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Validity up to complementation in graph theory
by

T. A. McKee (Dayton, Ohio)

Abstract, A graph-theoretic property is called “gemivalid” exactly when, for each graph G,
the property must hold either in G or in its complement G. Examples include connectivity and
the “diagonal” cases of Ramsey’s theorem. A formal logical characterization is given, from which
further features of semivalidity are deduced. We also consider a very restricted subclass of the
semivalid properties, which is broad enough to include the various examples which prompted this
investigation, and which is also deep enough that the semivalidity of this restricted subclass insures
the same of all other semivalid properties.

1. The notion of semivalidity. In a sense, the fundamental activity in graph
theory is determining those properties which are valid; that is, which are true of
all graphs. Also, there is a simple yet intimate relationship between each graph
and its complement—indeed it is sometimes rather arbitrary which is “the graph”
and which is “the complement.” With this in mind, we propose the study of the
“semivalidity” of graph-theoretic statements (or properties expressed as statements),
where a statement is said to be semivalid if and only if, for each graph G, the state-
ment is necessarily true in either G or its complement G. (Our graph-theoretic
notation and terminology follows that of [2].) Notice that we cannot require truth
in exactly one of G and G, since the existence of selfcomplementary graphs rules
out the possibility of being true in only one of each complementary pair.

Probably the best known example of semivalidity [2, page 26] is connectivity:
Every graph either is connected or has a connected complement. Near examples
are provided by any of the “diagonal” instances of Ramsey’s theorem [2, page 284].
For instance, “containing a triangle” must be true of each graph or its complement,
if only graphs of order at least six are considered. This leads to the somewhat
awkward semivalid statement “has order less than six or contains a triangle.” (We
could call containment of a triangle “eventually semivalid.”) A similar example
is the semivalidity of “has order less than nine or is nonplanar” [1]. A recent and
sophisticated example [5] is “has order less than six or is both connected and bas
a pancyclic line graph.”

In this section we shall discuss several properties of semivalidity which are
rather independent of our choice of a particular formal language. However, to
make our arguments specific, we shall introduce a certain language & for graph
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theory and shall use only simple logical manipulations with it such as are found
in any elementary text on mathematical logic (for instance, [4]). Although many
simple concepts (connectivity, for one) cannot be directly expressed in &, they
can be expressed in various extensions of % (for instance, by allowing disjunction
and conjunction over countable sets of formmulas), and the results of this section
could be very naturally modified for these extended but somewhat more involved
languages.

The variables of & are x, y, and z (possibly primed or subscripted) and will
be interpreted as vertices. The atomic formulas are of the forms x =y, x # p,
xy, and Xy, interpreted respectively as equality, distinctness, adjacency and non-
adjacency of the vertices x and y. The formulas of £ are built from the atomic
formulas using the usual logical connectives 71, &, and v (for negation, conjunction
and disjunction) and the universal and existential quantifiers ¥ and 3. Formulas
having no free (= unquantified) occurrences of variables are called sentences of £.

For any formula ¢ of %, define ¢ to be obtained from ¢ by replacing all
occurrences of adjacencies by the corresponding nonadjacencies, and vice versa.
Also, @* is obtained from ¢ by interchanging all occurrences of & and v, of ¥
and 3, and of = and . Note that ¢* is not quite the negation of ¢ since (non)
adjacencies are left untouched. But applying both the ~ and * transformations
to ¢ produces precisely “1¢. In fact it is easy to see that the three transformations
~,* and 7] constitute the nonidentity elements of a Klein four group under compo-
sition. This is the content of the following lemma, in which “equivalent” means
“are true in exactly the same graphs.”

LemMA 1.1. For each formula ¢ of ¥, @*, “\@*, and 71§ are equivalent to,
respectively, T, § and ¢*.

It is now convenient to define an additional connective for .£: the conditional
symbol =, where @=>y is defined to be (T1¢@) vy (or, equivalently, ¥ v (71¢)).
(Note that this definition must be used to eliminate all occurrences of = from
a formula before the * transformation is applied.) One final piece of logical no-
tation is useful: for each sentence o, F ¢ will mean that o is true of all graphs (that
is, o is valid). Note that ¢ is true in a graph G exactly when & is true in G; also that
ko if and only if F &.

THEOREM 1.2. A sentence o of £ is semivalid if and only if F o*=>0.

Proof. o*=¢ means ~Jo*ve and so is equivalent to Gvo by Lemma 1.1.
It is immediate that ¢ is semivalid if and only if F &vo. .

COROLLARY 1.3. Suppose ¢ and © are sentences of L. If o is semivalid and ©* =1
is true in all graphs which satisfy o, then < is semivalid.

Proof. Note that since t*=>7 is true in all graphs satisfying ¢, then T*=>%
will be true in all graphs satisfying 6. But 7*=>7 means 717* v T and so is equivalent
by Lemma 1.1 to 7 v 717* and so finally to *=><. Thus we have that t* =1 is true
in all graphs satisfying ¢ or &, and so (by ¢’s semivalidity) in all graphs, as required
in Theorem 1.2.
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Corollary 1.3 asserts that to prove a sentence v semivalid, one need prove
t*=>7 only for connected graphs, or only for graphs which are nonplanar (or of
order less than nine), or only for graphs satisfying any other semivalid sentence.
The next theorem shows we can also prove a sentence semivalid by showing that
it follows from any other sentence previously known to be semivalid.

THEOREM 1.4. The set of semivalid sentences is closed under consequence; that
is, if o is semivalid and if £ o=>1, then © is semivalid.

Proof. ko=t means Flovr, and so k1Fv7, which by Lemma 1.1 is
E g*v 7% and so Ft*=¢*. But Theorem 1.2 gives F o*=>0, and by assumption
we have F o= 7. Transitivity of = shows that k 7*=>1, as required for Theorem 1.2.

Theorem 1.4 suggests searching for stronger and stronger semivalid sentences,
so that proving the semivalidity of one such sentence will insure that of all its conse-
quences. For instance the usnal proof of connectivity’s semivalidity [2, p. 26] really
proves the semivalidity of the stronger property of having diameter at most three.
In the next section we shall consider this example in more detail as we examine
a very restricted family of “special” semivalid sentences whose consequences include
all other semivalid sentences.

We close this section with a comment about selfcomplementary graphs: Not
only must they satisfy each semivalid sentence, but the converse holds as well.

THEOREM 1.5. A graph is selfcomplementary if and only if it satisfies all semivalid
sentences. .

Proof. Suppose rather, towards a contradiction, there were a nonselfcom-
plementary graph G satisfying all semivalid sentences. Since G is finite, there would
be a sentence ¢ of .# characterizing G up to isomorphism—that is, asserting the
existence of the proper number of distinct vertices (with each vertex equal to one
of them) with the proper pairs adjacent and the rest nonadjacent. Since G was
chosen to be nonselfcomplementary, o would be semivalid. But we would then
have G satisfying 1o, contradicting the choice of o.

Selfcomplementary graphs also satisfy certain nonsemivalid sentences; con-
junctions of semivalid sentences, for instance. In fact for (any “first-order” extension
of) &, the Compactness Theorem [4, p. 312] of elementary model theory can be
used to show that the theorems of the theory of selfcomplementary graphs consist
precisely of all conjunctions of semivalid sentences.

2. Special sentences and semivalidity. We now consider a family of sentences
which contains many natural examples of semivalid sentences and which can be
shown to be intimately related to the totality of semivalid sentences. We shall call
a sentence of & special if it is equivalent to one of the form

(*) (Vxl) (HYJ) o (Vxn) (ayn)(P(xlyl e xnyn)

where ¢ (x;¥y .. X,y i a formula of & all of whose free variables are included
AIMONE X1, Y1, -s Xy and ¥, such that k @*(py Xy oo YuXn) = @ (X171 . X,Ys), Where
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this last assumption means that the conditional formula @*=>¢ is true for all as-
signments of vertices to the variables in all graphs. (This is a generalization of the
characterization of Theorem 1.2 of semivalidity of sentences to formulas with
paired free variables.)

THEOREM 2.1. Each special sentence is semivalid.

Proof. Suppose ¢ is of the form () and, towards applying Theorem 1.2,
that G is a graph satisfying (3x;)(Vpy) ... @x) (V) 0*(% ¥y ... X,¥,), which is o*,
Relabeling the bound variables of o* shows that G must satisfy.

Gy (Vg o @r) V) 0¥y Xy v ) -

By [4, p. 127, 481, this implies (Vx;)@y,) ... (Vx,)(Fy,) 0*(y %y ... ,%,), and now
the assumption on ¢ in the definition of & being special shows that G also satisfies o,
In order to make % more colloquial, we shall introduce two “enriched” quantifiers.
For any formula 0(z) of %, define (Yz: 8(2))p(2) to be (V2)[0(z)=>(2)] and
(3z: 6(2))e(2) to be (32)[0(z) & ¢(2)]. Since B(z) could be taken as something
harmless such as z = z, all quantifiers of % can be considered to be of this form.
We also define (Vz; ... 2,0 (2 ... 2,))@(2; ... 2,)) to be (Vz;) ... (V2,)[0(z, ... z,)
=¢(z; ... z,)] and (Iz, ... 2, 0(z; ... z,,,))(p‘(z1 g tobe (3zy) ... Az,) [0z ...2,) &
& p(zy ... 2,)] o . ‘
COROLLARY 2.2. Suppose E@*(y;%y ... YX,) =@ (X1 V1 ... X,3,). Then
@ (Vx1: 910‘1))(3}’11 01(y,_))(Vx2: gz(xlxz))(ahi 62(}’13’1))
(Vs Bes oo )@t 01 oo 7))@ (X1 Y1 e X,
is special (and so, semivalid). '

() (Vs v %2 0%y e X)) [Ty ove Va2 01 oo 3@ (X1 3y onr X% 3,) is special (and
so, semivalid). - . -

Proof. (a) can be argued by induction on n; we shall show the n = 1 case.
(Vx: 5@))Ap: 000 o(x,») is defined to be (Y)@N[0(x)=>(0(») & o (x, »))]
and so is equivalent to (Vx)(3»)[18(x) v (8(») & ¢ (x, »))]. To show this special,
note that [18(y)v(0(x) & @(y, x))]* is equivalent to 00y) & (0%(x) v 9*(p, x)),
which can be shown (using the hypothesis on @) to imply =19(x)v 00 & o(x, y)).
Part (b) follows from (a) by taking 0,(z; ...2) to be z; =z, & .. & z, = z; for
i<n, and 6,(z, ... z,) to be O(z, ... z,).

As an example, ‘connectivity is a consequence of having diameter at most
three, and the latter can be expressed as

(%) (Vxq, x5t ’?1-;;) €IS yz: Y1y (131 v X, p2) & (%291 v X, 3,)];

by abbreviating the quantifierless part as o(x, Y1X;),), it can be checked that
E@*(yy %19, %)= @ (X, x,p,). (In fact there are relatively simple combinatorial
means.of checking this for any formula.) Hence by Corollary 2.2, having diameter
at mqst,@_t.hree is semivalid, and so by Theorem 1.4, s0 is connectivity.
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While the §’s in the enriched -quantifiers can be any formulas of %, it can be
shown that nothing is gained by their involving quantifiers; quantifiers within
the 6’s can be replaced by additional pairs of quantifiers within the sentence: itself.
But it is worthwhile to-allow constants in the 0’s. For instance, if 8(z;, z,) = z;z,
in (x#) is replaced by z,z, & z; % a & z, # a, where the constant @ is some vertex,
then the resulting special sentence expresses that. the diameter of G~{a} is at most
three and hence implies the semivalidity of “vertex @ is not a cutpoint” [3].

It is interesting to note that each diagonal instance of Ramsey’s theorem can
be expressed as a special sentence. For instance, “each graph of order at least six
contains a triangle” can be expressed

(Vxl e X2 B(xy xﬁ))(ah Y6 011 ?~-J’6)) [A(xy . xg) v A(yy - Y615

where & (and J) asserts the pairwise distinctness of the six variables and A asserts
the existence of a triangle (that is, the disjunction of twenty terms each of the form
x;%; & x,x; & x;x;). The universal quantification causes the sentence to be vacu-
ously true for orders less than six. Finally, the sentence is special since it can be
checked that k[4*(yy ... ¥e) & 4%(x; ... X6)] = [4(x; ... X5) VA(Py ... Ye)] (and this
fails for the corresponding 4 formulas with fewer than six variables).

THEOREM 2.3. Each semivalid sentence o is a consequence of some special
sentence o,

Proof. Suppose ¢ is of the form (Vx)(@y,)@ya)(Vx)o(x,3,73x,); the
verification of any other form is similar. Take ¢* to be

(Vx) @y (Vx2) y2) (V) Avs) (V) @ra) [0 (%1 7273 X8) v 0* (91 X2 %3 4]
Then [4, pp. 127-128] o* is equivalent to
(Vx) @p2) Aya) (Vx) 9 (X1 1273 %) v (3y) (V) (Vx3) Fya) 9*(y1 X2 %3 94) 5

relabeling the bound variables in the second term shows o™ equivalent to o v o*.
Since ¢ is semivalid, Theorem 1.4 shows that ¢* implies ovo, and so ¢. Since

Elo*(p1X2%374) & 0 (X1 72V3%4)] = [@(X17273%4) vV 0*(y1 xzx3Y4)] s

ot is special, as claimed.

While Theorem 2.3 shows a sense in which special sentences are fundamental
or primitive semivalid sentences, we should not expect them to be maximally strong
semivalid sentences. For instance, even strengthening (%) by requantifying it as
(Vx) @y (Vxp: % %)(@ys: p1y2)- is not maximally strong. The quantifierless
part can be strengthened by adding either one of the conjuncts (x;y,vX,y,) or
(X1, VX,9,), and the resulting sentences are still semivalid (and special). (Further-
more, these resulting quantifierless formulas can be shown not to be consequences
of a stronger such formula resulting in-a special sentence.)

We must also- warn that despite the tools given in Corollary 1.3 and The-
orem 1.4, we have given no test for determining whether or not a sentence is semivalid,
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and it is easy to see why we cannot. For any sentence o, ¢ will be valid exactly when
o & & is semivalid. Thus determining semivalidity is at least as hard (and, in fact,
is exactly as hard) as determining validity.

Finally, it should be noted that the semivalid sentences based upon Ramsey
theory or being nonplanar or the like are going to be quite complicated if for no
other reason than the requirements of sufficiently large order. And because of the
inberent lack of decision procedures for semivalidity, this approach cannot be
expected to help in answering extremal questions such as the determination of
Ramsey numbers. '
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Compactness = JEP in any logic
by

Daniele Mundici (Florence)

Abstract. L-elementary embeddings are for logic L what elementary embeddings are for
first-order logic. If the Joint Embedding Property holds for L-elementary embeddings (for short:
L has JEP), then the latter become a fundamental model, as well as an arrow-theoretical feature
of L. Assuming Constructibility, 710%*, oreven T1L", we prove that in any small extension of first-
order logic JEP is equivalent to compactness. We further give a characterization of Craig’s inter-
polation along the same lines, by making use of a strong notion of amalgamation.

Preliminaries. The reader is referred to [MSS] for everything unexplained
here; following [Fe2], for = a (similarity) type, Str(z) is the class of all structures
of type ; if L is a (many-sorted) logic then Stc,(7) is the class of all sentences of
L of type T; given 9, M e Str(z) we let

thy M = {¢ e Stc, ()| ME ¢}

and we let M =, N mean that th;M = th, . For I'cStcy(r) we let mod, I
= {WeStr(z)]WE T} In logic L we allow relativization, e.g., relativization of
formula  to formula ¢(x, yy, ..., y,) where y;,...,», act as parameters, and we
write

l[’{xl(P(x)yls rery yg)}

to denote the formula obtained by this process. If B € Str(t) and B'< B (with B the
universe of B) where B’ is nonempty on each sort of 7, then B[B’ is the substructure
of B generated by B, see [Fl]. For the definition of (A, w)-compactness, see [MSS]
or [MS). (Full) compactness is (1, w)-compactness for all 1> w; an important related
notion is given by the following (see [MS]):

DeriNiTioN. Logic L is u-relatively compact (for short: p-r.c) with u>o,
iff for any classes of sentences Z, I' with |X| = p, if for each Z'=X with [¥'|<p,
%" U I' is consistent, then £ L I' is consistent.

For the definition of L having Craig’s interpolation property (or theorem),
see [Fel], [Ba], [MSS]. An important related notion is given by the following:

DerFNITION. We say that in L Robinson’s consistency theorem holds (or: L has
the Robinson property) iff given any types 7, 7, and 7, and classes of sentences
T, T, and T,, if T is complete in © and Ty, T, are consistent extensions of T in
type 7, and t, respectively, with © = 7, N 7, then T, U T, is consistent.
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