

S. Subbiah

- [3] V. Knichal, Sur les superpositions des automorphies continues d'un intervalle fermé, Fund. Math. 31 (1938), pp. 79-83.
- [4] K. D. Magill, Jr., A survey of semigroups of continuous selfmaps, Semigroup Forum 11 (3) (1975/76), pp. 189-282.
- [5] J. Schreier and S. Ulam, Über topologische Abbildungen der euklidischen Sphären, Fund. Math. 23 (1934), pp. 102-118.
- [6] W. Sierpiński, Sur l'approximation des fonctions continues par les superpositions de quatre fonctions, Fund. Math. 23 (1934), pp. 119-120.
- [7] S. Subbiah, Some finitely generated subsemigroups of S(X), Fund. Math. 86 (1975), pp. 221-231.
- [8] S. W. Young, Finitely generated semigroups of continuous functions on [0, 1], Fund. Math. 68 (1970), pp. 297–305.

DAEMEN COLLEGE Amberst, N.Y.

Accepté par la Rédaction le 29. 9. 1980

The axiom of determinateness implies ω_2 has precisely two countably complete, uniform, weakly normal ultrafilters

b

Robert J. Mignone * (Charleston, S. C.)

Abstract. A well known consequence of the axiom of determinateness is that over ω_2 there are precisely two ω_2 -complete, normal ultrafilters. This can be strengthened to precisely two ω_1 -complete, uniform, weakly normal ultrafilters exist over ω_2 . The proof is a modification of the original proof of Martin and Paris. One application of this result shows that a theorem of ZFC, due to Ketonen, fails in ZF+AD.

§ 0. Notation and preliminaries. A familiarity with set theory is assumed. For the definitions of ultrafilter, z-complete, normal, fine, and other common set theoretic notions the reader is referred to [2].

If A is a set, then \overline{A} denotes the cardinality of A.

If $\varkappa \leqslant \lambda$ are cardinals, $P_{\varkappa}\lambda = \{a \subseteq \lambda : \overline{a} < \varkappa\}$.

A filter U over $P_{\varkappa}\lambda$ is called weakly normal if given any $f\colon P_{\varkappa}\lambda \to \lambda$ such that $\{a \in P_{\varkappa}\lambda\colon f(a) \in a\} \in U$, then there exists a $\gamma < \lambda$ such that $\{a \in P_{\varkappa}\lambda\colon f(a) < \gamma\} \in U$. Likewise, a filter F over \varkappa is called weakly normal if given any $f\colon \varkappa \to \varkappa$ such that $\{\alpha \in \varkappa\colon f(\alpha) < \alpha\} \in F$, then there exists $\gamma < \varkappa$ such that $\{\alpha \in \varkappa\colon f(\alpha) < \gamma\} \in F$.

A filter F over \varkappa is uniform if $a \in F$ implies $\overline{a} = \varkappa$.

Let $\varkappa \leqslant \mu$ be regular cardinals. F an ultrafilter over λ is (\varkappa, μ) -regular if there exists $\{X_\alpha \colon \alpha \in \mu\} \subseteq F$ such that for every $\alpha \subseteq \varkappa$ with $\bar{\alpha} = \varkappa$, then $\bigcap X_\alpha = \emptyset$.

Let X, Y be sets and F, U ultrafilters over X, Y respectively. U is said to be projectible onto F (denoted $F \le U$) if there exists $f \colon Y \to X$ such that for all $a \subseteq X$, $a \in F$ if and only if $f^{-1}(a) \in U$.

In [3] the following theorem is proved:

THEOREM (Ketonen). ZFC. Let $\varkappa \leqslant \lambda$ be regular cardinals and F a \varkappa -complete, uniform ultrafilter over λ . Then F is (\varkappa, λ) -regular if and only if there is a weakly normal, fine ultrafilter U over $P_{\varkappa}\lambda$ projectible onto F.

Let κ be a regular cardinal and $\alpha < \kappa$ an ordinal. A set $\alpha \subseteq \kappa$ is α -closed unbounded in κ , if

^{*} This paper represents Chapter One of my Ph. D. Thesis (The Pennsylvania State University, 1979) written under the supervision of Professor Thomas Jech, to whom I am grateful for his guidance and knowledge of set theory.

(i) the sup of every increasing sequence of length α from a is in a; and (ii) if $\beta < \alpha$, then there is a $\delta \in a$ such that $\beta \leq \delta$.

Denote by μ_0 and μ_1 the filters over ω_2 generated by the collections of ω -closed unbounded subsets of ω_2 and ω_1 -closed unbounded subsets of ω_2 , respectively.

Martin and Paris proved, assuming AD, μ_0 and μ_1 are the only two ω_2 -complete, normal ultrafilters over ω_2 , see [4].

§ 1. THEOREM 1.1. AD. Given any uniform, ω_1 -complete, weakly normal ultrafilter ν on ω_2 , then ν is μ_0 or μ_1 .

Proof. Assume otherwise. Let $A \in \nu$, $E_0 \in \mu_0$ be ω -closed, and $E_1 \in \mu_1$ be ω_1 -closed such that $A \cap (E_0 \cup E_1) = \emptyset$. Define $f \colon A \to \omega_2$ by

$$f(\alpha) = \inf \{ \sup (E_0 \cap \alpha), \sup (E_1 \cap \alpha) \}.$$

So $f(\alpha) < \alpha$ for all $\alpha \in A$. Next, consider $f^{-1}(\gamma)$ for any $\gamma \in f''$ $A \cap \omega_2$. If $\alpha \in f^{-1}(\gamma)$, then $\gamma = \sup(E_0 \cap \alpha)$ or $\gamma = \sup(E_1 \cap \alpha)$. In either case, since E_0 and E_1 are unbounded there exist $\beta_0 \in E_0$ and $\beta_1 \in E_1$ such that $\beta_0 > \gamma$ and $\beta_1 > \gamma$. For all $\alpha' \in A$ such that $\alpha' > \sup(\beta_0, \beta_1)$, $\gamma < \sup(E_0 \cap \alpha')$ and $\gamma < \sup(E_1 \cap \alpha')$. That is, $f(\alpha') > \gamma$. So $A \cap f^{-1}(\gamma) \subsetneq \sup(\beta_0, \beta_1) + 1 < \omega_2$. Hence $f^{-1}(\gamma)$ is bounded in A. But $f(\alpha) < \alpha$ for all $\alpha \in A \in \gamma$. Weakly normal implies there is a $B \in \gamma$, $B \subseteq A$, and $\zeta < \omega_2$ satisfying:

For all $\beta \in B$, $f(\beta) < \zeta$. So $B \subseteq \bigcup_{\gamma < \zeta} f^{-1}(\gamma) \cap A$ and $\overline{B} = \omega_2$. But $\zeta < \omega_2$ and $f^{-1}(\gamma) \cap A < \omega_2$, contradicting the regularity of ω_2 .

COROLLARY 1.2. AD. Let F be an ω_1 -complete, uniform, weakly normal ultrafilter on ω_2 . F is not (ω_1, ω_2) -regular.

Proof. By Theorem 1.1 F is either u_0 or u_1 and both are ω_2 -complete.

THEOREM 1.3. AD. Let U be an ω_1 -complete, fine, normal ultrafilter on $P_{\omega_1}\omega_2$.

U is projectible onto an ω_1 -complete, uniform, weakly normal ultrafilter on ω_2 .

Proof Define $f: P_{\omega_1}\omega_2$ by $f(x) = \sup_{x \in X} Given a \subseteq \omega_1$, define $f: On \omega_2$.

Proof. Define $f\colon P_{\omega_1}\omega_2\to\omega_2$ by $f(x)=\sup x$. Given $a\subseteq\omega_2$ define F on ω_2 by $a\in F$ iff $f^{-1}(a)\in U$.

CLAIM. F is an ω_1 -complete, uniform, weakly normal ultrafilter on ω_2 . Proof of claim.

(uniformity)(i) Since U is fine and $\bar{a} = \omega_2$ for any $a \in F$.

 $(\omega_1$ -completeness)(ii) Let $\{X_\alpha: \alpha < \gamma\} \subseteq F$ for any $\gamma < \omega_1$.

 $\{f^{-1}(X_{\alpha}): \alpha < \gamma\} \subseteq U. \text{ And by } \omega_1\text{-completeness of } U, \bigcap_{\alpha < \gamma} f^{-1}(X_{\alpha}) \in U. \text{ Let } x \in \bigcap_{\alpha < \gamma} f^{-1}(X_{\alpha}). \text{ Then } x \in f^{-1}(X_{\alpha}) \text{ for all } \alpha < \gamma, \text{ giving } f(x) \in X_{\alpha} \text{ for all } \alpha < \gamma. \text{ That is, } f(x) \in \bigcap_{\alpha < \gamma} X_{\alpha}. \text{ Hence } x \in f^{-1}(\bigcap_{\alpha < \gamma} X_{\alpha}). \text{ So } \bigcap_{\alpha < \gamma} f^{-1}(X_{\alpha}) \subseteq f^{-1}(\bigcap_{\alpha < \gamma} X_{\alpha}), \text{ yielding } \bigcap_{\alpha < \gamma} X_{\alpha} \in F.$

(weakly normal)(iii) Let $g: \omega_2 \to \omega_2$ be such that $g(\alpha) < \alpha$ for all $\alpha \in a \in F$. So $f^{-1}(a) \in U$. Define $G: P_{\omega_1}\omega_2 \to \omega_2$ by

$$G(x) = \begin{cases} \inf(x - g(\sup x)) & \text{for } x \in f^{-1}(a), \\ 0 & \text{otherwise.} \end{cases}$$

For all $x \in f^{-1}(a) \in U$, $G(x) \in x$. Hence, there exists a $\gamma < \omega_2$ and $B \subseteq A$ with $B \in U$ satisfying: $G(x) = \gamma$ for every $x \in B$. Let $b = \{\sup x : x \in B\}$. Now $b \subseteq a$. And for $\beta \in b$, $g(\beta) = g(\sup x)$ for some $x \in B$. So $g(\beta) = g(\sup x) < G(x) = \gamma$. But $B \subseteq f^{-1}(b)$. Hence $b \in F$.

(ultrafilter)(iv)
$$a \notin F$$
 iff $f^{-1}(a) \notin U$
iff $P_{\omega_1}\omega_2 - f^{-1}(a) \in U$
iff $\{x \in P_{\omega_1}\omega_2 : \sup x \in \omega_2 - a\} \in U$
iff $f^{-1}(\omega_2 - a) \in U$.

COROLLARY 1.4. AD. Let U be an ω_1 -complete, fine, normal ultrafilter on $P_{\omega_1}\omega_2$. U is projectible onto μ_0 on ω_2 . (The existence of such a U follows from AD, see [1].)

Proof. Theorem 1.3, Theorem 1.1 and the facts:

$$\{\alpha < \omega_2 : \operatorname{cf}(\alpha) = \omega\} \in \mu_0 ,$$

$$\{\alpha < \omega_2 : \operatorname{cf}(\alpha) = \omega_1\} \in \mu_1 ,$$

and U is normal; imply

$$\{x \in P_{\omega_1}\omega_2 : \sup x \text{ is a limit ordinal}\} \in U$$
.

COROLLARY 1.5. AD. Any normal (hence weakly normal), fine, ω_1 -complete ultrafilter over $P_{\omega_1}\omega_2$ is projectible onto an ω_1 -complete, uniform ultrafilter over ω_2 which is not (ω_1, ω_2) -regular.

Proof. By Corollaries 1.4 and 1.2.

References

- [1] C. A. Di Prisco and J. Henle, On the compactness of ω_1 and ω_2 , J. Symb. Logic 43 (1978), pp. 394-401.
- [2] T. J. Jech, Set Theory, Academic Press, New York 1978.
- [3] J. Ketonen, Strong compactness and other cardinal sins, Ann. Math. Logic 11 (1977), pp. 57-103.
- [4] D. A. Martin and J. B. Paris, AD implies there exists exactly two normal measures on ω₂ (manuscript).

THE PENNSYLVANIA STATE UNIVERSITY University Park, Pennsylvania 16802

Current Address: DEPARTMENT OF MATHEMATICS THE COLLEGE OF CHARLESTON Charleston, South Carolina 29424

Accepté par la Rédaction le 22, 10, 1980