

A. W. Apter

- [7] J. Silver, Some applications of model theory in set theory, Ann. Math. Logic 3 (1970), pp. 45-110.
- [8] R. Solovay, W. Reinhardt and A. Kanamori, Strong axioms of infinity and elementary embeddings, Ann. Math. Logic 13 (1), 1978, pp. 73-116.

DEPARTMENT OF MATHEMATICS RUTGERS UNIVERSITY Newark, New Jersey

Accepté par la Rédaction le 12. 5. 1980

On a shape characterization of some two-polyhedra

by

Stanisław Spież (Warszawa)

Abstract. The main purpose of this paper is to give a shape characterization of surfaces.

Introduction. K. Borsuk has formulated the following problem: give a shape characterization of manifolds. We solve this problem in a very special case: for surfaces (i.e. closed 2-dimensional manifolds). We will prove (Corollary (2.11) and Theorem (3.23)) the following:

THEOREM. A continuum (metric) X has the shape of a surface if and only if X is pointed movable, the shape dimension $\operatorname{Fd} X$ is 2, the second Čech homology group $\check{H}_2(X,Z_2)\cong Z_2$ and the first shape group $\check{\pi}_1(X)$ is isomorphic to a fundamental group of a surface.

In fact, in § 2, we give a shape characterization of two polyhedra of a class which contains all surfaces with the trivial second homotopy group (Theorem (2.9)).

In § 3 we give a shape characterization of a bouquet (one point union) of the projective plane and 2-spheres.

If X is a connected compact FANR with vanishing "Wall obstruction", then X has the shape of a pointed finite simplicial complex with dimension $\max(3, \operatorname{Fd} X)$, see [8]. There is no shape characterization of the class of all (finite) two-polyhedra. If X is a connected compact FANR with vanishing "Wall obstruction", $\operatorname{Fd} X = 2$ and $\check{\pi}_1(X) \cong Z_p$, then X has the shape of a (finite) 2-polyhedron; X has the shape of a bouquet of the pseudoprojective plane of order p and 2-spheres.

We assume that the reader is familiar with the basic notions of shape theory for metric compacta (see [2], [4] or [17]).

1. Shape of pointed movable continua with fundamental dimension 2 and with finitely presented 1-shape group. J. Krasinkiewicz has proved ([12], Theorem 3.1, p. 151 and Theorem 4.2, p. 152) that if (X, x) is a pointed 1-movable continuum then there exists a pointed ANR-sequence $(X, x) = \{(X_n, x_n), p_n^m\}$ associated with (X, x) (i.e. $\lim_{n \to \infty} (X, x) = (X, x)$) such that the corresponding sequence of fundamental groups $\pi_1(X, x)$ is an epi-sequence; if $(X', x') = \{(X', x'_n), p_n^m\}$ is any ANR-sequence associated with (X, x) then X_n can be obtained from X'_n by attaching to X'_n a finite number of 2-cells. It is easy to see ([3], proof of Theorem 2, p. 616) that if $G = \{G_n, q_n^m\}$ is an epi-sequence of groups such that the inverse limit $\lim_{n \to \infty} G$ is

countable, then q_n^m is an isomorphism for sufficiently large n (otherwise $\underline{\lim} G$ contains the Cantor set). Thus we have the following

- (1.1) PROPOSITION. Let (X, x) be a pointed 1-movable continuum with a countable 1-shape group $\check{\pi}_1(X, x)$. Then there exists an inverse sequence $(X, x) = \{(X_n, x_n), p_n^m\}$ of pointed connected polyhedra associated with (X, x) such that
- (1.2) $\pi_1(X, x)$ is an iso-sequence and dim $X_n \leq \max(2, \operatorname{Fd} X)$ for every n.

Let (X, x) be a pointed 1-movable continuum with $\operatorname{Fd} X = 2$ and with $\check{\pi}_1(X) \cong \pi_1(Q)$, where Q is a connected 2-polyhedron. Then there exists an inverse sequence of connected 2-polyhedra $(X, x) = \{(X_n, x_n), p_n^m\}$ associated with (X, x) satisfying condition (1.2). Since $\pi_1(Q) = \check{\pi}_1(X) = \pi_1(X_n)$ for every n, by a theorem of Whitehead [24] there exist integers k_n , l_n such that $X_n \vee k_n S^2$ and $Q \vee l_n S^2$ have the same homotopy type (here $Y \vee kS^2$ denotes a one-point union of a space Y an k-copies of 2-spheres S^2). Thus it is easy to obtain the following

- (1.3) PROPOSITION. Let (X, x) be a pointed 1-movable continuum with $\operatorname{Fd} X = 2$ and $\check{\pi}_1(X) = \pi_1(Q)$, where Q is a 2-polyhedron. Then there exists an inverse sequence $(X, x) = \{(X_n, x_n), p_n^m\}$ of connected 2-polyhedra such that
- (1.4) Sh(X, x) = Sh($\underline{\lim}(X, x)$, $\pi_1(X, x)$ is an iso-sequence and $X_n = Q \vee l_n S^2$ for every n.
- 2. A shape chracterization of surfaces with trivial 2-homotopy groups. Let ZG denote the integral group ring over a group G, and let $A_Z(G)$ denote the fundamental ideal, i.e. $(n_1g_1+n_2g_2+...+n_kg_k)\in A_Z(G)$ (where $n_i\in Z$ and $g_i\in G$) iff $(n_1+n_2+...+n_k)=0$. We say that $A_Z(G)$ is residually nilpotent iff $\bigcap_{n=1}^\infty A_Z^n(G)=0$. Let us formulate the following
- (2.1) Lemma. Let $f \colon \bigoplus_n ZG \to \bigoplus_k ZG$ and $g \colon \bigoplus_n ZG \to \bigoplus_n ZG$ be ZG-homomorphisms of ZG-modules such that $\inf f = \inf(f \circ g)$ and that $\inf g \subset \bigoplus_n \Delta_Z(G)$ $\subset \bigoplus_n ZG$. If $\Delta_Z(G)$ is residually nilpotent, then f is trivial.

Proof. Observe that $\inf = \operatorname{im}(f \circ g) \subset \bigoplus_{k} A_{Z}(G)$ and if $\inf \subset \bigoplus_{k} A_{Z}^{l}(G)$ then $\inf = \operatorname{im}(f \circ g) \subset \bigoplus_{k} A_{Z}^{l+1}(G)$. Thus $\inf \subset \bigcap_{l=1}^{\infty} A_{Z}^{l}(G) = 0$, and so f is trivial. Now we will prove the following

- (2.2) LEMMA. Let R be a principal entire ring and let E be a finitely generated R-module. If $\{E_n, f_n^m\}$ is an inverse sequence of R-modules such that
- (2.3) $E_n = E \oplus F_n$, where F_n is a free R-module,
- $(2.4) f_n^m(F_m) \subset F_n,$
- (2.5) the composition $r_n \circ f_m^m \circ i_m \colon E \to E$, where $i_m \colon E \to E_m$ is the inclusion and $r_n \colon E_n \to E$ is the retraction which maps F_n onto 0, is an isomorphism,

- (2.6) $\{E_n, f_n^m\}$ satisfies the Mittag-Lefler condition,
- (2.7) $\underline{\lim}\{E_n, f_n^m\}$ and E are isomorphic,

then for integer n there is an integer m such that $f_n^m(F_m) = 0$.

Proof. By (2.6), we may assume (we take a subsequence) that

(2.8)
$$\operatorname{im} f_n^m = \operatorname{im} f_n^{n+1} \quad \text{for every } m > n.$$

Since the image $f_n^{n+1}(F_{n+1})$ is a free submodule of F_n , F_{n+1} is a direct sum of modules F'_{n+1} and F''_{n+1} such that $f_n^{n+1}|F'_{n+1}$ is a monomorphism and $f_n^{n+1}|F''_{n+1}$ is trivial. Thus $f_n^{n+1} = g_n \circ \tilde{r}_{n+1}$, where

$$\widetilde{r}_{n+1}$$
: $E_{n+1} = E \oplus F'_{n+1} \oplus F''_{n+1} \to \widetilde{E}_n = E \oplus F'_{n+1}$

is the retraction which maps F''_{n+1} onto 0 and $g_n = f_n^{n+1} | \widetilde{E}_n$. Observe that, by (2.4), (2.5) and (2.8), it follows that $f_n^{n+1}(F'_{n+1}) \supset F'_n$. So the map $\widetilde{f}_n^{n+1} = \widetilde{r}_{n+1} \circ g_{n+1}$: $\widetilde{E}_{n+1} \to \widetilde{E}_n$ is an epimorphism and $\widetilde{f}_n^{n+1}(F'_{n+2}) = F'_{n+1}$. Observe that $\widetilde{E}_n = E \oplus F'_{n+1}$ can be embedded into the inverse limit $\varliminf \widetilde{\lim}_n \{\widetilde{E}_n, \widetilde{f}_n^m\}$ which is isomorphic to E (for every n). Since E is finitely generated, F'_{n+1} is trivial for every n, and so $f_n^{n+1}|F_{n+1}$ is trivial.

We will prove

(2.9) THEOREM. Let Q be a connected aspherical (i.e. $\pi_2(Q)$ is trivial) 2-polyhedron such that $\Delta_Z(\pi_1(Q))$ is residually nilpotent. Let X be a pointed movable continuum with $\operatorname{Fd} X = 2$. If $\check{\pi}_1(X) \cong \pi_1(Q)$ and $\check{H}_2(X, R) = H_2(Q, R)$ for a principal entire ring R then $\operatorname{Sh}(X) = \operatorname{Sh}(Q)$.

Proof. By Proposition (1.3) the continuum X has the shape of the inverse limit of an inverse sequence $\{Q_n, p_n^m\}$ such that $Q_n = Q \vee l_n S^2$ and $(p_n^m)_{\#}$ is the isomorphism of 1-homotopy groups. The composition $r_n \circ p_n^m \circ i_m \colon Q \to Q$, where $i_m \colon Q \to Q \vee l_m S^2$ is the inclusion and $r_n \colon Q_n = Q \vee l_n S^2 \to Q$ is a retraction, induces an isomorphism of 1-homotopy groups. Since Q is a space of $K(\pi, 1)$ -type (i.e. $\pi_n(Q)$ is trivial for $n \geqslant 2$), $r_n \circ p_n^m \circ i_m$ is a homotopy equivalence. So the homomorphism

$$(r_n \circ p_n^m \circ i_m)_* \colon H_2(Q, R) \to H_2(Q, R)$$

is an isomorphism. The R-module $H_2(Q_n, R)$ is a direct sum of $H_2(Q, R)$ and $F_n = H_2(l_n S^2, R) = \bigoplus_l R$. Since $\pi_2(Q)$ is trivial, the homomorphism

$$(p_n^m)_*: H_2(Q_m, R) \to H_2(Q_n, R)$$

maps F_m into F_n . The sequence $\{H_2(Q_m, R), (p_n^m)_*\}$ satisfies conditions (2.3)-(2.7). Thus, by Lemma (2.2), we may assume (if necessary we choose a subsequence) that $(p_n^m)_*(F_m) = 0$ for every m > n.

We consider $\pi_2(Q_n)$ as the $Z(\pi_1(Q))$ -module $\bigoplus_{l_n} Z(\pi_1(Q))$. Since $(p_n^m)_*(F_m) = 0$, the image of the $Z(\pi_1(Q))$ -homomorphism

$$(p_n^m)_{\#,2} \colon \pi_2(Q_m) \to \pi_2(Q_n)$$

is included in $\bigoplus_{l_n} A_Z(\pi_1(Q))$. Since X is movable, we may assume (we choose a subsequence if necessary) that $\operatorname{im}(p_n^m)_{\#,2} = \operatorname{im}(p_n^{n+1})_{\#,2}$ for every m > n, and so in particular $\operatorname{im}((p_n^{n+1})_{\#,2} \circ (p_{n+1}^{n+2})_{\#,2}) = \operatorname{im}(p_n^{n+1})_{\#,2}$. Thus, by Lemma (2.1), the homomorphism $(p_n^{n+1})_{\#,2}$ is trivial. Thus the map p_n^{n+1} is homotopically equivalent to a map which maps every 2-sphere S^2 of $Q_{n+1} = Q \vee l_{n+1} S^2$ onto the base point of $Q_n = Q \vee l_n S^2$. So the inverse sequence $\{Q_n, p_n^m\}$ is homotopically equivalent to an inverse sequence $\{Q_n', p_n'^m\}$ such that $Q_n' = Q$ and $p_n'^m$ is a map which induces an isomorphism of 1-homotopy groups, and so $p_n'^m$ is a homotopy equivalence. So X and Q have the same shape.

Let α be a group property. We say that a group G is residually α if, for every nontrivial element $x \in G$, there exists a normal subgroup N_x of G such that $x \notin N_x$ and the group G/N_x has property α .

Let H be a normal subgroup of a group G of index p^k , where p is a prime integer. If H is a residually "finite p-group" then G is also a residually "finite p-group".

The fundamental group of an orientable surface is a residually "finite 2-group" (see [9]). For every non-orientable surface M we have a two-fold covering $q\colon \widetilde{M}\to M$, where \widetilde{M} is an orientable surface. The image $q_{\#}(\pi_1(\widetilde{M}))$ is a normal subgroup of $\pi_1(M)$ of index 2. Since $q_{\#}$ is a monomorphism, $q_{\#}(\pi_1(\widetilde{M}))$ is a residually "finite 2-group", and so also $\pi_1(M)$ is a residually "finite 2-group". Thus we have the following

(2.10) Proposition. The fundamental group of a surface is a residually "finite 2-group".

The problem of characterizing the groups G with $\Delta_Z(G)$ residually nilpotent has been solved by Lichtman (see [15] or [19], Theorem 2.30, p. 92). In particular ([19], Theorem 2.11, p. 84), if G is a residually "nilpotent p-group of bounded exponent", then $\Delta_Z(G)$ is residually nilpotent. Since every finite p-group is nilpotent, by Theorem (2.9) and Proposition (2.10) we have the following

(2.11) COROLLARY. Let M be a surface with $\pi_2(M)=0$. Let X be a pointed movable continuum. If $\operatorname{Fd} X=2$, $\check{\pi}_1(X)=\pi_1(M)$ and $\check{H}_2(X,Z_2)=Z_2$ then $\operatorname{Sh}(X)=\operatorname{Sh}(M)$.

Since the free product of residually "finite p-groups" is also residually "finite p-group" (see [10] or [16]), we have the following

(2.12) COROLLARY. Let Q be a finite bouquet of aspherical surfaces. If X is a pointed movable continuum with $\operatorname{Fd} X = 2$, $\check{\pi}_1(X) = \pi_1(Q)$ and $\check{H}_2(X, R) = H_2(Q, R)$ for a principal entire ring R, then $\operatorname{Sh}(X) = \operatorname{Sh}(Q)$.

Let ε_0 be the element of $\pi_2(P \vee kS^2, p)$ induced by the composition of a covering map $(S^2, s) \to (P, p)$ and the inclusion $(P, p) \to (P \vee kS^2, p)$. Let ε_i be an element of $\pi_2(P \vee kS^2, p)$ induced by the inclusion $(S^2, s) \to (P \vee kS^2, p)$ which maps S^2 onto the ith 2-sphere of $P \vee kS^2$. The ZZ_2 -submodule M_0 of the ZZ_2 -module $\pi_2(P \vee kS^2, p)$ generated by ε_0 is isomorphic to Z. The ZZ_2 -submodule M_i of $\pi_2(P \vee kS^2, p)$ generated by ε_i is isomorphic to ZZ_2 . The ZZ_2 -module Z_2 . The ZZ_2 -module Z_2 -mod

(3.1) Lemma. Let f_i : $(P,p) \to (P \lor kS^2,p)$ be a map which induces an isomorphism of the fundamental groups, i=1,2. If $(f_1)_{\#,2}=(f_2)_{\#,2}$: $\pi_2(P,p) \to \pi_2(P \lor kS^2,p)$ then f_1 and f_2 are homotopic rel.p.

Proof. For a map $f: (P, p) \to (P \vee kS^2, p)$, we can define a map $f' \cong frel. p$ (using Borsuk's homotopy extension theorem) which maps the sum $\bigcup_{j=1}^{m} D_j$ of discs $D_1, D_2, ..., D_m$ $(D_j \subset P \setminus \{p\})$ into kS^2 and maps $(P \setminus \bigcup_{j=1}^{m} D_j)$ into P. We can find a family of mutually disjoint arcs $L_i, j=1, 2, ..., m-1$, such that

 $L_j \cap D_j$ and $L_j \cap D_{j+1}$ are the ends of L_j , L_i is disjoint with $D_{i'}$, if $j' \neq j$, j+1,

 $f'|L_i$ is homotopically trivial rel. the ends of L_i .

Thus by Borsuk's homotopy extension theorem we can get a map $f''\cong f'$ rel.p which maps a disc D into kS^2 ($p\in D$) and maps $(P\setminus D)$ into P.

Let $g: P \to P/D = P \vee S^2$ be the natural projection and let $\tilde{f}: (P \vee S^2, p) \to (P \vee kS^2, p)$ be the map such that $\tilde{f} \circ g = f''$. Thus $f \cong \tilde{f} \circ g$ rel. p. By the definition of \tilde{f} we have

(3.2)
$$\tilde{f}(P) \subset P$$
 and $\tilde{f}(S^2) \subset kS^2$.

Observe that

$$(3.3) g_{\#_2}(\varepsilon_0) = \varepsilon_0 + (a-1)\varepsilon_1.$$

Since $f_{*,2}$ is a ZZ_2 -homomorphism, we have

(3.4)
$$f_{\#,2}(\varepsilon_0) = l_0 + l_1(a-1)\varepsilon_1 + \dots + l_k(a-1)\varepsilon_k$$

where $l_0, l_1, ..., l_k$ are integers. By (3.2)-(3.4) we obtain

$$\tilde{f}_{\#,2}(\varepsilon_0) = l_0 \varepsilon_0 ,
\tilde{f}_{\#,2}(\varepsilon_1) = l_1 \varepsilon_1 + l_2 \varepsilon_2 + \dots + l_k \varepsilon_k .$$

Since $(f_1)_{\#,2} = (f_2)_{\#,2}$, we have $(\tilde{f}_1)_{\#,2} = (\tilde{f}_2)_{\#,2}$.

Olum [18] has proved that maps of (P,p) onto itself which induce isomorphisms of the fundamental groups and which induce the same homomorphisms of 2-homotopy groups are homotopic rel. p. It follows that the maps \tilde{f}_1 and \tilde{f}_2 are homotopic rel. p. Thus f_1 and f_2 are also homotopic rel. p.

(3.5) Remark. Olum [18] has proved that maps of pseudoprojective plane (P_k, p) onto itself which induce isomorphisms of the fundamental groups and which induce the same homomorphism of 2-homotopy groups are homotopic rel. p. Lemma (3.1) will still be valid if we replace the projective plane P by a pseudoprojective plane P_k . The proof of this generalization of Lemma (3.1) is similar to the above but a little longer.

Let Q be a polyhedron with $H_2(Q) = 0$. By s_i we denote a generator of the group $H_2(Q \vee lS^2)$ which corresponds to the *i*th 2-sphere of the bouquet $Q \vee lS^2$. Let q be the base point of the bouquet $Q \vee lS^2$. We will prove the following

(3.6) Lemma. Let $(Q,q) = \{(Q_n,q),f_n^m\}$ be an inverse sequence such that $Q_n = Q \lor l_n S^2$. If $Q = \{Q_n,f_n^m\}$ is a movable sequence then there is an inverse sequence $(Q',q') = \{(Q'_n,q),g_n^m\}, Q'_n = Q \lor k_n S^2, homotopically equivalent to <math>(Q,q)$ and a sequence of integers $\{k'_n\}, k'_n \leqslant k_n, such that$

(3.7) for every n there is an m(n) such that $Q'_n = Q_{m(n)}$

$$(3.8) (g_n^{n+1})_*(s_i) = 0 if k'_{n+1} < i \le k_{n+1},$$

(3.9)
$$(g_{n+1}^{n+2})_*(s_i) = s_i \quad \text{if} \quad 1 \leq i \leq k'_{n+1},$$

where $(g_n^{n+1})_*$ is the homomorphism of the second homology group over the coefficient integer group Z.

Proof. We may assume that for every n there is a map $r_{n+1} : \mathcal{Q}_{n+1} \to \mathcal{Q}_{n+2}$ such that $f_n^{n+2} \circ r_{n+1} \cong f_n^{n+1}$ (if necessary we take a subsequence). Since $H_2(\mathcal{Q}_n) = H_2(l_n S^2)$ is a free abelian group, for every n there is a free abelian group \widetilde{F}_{n+1} such that $H_2(\mathcal{Q}_{n+1}) = \widetilde{F}_{n+1} \oplus G_{n+1}$ where $G_{n+1} = \ker(f_n^{n+1})_*$. Observe that $(f_n^{n+1})_* | \widetilde{F}_{n+1}$ is a monomorphism. Let

$$F_{n+1} = (f_{n+1}^{n+2} \circ r_{n+1})_* (\widetilde{F}_{n+1})$$

for every n. We know that

$$(f_n^{n+1})_*(F_{n+1}) = (f_n^{n+2} \circ r_{n+1})_*(F_{n+1}) = (f_n^{n+1})_*(F_{n+1}) = \operatorname{im}(f_n^{n+1})_*.$$

If $a \in H_2(Q_{n+1})$, then $(f_n^{n+1})_*(a) = (f_n^{n+1})_*(b)$ and so $a-b \in \ker(f_n^{n+1})_* = G_{n+1}$ for some element $b \in F_{n+1}$. Thus $H_2(Q_{n+1}) = F_{n+1} + G_{n+1}$. Since $(f_n^{n+1})_*|\tilde{F}_{n+1} = (f_n^{n+2} \circ r_{n+1})_*|\tilde{F}_{n+1}$ is a monomorphism, $(f_n^{n+1})_*|F_{n+1}$ is a monomorphism; it follows that $F_{n+1} \cap G_{n+1} = F_{n+1} \cap \ker(f_n^{n+1})_* = 0$. Thus $H_2(Q_{n+1}) = F_{n+1} \oplus G_{n+1}$. Observe that $F_{n+1} = \inf(f_n^{n+2})_* = (f_n^{n+2})_*(F_{n+2})$. It follows that F_{n+2} is a direct sum of free groups F'_{n+1} and $F''_{n+2} = (f_n^{n+2})_*(F_{n+2})_*(F_{n+2})_* = (f_n^{n+2})_*(F_n^{$

By induction we can define for every $n \ge 2$ a minimal set $a_1^n, a_2^n, ..., a_k^n$ of generators of $H_2(Q_n)$ such that $a_1^n, a_2^n, ..., a_{k'}^n$ are generators of F_n , $a_{k'n+1}^n, ..., a_{k}^n$ are generators of G_n and

$$(f_n^{n+1})_*(a_i^{n+1}) = a_i^n$$
 if $1 \le i \le k_n'$

There is a homotopy equivalence $f_n\colon (Q_n,q)\to (Q_n,q)$ such that $f_n|Q$ is the inclusion and $(f_n)_*(s_l)=a_l^n$. Let $g_n\colon (Q_n,q)\to (Q_n,q)$ be a map such that the composition maps $f_n\circ g_n$ and $g_n\circ f_n$ are homotopic to the identity map on (Q_n,q) . Observe that the inverse sequence $\{(Q_n,q),f_n^m\}$, where $g_n^m=g_n\circ f_n^m\circ f_m$, satisfies the required conditions.

(3.10) Remark. If we additionally assume in Lemma (3.6) that $H_2(\underset{n}{\lim} Q, G)$ is finitely generated for a nontrivial group G, then we can require that $k'_n = k$ for every n, where k is the rank of the group $H_2(\underset{n}{\lim} Q)$.

Let X be a pointed movable continuum with $\operatorname{Fd} X = 2$, $\check{\pi}_1(X) = Z_2$ and $\check{H}_2(X,G)$ finitely generated for a nontrivial group G. Then by Proposition (1.3), Lemma (3.6) and Remark (3.10) the pointed continuum (X,X) has the pointed shape of the inverse limit of an inverse sequence $\{(X_n,x_n),f_n^m\}$ such that

$$(3.11) (X_n, x_n) = (P \vee k_n S^2, p),$$

(3.12) $\{\pi_1(X_n, x_n), (f_n^m)_{\#}\}\$ is an iso-sequence,

(3.13)
$$(f_n^{n+1})_*(s_i) = \begin{cases} s_i & \text{if } 1 \le i \le k, \\ 0 & \text{if } k < i < k_{n+1}, \end{cases}$$

where k is the rank of the group $\check{H}_2(X)$.

Since (X, x) is movable, we may assume that

(3.14) for every n there is a map r_{n+1} : $(X_{n+1}, x_{n+1}) \to (X_{n+2}, x_{n+2})$ such that $f_n^{n+2} \circ r_{n+1} \cong f_n^{n+1}$ rel. x_{n+1} .

Observe that

(3.15)
$$(f_{n+1}^{n+2} \circ r_{n+1})_{*}(s_{i}) = \begin{cases} s_{i} & \text{if } 1 \leqslant i \leqslant k, \\ 0 & \text{if } k < i \leqslant k_{n}. \end{cases}$$

Let $f: (P \vee mS^2, p) \to (P \vee nS^2, p)$ be a map which induces the homomorphism

$$f_*: H_2(P \vee mS^2) \to H_2(P \vee nS^2)$$

such that

$$f_*(s_i) = \begin{cases} s_i & \text{if } 1 \le i \le k \\ 0 & \text{if } k < i \le m. \end{cases}$$

Then f induces the ZZ_2 -homomorphism

$$\tilde{f} = f_{\#,2} \colon \bigoplus_{i=0}^{m} M_i \to \bigoplus_{i=0}^{n} M_i$$

given by

(3.17) $\widetilde{f}(\varepsilon_i) = r_i^0 \varepsilon_0 + \sum_{j=1}^n (1-a) r_i^j \varepsilon_j + \delta_i \varepsilon_i \text{ for } i = 0, 1, ..., m \text{ where } r_i^j \text{ are integers,}$ $\delta_i = 1 \text{ if } 1 \leqslant i \leqslant k, \ \delta_0 = 0 \text{ and } \delta_i = 0 \text{ if } k < i \leqslant m.$

If f induces the isomorphism of the fundamental groups then r_0^0 is odd (see [18]).

With the ZZ_2 -homomorphism \tilde{f} : $\bigoplus_{i=0}^m M_i \to \bigoplus_{i=0}^n M_i$ given by (3.17) we associate a matrix

$$M(\tilde{f}) = (a_i^j | i = 0, 1, ..., m, j = 0, 1, ..., n)$$

(which has m columns and n rows) such that

(3.18) $a_0^i = r_0^i$, $a_i^j = 2r_i^j + \delta_i^j$ if $1 \le i \le k$ (here $\delta_i^j = 0$ if $i \ne j$ and $\delta_i^i = 1$) and $a_i^j = r_i^j$ if $k < i \le m$.

Let $M'(\tilde{f}) = (a_i^i| i, j = 0, 1, ..., k)$. If $a_0^0 = r_0^0$ is odd then a_i^i is odd for i = 0, 1, ..., k and a_i^i is even if $0 \le j < i \le k$; thus $\det M'(\tilde{f}) \ne 0$. So $\operatorname{rank} M(\tilde{f}) \ge k+1$. Let us prove the following

(3.19) Lemma. Let \tilde{f} : $\bigoplus_{i=0}^{m} M_i \to \bigoplus_{i=0}^{n} M_i$ be a ZZ_2 -homomorphism given by (3.17) where r_0^0 is odd. If there is a ZZ_2 -homomorphism \tilde{g} : $\bigoplus_{i=0}^{m} M_i \to \bigoplus_{i=0}^{m} M_i$ given by

$$\tilde{g}(\varepsilon_i) = s_i^0 \varepsilon_0 + \sum_{i=1}^n (1-a) s_i^i \varepsilon_j + \delta_i \varepsilon_i \quad \text{for} \quad i = 0, 1, ..., m,$$

where s_i^j are integers and δ_i is as in (3.17), such that $\tilde{f} \circ \tilde{g} = \tilde{f}$, then rank $M(\tilde{f}) = k+1$.

Proof. We have to prove that $\operatorname{rank}(M(\tilde{f})) \leqslant k+1$. From $\tilde{f} \circ \tilde{g} = \tilde{f}$ it follows that $M(\tilde{f}) \cdot N = 0$, where $N = (b_i^j | i, j = 0, 1, ..., m)$ is the matrix such that $b_0^0 = s_0^0 - 1$, $b_i^j = s_i^j$ if $0 \leqslant j \leqslant k$ and $(i, j) \neq (0, 0)$, $b_i^j = 2s_i^j - \delta_i^j$ if $k < j \leqslant m$. Let $N' = (b_i^j | i, j = k+1, ..., m)$. Observe $\det N' \neq 0$, thus $\operatorname{rank} N \geqslant m-k$. It follows that $\operatorname{rank} M(\tilde{f}) \leqslant k+1$.

Now we prove the following

(3.20) Lemma. Let $M=(a_i^j|\ i=0,1,...,m,\ j=0,1,...,n)$ be a matrix with integer coefficients such that a_i^i is odd if $0\leqslant i\leqslant k$ and a_i^j is even if $0\leqslant j< i\leqslant k$. If $\mathrm{rank}\ M=k+1$, then there are vectors $\beta_i=(b_i^i|\ j=0,1,...,n)$ with integer coefficients (i=0,1,...,k) such that every column $\alpha_{i'}=(a_i^{i'}|\ j=0,1,...,n)$ of the matrix M (i'=0,1,...,m) is a linear combination with integer coefficients of the vector $\beta_0,\beta_1,...,\beta_k$ and $b_i^j=0$ if $0\leqslant j< i\leqslant k$ (it follows that b_i^i is odd for i=0,1,...,k). If a_i^j is even for $1\leqslant i\leqslant k$ and $k< j\leqslant n$, then we may require that b_i^j should be even if $1\leqslant i< j\leqslant n$.

Proof. Since rank M = k+1, there is a submodule E of dimension k+1 of the Z-module $\bigoplus_{i=0}^{n} Z$ such that every column $\alpha_{i'}$ of M is an element of E. Let β_i

= $(b_i^i|j=0,1,...,n)$, i=0,1,...,k, be a base of the free module E. Since $\det M'\neq 0$ where $M'=(a_i^i|i,j=0,1,...,k)$, we can assume that $b_j^i=0$ if $0\leqslant j< i\leqslant k$ (compare the proof of Theorem 1, § 2, XV, [14]). It is easy to see that b_i^i is odd for i=0,1,...,k.

The column $\alpha_{i'}$, $1 \leq i' \leq k$, is a linear combination with integer coefficients of the vectors $\beta_0, \beta_1, \ldots, \beta_k$ such that the coefficient at $\beta_{i'}$ is odd and the coefficient at β_i is even if $p \leq i \leq i'$. It follows (by induction from the last column) that if the matrix $(a_i^i| 1 \leq i \leq k, \ k < j \leq n)$ has all coefficients even then the matrix $(b_i^i| 1 \leq i \leq k, \ k < j \leq n)$ also has all coefficients even. It is easy to construct a base $\beta_0, \beta_1, \ldots, \beta_k$ with the required property.

Now we will prove the following

(3.21) LEMMA. Let a map $f: (P \vee mS^2, p) \to (P \vee nS^2, p)$ induce the isomorphism of the fundamental groups and a ZZ_2 -homomorphism $\tilde{f} = f_{\#,2}$ of the 2-homotopy modules given by (3.17). If $\operatorname{rank} M(\tilde{f}) = k+1$, then there are the maps

$$f_1 \colon (P \lor mS^2, p) \to (P \lor kS^2, p)$$
 and $f_2 \colon (P \lor kS^2, p) \to (P \lor nS^2, p)$ such that $f_1 \circ f_2 \cong f$ rel. p .

Proof. Since the map f induces the isomorphism of the fundamental groups, r_0^0 is odd. The matrix $M=M(\tilde{f})$ satisfies the assumptions of Lemma (3.20). Let $\beta_0,\beta_1,...,\beta_k$ be vectors as in Lemma (3.20). Let $b_i^i=2c_i^i+1$ for i=1,2,...,k and $b_i^i=2c_i^j$ if $1\leqslant i< j\leqslant n$. Let

$$\alpha_i = \sum_{j=0}^k t_i^j \beta_j$$
 for $i = 0, 1, ..., m$

where t_i^j are integers $(\alpha_i$ is the *i*th column of the matrix $M=M(\tilde{f})$). Since $(a_i^j-\delta_i^j)$ is even if $1\leqslant i\leqslant k$, $(t_i^j-\delta_i^j)$ is even if $1\leqslant i\leqslant k$. Let $t_i^j=2s_i^j+\delta_i^j$ for i=1,2,...,k. We define ZZ_2 -homomorphisms

$$\begin{split} \tilde{f}_1 \colon & \bigoplus_{i=0}^m M_i \to \bigoplus_{i=0}^k M_i \,, \\ \tilde{f}_2 \colon & \bigoplus_{i=0}^k M_i \to \bigoplus_{i=0}^m M_i \end{split}$$

as follows:

$$\begin{split} &\tilde{f}_1(\varepsilon_i) = t_i^0 \varepsilon_0 + \sum_{j=1}^k (1-a) t_i^j \varepsilon_j & \text{if} \quad i = 0 \text{ or } k < i \leqslant n \text{ ,} \\ &\tilde{f}_1(\varepsilon_i) = s_i^0 \varepsilon_0 + \sum_{j=1}^k (1-a) s_i^j \varepsilon_j + \varepsilon_i & \text{if} \quad 1 \leqslant i \leqslant k \text{ ,} \\ &\tilde{f}_2'(\varepsilon_0) = b_0^0 \varepsilon_0 + \sum_{j=1}^n (1-a) b_0^j \varepsilon_j \text{ ,} \\ &\tilde{f}_2'(\varepsilon_i) = \sum_{j=i}^n (1-a) c_i^j \varepsilon_j + \varepsilon_i & \text{if} \quad 1 \leqslant i \leqslant k \text{ .} \end{split}$$

One can check that $\tilde{f}_2\circ \tilde{f}_1=\tilde{f}$. Let us observe that t_0^0 and b_0^0 are odd. There are maps

$$f_1: (P \lor mS^2, p) \to (P \lor kS^2, p),$$

 $f_2: (P \lor kS^2, p) \to (P \lor nS^2, p)$

inducing the isomorphisms of the fundamental groups and such that $(f_1)_{\#,2} = \tilde{f}_1$ and $(f_2)_{\#,2} = \tilde{f}_2$. By Lemma (3.1) we infer that the map $f_2 \circ f_1$ is homotopic to f rel. p.

We also need the following

(3.22) LEMMA. Let $\tilde{f}, \tilde{g}: \bigoplus_{i=0}^k M_i \to \bigoplus_{i=0}^k M_i$ be ZZ_2 -homomorphism such that

$$\begin{split} \tilde{f}(\varepsilon_i) &= r_i^0 \varepsilon_0 + \sum_{j=1}^k (1-a) r_i^j \varepsilon_j + \delta_i \varepsilon_i \quad \text{for} \quad i = 0, 1, ..., k , \\ \tilde{g}(\varepsilon_i) &= s_i^0 \varepsilon_0 + \sum_{j=1}^k (1-a) s_i^j \varepsilon_j + \delta_i \varepsilon_i \quad \text{for} \quad i = 0, 1, ..., k \end{split}$$

where r_i^j , s_i^j are integers, r_0^0 is odd, $\delta_0 = 0$ and $\delta_i = 1$ for i = 1, 2, ..., k. If $\tilde{f} \circ \tilde{g} = \tilde{f}$ then \tilde{g} is the identity ZZ_2 -homomorphism.

Proof. Let M=M(f), i.e. $M=(a_i^i|\ i,j=0,1,...,k)$ where $a_0^i=r_0^j$ and $a_i^i=2r_i^i+\delta_i^j$ if $1\leqslant i\leqslant k$. Let $N=(b_i^i|\ i,j=0,1,...,k)$ be the matrix as in the proof of Lemma (3.19), i.e. $b_0^0=s_0^0-1$ and $b_i^i=s_i^i$ for the other pairs (i,j). If $\tilde{f}\circ \tilde{g}=\tilde{f}$ then $M\cdot N=0$. Since $\det M\neq 0$, we have N=0. So $s_0^0=1$ and $s_i^i=0$ for the other pairs (i,j). It follows that \tilde{g} is the identity ZZ_2 -homomorphism.

Now we can to prove the following

(3.23) THEOREM. Let X be a pointed movable continuum with $\operatorname{Fd} X = 2$ and $\tilde{\pi}_1(X) = Z_2$. If $\check{H}_2(X,G)$ is finitely generated for a nontrivial group G, then $\operatorname{Sh}(X,x) = \operatorname{Sh}(P \vee kS^2,p)$ for some integer k.

Proof. We know that (X, x) has the pointed shape of an inverse sequence $(\underline{X}, \underline{x}) = \{(X_n, x_n), f_n^m\}$ satisfying conditions (3.11)–(3.14) (k is the rank of the group $\check{H}_2(X)$). By Lemma (3.19) (we put $\check{f} = (f_n^{n+1})_{\#,2}$ and $\tilde{g} = (f_{n+1}^{n+2} \circ r_{n+1})_{\#,2}$ it follows that rank $M((f_n^{n+1})_{\#,2}) = k+1$ for every n. Thus, by Lemma (3.21), for every n there are maps

$$f'_n: (X_{n+1}, x_{n+1}) \to (P \lor kS^2, p)$$

and

$$f_n'': (P \vee kS^2, p) \to (X_n, x_n)$$

such that $f_n^{n+1} = f_n'' \circ f_n'$ rel. x_{n+1} . Let $g_n^{n+1} = f_n' \circ f_{n+1}''$. The inverse sequence $(Y, y) = \{(Y_n, y_n), g_n^m\}$, where $(Y_n, y_n) = (P \vee kS^2, p)$ is homotopically equivalent to (X, x); thus $\mathrm{Sh}(\varprojlim(Y, y)) = \mathrm{Sh}(X, x)$. Since the rank of the group $H_2(\varprojlim Y)$ is k and (Y, y) is a movable sequence, by Lemma (3.6) and Remark (3.10) there is an inverse sequence $(Y', y') = \{(Y_n', y_n'), h_n^m\}$ homotopically equivalent to (Y, y)

$$r_{n+1}: (Y'_{n+1}, y'_{n+1}) \to (Y'_{n+2}, y'_{n+2})$$

such that $h_n^{n+2} \circ r_{n+1} \cong h_n^{n+1}$ rel. y_{n+1}' . Observe that $(h_{n+1}^{n+2} \circ r_{n+1})_*(s_i) = s_i$ for $i=1,2,\ldots,k$. By Lemma (3.22) (we take $\tilde{f}=(h_n^{n+1})_{*,2}$ and $\tilde{g}=(h_{n+1}^{n+2} \circ r_{n+1})_{*,2}$ it follows that $(h_{n+1}^{n+2} \circ r_{n+1})_{*,2}$ is the identity ZZ_2 -homomorphism. Observe that

$$(h_{n+1}^{n+2})_{\#,2} = (h_{n+1}^{n+2} \circ r_{n+1} \circ h_{n+1}^{n+2})_{\#,2}.$$

Thus by Lemma (3.22) $(r_{n+1} \circ h_{n+1}^{n+2})_{*,2}$ is the identity isomorphism. Since the maps $h_{n+1}^{n+2} \circ r_{n+1}$ and $r_{n+1} \circ h_{n+1}^{n+2}$ both induce the isomorphisms of the fundamental groups, by Lemma (3.1) both these maps are homotopic to the identity maps relatively to x_{n+1} and x_{n+2} , respectively; so h_{n+1}^{n+2} is a homotopy equivalence. It follows that $\operatorname{Sh}(\underline{\lim}(Y', y')) = \operatorname{Sh}(P \vee kS^2, p)$ and so $\operatorname{Sh}(X, x) = \operatorname{Sh}(P \vee kS^2, p)$.

4. Some remarks. Let X be a pointed compact FANR. By [8], X has the shape of a pointed CW-complex and there is a "Wall obstruction" (an element of the projective class group $\tilde{K}^0(\pi_1(X))$) which vanishes if and only if X has the pointed shape of a pointed finite simplicial complex (the finite complex may be chosen so as to have dimension $\max(3, \operatorname{Fd} X)$). All the possible Wall obstructions occur among two-dimensional compacta. Since $\tilde{K}^0(Z_{23})$ is not trivial, there is a pointed connected compact FANR with $\operatorname{Fd} X = 2$ and $\check{\pi}_1(X) = Z_{23}$ which does not have the shape of a finite simplicial complex.

M. N. Dyer has proved ([6], p. 242) the following theorem:

(4.1) Let L be a connected CW-complex with the fundamental group $\pi_1(L) \cong Z_p$ such that L is (homotopy) dominated by a finite 2-complex. Then L has the homotopy type of a finite 2-complex if and only if $Wa_2[L] = 0$.

Here Wa₂[L] is the Wall invariant, Wa₂[L] is the class of the $Z\pi_1(L)$ -module $C_2(\tilde{L})/B_2(\tilde{L})$ in the projective class group $\tilde{K}^0(\pi_1(L))$ where \tilde{L} is the universal cover of L, $C(\tilde{L})$ is the cellular chain complex of \tilde{L} , and $B_2(\tilde{L}) = \operatorname{im}(\delta_3 \colon C_3(\tilde{L}) \to C_2(\tilde{L}))$.

Let X be a compact connected FANR with $\operatorname{Fd} X = 2$. Thus X is shape dominated by a finite CW-complex K with $\dim K = 2$. By [5], X is a pointed FANR, and so X has the shape of a CW-complex L. Since L is shape dominated by K, and K and L are CW-complexes, L is (homotopy) dominated by K. If $\check{\pi}_1(X) \cong Z_p$ then $\pi_1(L) \cong Z_p$. If $\check{K}(Z_p)$ is trivial then $\operatorname{Wa}_2[L]$ is trivial (it is known that $\check{K}^0(Z_p)$ is trivial for p = 2, 3, 5, 7, 11, 13, 17, 19; see [11] or [23]). Thus by (4.1) we obtain the following:

^{4 -} Fundamenta Mathematicae CXVI/1

- (4.2) PROPOSITION. Let X be a connected compact FANR with $\operatorname{Fd} X = 2$. If $\check{\pi}_1(X) \cong Z_p$ and $\check{K}^0(Z_p)$ is trivial, then X has the shape of a finite polyhedron. By [7], it follows that X has the shape of a bouquet of the pseudoprojective plane of order p and 2-spheres.
- (4.3) QUESTION. Let X be a pointed movable continuum with $\operatorname{Fd} X = 2$, $\check{\pi}_1(X) \cong Z_p$ and $\check{H}_2(X)$ finitely generated. Is it true that if $\check{K}^0(Z_p)$ is trivial then X has the shape of a finite polyhedron? By Theorem 5.1 in [8], it suffices to prove that $\check{\pi}_2(X)$ is finitely generated.

References

- [1] K. Borsuk, Theory of Retracts, Warszawa 1967.
- [2] Theory of Shape, Warszawa 1975.
- [3] J. Dydak, Concerning the abelization of the first shape group of pointed continua, Bull. Acad. Polon. Sci. 24 (1976), pp. 615-620.
- [4] and J. Segal, Shape theory, An introduction, Lecture Notes in Math. 688, Springer, Berlin 1978.
- [5] and H. M. Hastings, Homotopy idempotents on two-polyhedra split (to appear).
- [6] M. N. Dyer, On the realizability of 2-types, Trans. Amer. Math. Soc. 204 (1975), pp. 229-243.
- [7] and A. J. Sieradzki, Trees of homotopy types of two-dimensional CW-complexes, Commentari Math. Helvetici 48 (1973), pp. 31-44.
- [8] D. A. Edwards and R. Geoghegan, The stability problem in shape and a Whithead theorem in pro-homotopy, Trans. Amer. Math. Soc. 214 (1975), pp. 261-277.
- [9] K. N. Frederic, The Hopfian property for a class of fundamental groups, Comm. Pure and Appl. Math. 16 (1963), pp. 1-8.
- [10] K. W. Gruenberg, Residual properties of infinite soluble groups, Proc. London. Math. Soc. 7 (1957), pp. 29-62.
- [11] H. Hasse, Über die Klassenzahlen abelscher Zahlkörper,
- [12] J. Krasinkiewicz, Continuous images of continua and 1-movability, Fund. Math. 98 (1978), pp. 141-164.
- [13] A. G. Kurosh, The Theory of Groups, (2 vols., translated from Russian) 2nd English ed., Chelsea 1960.
- [14] S. Lang, Algebra, Addison-Wesley Publ. Comp. Inc., Reading Massachusets 1965.
- [15] A. I. Lichtman, The residual nilpotence of the augmentation ideal and the residual nilpotence of some classes of groups, Israel J. Math. 26 (1977), pp. 276-296.
- [16] W. Magnus, A. Karras and D. Solitar, Combinatorial group theory, New York-London-Sydney 1966.
- [17] S. Mardešić and J. Segal, Shapes of compacta and ANR-systems, Fund. Math. 72 (1971), pp. 41-59.
- [18] P. Olum, Self equivalences of pseudo-projective planes, Topology 4 (1965/1966), pp. 109-127.
- [19] J. B. S. Passi, Group rings and their augmentation ideals, Lecture Notes in Math. 719, Springer, Berlin 1979.
- [20] D. S. Rim, Modules over finite group, Ann. of Math. 69 (1959), pp. 700-712.
- [21] J. Segal, Shape classification of projective plane-like continua, Glasnik Matematicki 6 (1971), pp. 365-371.
- [22] S. Spież, On a shape characterization of surfaces, Proc. Geometric Topology Conf., Warsaw 1978.

[23] C. T. C. Wall, Finitenes condition for CW-complexes, Ann. of Math. 81 (1965), pp. 55-69.
 [24] J. H. C. Whitehead, Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc. 45 (1939), pp. 243-327.

INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES INSTITUTE OF MATHEMATICS UNIVERSITY OF WARSAW

Accepté par la Rédaction le 15, 5, 1980