hy(Q,4q) = n+1+G,,+L Since (£ Yl By

= (fF*%or,, )ulF,ry is a monomorphism, ( St ),,,IF,,+1 is a monomorphlbm it
follows that F,i1 0 Gyiy = Fuy nker(f™"), = 0. Thus Hy(Qpi)) = Fuy @
@ G4y Observe that Fypy = im(f5 De = (FidD)(Fuys). It follows that Friz
is a direct sum of free groups F,,y and F,, such that ( I H),,,l weo 18 an iso-
morphism onto F,,; and ( f“”)*(F,ﬁ.Z)CG,,.H
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By induction we can define for every n>2 a minimal set o, a5, ..., ay of gener-
ators of Hy(Q,) such that ai, a3, ..., djs are generators of F,, afryy, .., a;, are
generators of G, and

S Dlal™ = ab if

1<igk,.

There is a homotopy equivalence f,: (Q,, q) ~ (Q,, ¢) such that f,lQ is the
inclusion and (f)«(s) = ai. Let g,: (Q,, q) ~ (Q,. q) be a map such that the
composition maps f, o g, and g, + f, are homotopic to the identity map on (Q,s -
Observe that the inverse sequence {(Q,, 9),f;'}, Where gif = g, o fi" o f,,, satisfies
the required conditions.

(3.10) Remark. If we additionally assume in Lemma (3.6) that H,(lim @, G)
is finitely generated for a nontrivial group G, then we can require that &, = k for
every n, where k is the rank of the group H,(lim Q).

Let X be a pointed movable continuum with FdX = 2, 7,(X) = Z, and
H,(X,G) finitely generated for a nontrivial group G. Then by Proposition (1.3),
Lemma (3.6) and Remark (3.10) the pointed continuum (X, x) has the pointed
shape of the inverse limit of an inverse sequence {(X,, x,), f;"} such that
(3.10) (X,, %) = (PVk,S%p),

(3.12)  {my(X,. %), (fi" 4} is an iso-sequence,

s, if 1ig<k
3.13 ) =4 ’
(313 U960 =0 i painns,

where k is the rank of the group H,(X).
Since (X, x) is movable, we may assume that

(3.14) for every n there is a map ryq: (X511, Xp41) = (K42, Xp42) such that
Fr 2oy 2 it el Xy

Observe that

) sy 1<k,

(3.15) (f::12°r11+1)*(si) = {(; it k:iSk,,.

Let f: (PvmS?, p) - (PvnS? p) be a map which induces the homomorphism

S Hy(PvmS?) — Hy(PvnS?)

such that
s if 1<i<k
(3.16) Tulsi) = {0 if  k<igm.

Then f induces the ZZ,-homomorphism

mo n
J =T _@OM;"" @oMi
i= i=
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given by
(317 fle) = reo+ Z (1—a)rie;+6;e; for i = 0,1, ..., m where | are integers,

=1if 1<1<k 8o =0 and 6; =0 if k<ig<m.
If f induces the isomorphism of the fundamemal groups then 73 is odd (see [18]).

With the ZZ,-homomorphism f: @ M;— (—B M, given by (3.17) we as-
sociate a matrix
(@l i=0,1,..

M(f) = ,m, j=0,1,..,n)

(which has m columns and n rows) such that

(3.18) ab=r1d, al = 2rj+8] if 1<igk (bere &8{ =
al = i if k<i<m.

Let M(F)=(all i, j=0,1,..,k). If ad=1r) is odd then at is odd for

i=0,1,..,k and af is even if 0<j<i<k; thus detM’'(f) # 0. So rankM(f)

2k+1. Let us prove the following

0if i %/ and 6L = 1) and

(3.19) Lemma. Let f: @ M;— (—B M; be a ZZ,- homomorphlsm given by

i=0
(3.17) where r3 is odd. b’thele is a ZZ,-homomorphism §: (—B M;— (—B M; given by
=0

Gle;) = steg+ 2 (1—a)s{8j+5,»8i for i=0,1,..,m,
i=1

where s are integers and 8, is as in (3.17), such that fo § = J, then rank M (f)
=k+1.

Proof. We have to prove that rank(M(f))<k+1. From fo § = f it follows
that M(f)-N =0, where N = (bj] i,j=0,1,..,m) is the matrix such that
By = s§—1, bi = s] if 0<j<k and (i, ) # (0, 0), b = 2s{—8] if k<j<m. Let
N’ = (b i,j=k+1,..,m). Observe detN’ s 0, thus rank Nzm—k. It follows
that rank M( f)<k+1.

Now we prove the following

(3.20) LEMMA. Let M = (al] i = 0,1, ...,m, j =0, 1, ..y ) be a matrix with
integer coefficients such that d: is odd if 0<i<k and al is even if 0<j<i<k. If
rankM = k+1, then there are vectors B; = (b ji j=0,1,..,n) with integer cocf-
ficients (i = 0,1, ...,k) such that every column o; = (ayl j=0,1,..,n) of the
matrix M (i' = 0,1, ...,m) is a linear combination with integer coefficients of the
vector Bo, By s B and bl =0 if O<j<i<k (it follows that bl is odd for
i=0,1,..,k). If al is even for 1<i<k and k<j<n, then we may require that b,
should be even if 1<i<j<n.

Proof. Since rankM = k-1, there is a submodule E of dimension k+1 of

the Z-module @ Z such that every column a; of M is an element of E. Let f;
i=0
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=®{lj=0,1,...,n),i=0,1,..,k, be a base of the free module E. Since detM”
# 0 where M' = (all i,j =0, 1 -, k), we can assume that b} = 0 if 0<j<i<k
(compare the proof of Theorem 1 § 2, XV, [14]). It is easy to see that Bl is odd
for i=0,1,..,k

The column oy, 1<i'<k, is a linear combination with integer coefficients
of the vectors B, fy, ..., B such that the coefficient at B is odd and the coef-
ficient at B, is even if p<i<i’. It follows (by induction from the last column) that
if the matrix (af] 1<i<k, k<j<n) has all coefficients even then the matrix
(bl] 1<i<k, k<j<n) also has all coefficients even. It is easy to construct a base
Pos Bys -..s B, with the required property,

Now we will prove the following

(3.21) LemmA. Let a map f: (PvmS?,p) - (PvnS?2, p) induce the isomorphism
of the fundamental groups and a ZZ,-homomorphism f = Ju,2 of the 2=homotopy
modules given by (3.17). If rank M () = k+1, then there are the maps

Sir (PvmS?,p) - (PVvES%p)  and  fo: (PVvES2p) —

such that fy o f, = frel. p.

Proof. Since the map f induces the isomorphism of the fundamental groups,
7y is odd. The matrix M = M( 7) satisfies the assumptwns of Lemma (3.20). Let
Bos Bis e “B's be vectors as in Lemma (3.20). Let bf = 2ci+1 for i=1,2, ..,k
and b} = 2¢] if 1<i<j<n. Let

(PvnS?, p)

k
= Y Hp; for
j=0

i=0,1,...,m

W]J'.ere.t;" are integers (x; is the ith column of the matrix M = M(f)). Since
(ai—387) is even if 1<i<gk, (t{—-cS{) is even if 1<i<k. Let ff = 2s{+6! for
i=1,2,.., k. We define ZZZ-homomorphisms

Ti: @ M;— @ M;,

i=0 _i=0

Ja: @ M;— @ M,
i=0 i=0

 as follows:

k
Fie) = tleg+ Y (1—a)tle; if i=0ork<ign,
=

3
File) = D5+ 3 (1—a)s{aj+s,- if  1<igk,
j=1
Jaleo) = bgeo+ Zl(l——a)btj,ﬁ,- ,
=
n
Fale) = Z( —a)cle;te; Sif 1igk

i
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One can check that , o f; = Ji Let us observe that 75 and b3 are odd. There
are maps
fur (PvmS%py—(PVvEkS?,p),
fo: (PVESZ?, p) = (PvnS?,p)
inducing the isomorphisms of the fundamental groups and such that (fi)s., = fi
and (fy)s 2 = f2. By Lemma (3.1) we infer that the map f, of; is homotopic to

frel. p.
We also need the following

. k k
(3.22) LemMA. Let f, G @M~ @®M,; be ZZ,-homomorphism such that
! i=0 i=0

: k
Je) = rleg+ Y (I—ayrig+8,e, for i=0,1,..,k,
=
k
§e) = sPeo+ 3 (L—a)sie;+8,;8, for i=0,1,...k
=1

where i, s are integers, rSisodd, 8, =0and 8, =1fori=1,2,.., k. Iffoj=Ff
then § is the identity ZZ,-homomorphism.

Proof. Let M = M(f), ie. M= (al] i,j=0,1,..,k) where aj = rj and

= 2rl+ 6 if 1gigk. Let N = (i i,j=0,1,..,k) be the matrix as in the
pIOOf of Lemma (3.19), i.e. b3 = so—1 and bj = sJ for the other pairs (¢,7). If
fojg = fthen M-N = 0. Since detM # 0, we have N = 0. So sy =1and s =0
for the other pairs (Z,7). It follows that § is the identity ZZ,-homomorphism.

Now we can to prove the following

(3.23) TuEOREM. Let X be a pointed movable continuum with FAX = 2 and
(X)) = Z,. If H,(X, G) is finitely generated for a nontrivial group G, then Sh(X, X)
= Sh(Pv kS?, p) for some integer k.

Proof. We know that (X, x) has the pointed shape of an inverse sequence
(X, %) = {(X,, x,), 7} satisfying conditions (3.11)~(3.14) (k is the rank of the
group H,(X)). By Lemma (3.19) (we put I= (ﬂ'“)#,z and § = (f35d o 1y 4,2)
it follows that rank M((f;*")s,,) = k+1 for every n. Thus, by Lemma (3.21),
for every n there are maps

fllx: (X-n—t*li xn-H) - (PVkSZ:p)
and
a't (PVES?, p) = (X, %)

such that f'*' =f ofirel x;,,. Let gi*' =flof!% . The inverse sequence
(%, 3) = {(Y,, ¥), gn}, where (Y,,»,) = (PVvkS? p) is homotopically equivalent
to (X, x); thus Sh(lim(¥, y)) = Sh(X, x). Since the rank of the group H,(lim¥)
is k and (¥, y) is a movable sequence, by Lemma (3.6) and Remark (3.10) there
is an inverse sequence (¥, y) = {(¥;, y), Ay} homotopically equivalent to (¥, )
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and such that (¥;,7,) = (PvkS?p) and (B"Ny(s) =s; for i=1,2,..,k
Since {m (X, %), (fi)4} is an iso-sequence, we may assume that 11"+1 mduces
the isomorphism of the fundamental groups for every n. Since (Y', y") is a movable
sequence, we may assume that for every » there is a map

. ’ ’
Pusrt (Vists Pna) = (X0, Vi)

such that A)*%or,,, = A" rel. y/,,. Observe that (T2 o rup)u(s) = s; for
i=1,2,..,k By Lemma (3.22) (we take F=0"Yy,, and § = (52 °Iyrt)s,2)
it follows th'Lt (RB%3 0 Fyws)y,n is the identity ZZ,-homomorphism. Observe
that

w2 — (T2 0t 2
e D2 = (X1 o 1uyy o hui 1w, 2-

Thus by Lemma (3.22) (r,,+1 ﬁii)* 2 is the identity isomorphism. Since the maps
WE%or,,, and ryy; o hit} both induce the isomorphisms of the fundamental
groups, by Lemma (3.1) both these maps are homotopic to the identity maps
relatively to x,.; and x,.,, respectively; so Aif? is a homotopy equivalence. It
follows that Sh(lim(¥’, y)) = Sh(PvkS?, p) and so Sh(X,x) = Sh(PvkS2, p).

4. Some remarks. Let X be a pointed compact FANR. By [8], X has the shape
of a pointed CW-complex and there is a “Wall obstruction™ (an element of the
projective class group K%(r;(X))) which vanishes if and only if X has the pointed
shape of a pointed finite simplicial complex (the finite complex may be chosen
so as to have dimension max(3, FdX)). All the possible Wall obstructions occur
among two-dimensional compacta. Since K °(Z,,) is not trivial, there is a pointed
connected compact FANR with FdX = 2 and 7,(X) = Z,5 which does not have
the shape of a finite simplicial complex.

M. N. Dyer has proved ([6], p. 242) the following theorem:

(4.1) Let L be a connected CW -complex with the fundamental group n,(L) = Z,
such that L is (homotopy) dominated by a finite 2-complex. Then L has the homotopy
type of a finite 2-complex if and only if Wa,[L] = 0.

Here Wa,[L] is the Wall invariant, Wa,[L] is the class of the Zz, (L)-module
C,(L)/By(L) in the projective class group K °(z,(L)) where L is the universal cover
of L, C(L) is the cellular chain complex of I, and By(L) = im(d5: Cy(D)—
- Cy(D)).

Let X be a compact connected FANR with FdX = 2. Thus X is shape domi-
nated by a finite CW-complex K with dimK = 2. By [5], X is a pointed FANR,
and so X has the shape of a CW-complex L. Since L is shape dominated by K
and K and L are CW-complexes, L is (homotopy) dominated by K. If 7, (X) =
then m,(L) = Z,,. If Rz ) is trivial then Wa,[L] is trivial (it is known that K°(Z,,)
is trivial for p =2, 3, 5, 7, 11, 13,17, 19; see [11] or [23]). Thus by (4.1) we
obtain the following: -
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(4.2) ProrosITION. Let X be a comnected compact FANR with FdX = 2. [23] C.T. C. Wall, Finitenes condition for CW-complexes, Ann. of Math. 81 (1965), pp. 55-69.
% 0 K is trivi j . i implici i - . Math. Soc.
If 7,(X) = Z, ond KO(ZP) is trivial, then X has the shape of aﬁl'll.l‘c’ Polyhedron. [24] i_slfi;;Q)W}?pl.t;1;;53«12,7-Szmphcml spaces, muclei and m-groups, Proc. London Ma oc
By [7], it follows that X has the shape of a bouquet of the pseudoprojective plane of >
order p and 2-spheres. ’ INSTITUTE OF MATHEMATICS
. . . EMY OF SCIENCES
(4.3) QuestioN. Let X be a pointed movable continuum with FdX = 2, POLISH ACADE

v - . . e i e TE OF MATHEMATICS
7(X) 2 Z, and H,(X) finitely generated. Is it true that if K°(Z,) is trivial then ?;ITV‘;ESITY OF WARSAW

X has the shape of a finite polyhedron? By Theorem 5.1 in {8], it suffices to prove

that m(X) is finitely generated. Accepté par la Réduction le 15. 5. 1980
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