

The second of the second secon

Compactification of pointed 1-movable spaces

. by

Yukihiro Kodama (Ibaraki)

Abstract. Let X be a locally compact metrizable space with a locally finite cover consisting of pointed 1-movable continua. It is proved that if aX is a metrizable compactification of X such that each component of aX - X is pointed 1-movable, then aX is pointed 1-movable. This fact does not generally hold in case 1-movability is replaced by r-movability, r > 1.

§ 1. Introduction. Let X be a locally compact metrizable space and let αX be a metrizable compactification of X. It is known that many of topological properties of X are not preserved by αX . For example, as shown by the curve " $\sin 1/x$ ", even if X and $\alpha X - X$ are both AR, the local connectedness is not preserved.

In this paper we shall prove that if X is locally pointed 1-movable and αX is a metrizable compactification of X such that each component of the remainder $\alpha X - X$ is pointed 1-movable, then αX is pointed 1-movable. Thus a Freudenthal compactification or one point compactification of a locally pointed 1-movable space is pointed 1-movable. Also, a continuum being a disjoint union of locally connected subspaces one of which is compact is pointed 1-movable. Since there is a metrizable compactification of a real line which is not 1-movable, the condition "pointed 1-movability of the remainder" can not be omitted in these results. Finally, for r > 1, it is shown that the pointed r-movability is not generally preserved by a Freudenthal compactification even in case X is a locally compact AR.

The author wishes to thank the referee for a simple proof of Theorem 3 and a correction of Example 1.

Throughout this paper, all of topological spaces are Hausdorff and maps are continuous. We mean by a continuum a compact connected metric space and by AR and ANR those for metrizable spaces.

§ 2. Pointed 1-movability. Let X be a continuum and let x_0 be a point of X. Consider X as a subset of the Hilbert cube Q. Then X is said to be pointed r-movable if for every neighborhood U of X in Q there exists a neighborhood V of X in Q satisfying the following conditions: Let (Y, y_0) be a pointed CW-complex with dim $Y \le r$ and let $f: (Y, y_0) \to (U, x_0)$ be a map; then for every neighborhood W of X in Q there exists a homotopy $H: Y \times I \to U$ such that H(y, 0) = f(y),

 $H(y, 1) \in W$ for $y \in Y$ and $H(y_0, t) = x_0$ for $t \in I$. Obviously this definition is equivalent to the original one by Borsuk [2, p. 171].

In the paper [3] we gave the following characterization of pointed 1-movability (Theorem 1) which is used in the proof of main results (§ 4). Let T be the half open interval [0, 1). Denote by E the product space $I \times T$. Consider the Stone-Čech compactification βE of E. The remainder $\beta E - E$ is denoted by E^* . Put

$$E_0 = E^* \cap \operatorname{Cl}_{\beta E}(\{0\} \times T)$$

and $E_1 = E^* \cap \operatorname{Cl}_{\beta E}(\{1\} \times T)$. Here Cl_A means the closure in the space A. Each E_i , i=0,1, is homeomorphic to the remainder $\beta T-T$, where βT is the Stone-Čech compactification of T. We call E^* a Čech 1-cell, and E_i , i=0,1, an end of E^* .

THEOREM 1 ([3]). Let X be a continuum. The following are equivalent.

- (1) X is pointed 1-movable.
- (2) For any two points x_i , i = 0, 1, of X, there exists a map $f: E^* \to X$ such that $f(E_i) = x_i$, i = 0, 1.
 - (3) Every map $h: E_0 \cup E_1 \to X$ is extendable over E^* .

The proof is given in [3]. Following [3], a map f in Theorem 1 (2) is said to be a $\check{C}ech$ -path in X connecting the points x_0 and x_1 .

The following theorem was proved by Krasinkiewicz.

THEOREM 2 (Krasinkiewicz [5, 1.8]). If X is a continuum which is a union of a finite number of pointed 1-movable continua, then X is pointed 1-movable.

Note that any two points in a continuum X as in Theorem 2 are connected by a Čech path in X.

- § 3. Lemmas in compactification. Throughout this section we assume that
- (3.1) X is a connected metrizable space and \mathcal{F} is a locally finite cover of X consisting of continua.

Note that X is locally compact and its Freudenthal compactification FX is metrizable.

Let \hat{Z} be a closed set of X. The inclusion map $f\colon Z\to X$ induces the map $Ff\colon FZ\to FX$ such that $Ff(FZ-Z)\subset FX-X$, where FZ is the Freudenthal compactification of Z. Following Ball [1, p. 180] Z is said to be strongly properly embedded in X if $Ff|FZ-Z\colon FZ-Z\to FX-X$ is a homeomorphism onto.

LEMMA 1. Let Z be a closed set of X such that the covering $\{F \cap Z \colon F \in \mathscr{F}\}$ of Z consists of continua and is similar to F. Then Z is strongly properly embedded in X and hence FZ is identified with the closure $\operatorname{Cl}_{FX}Z$ of Z in FX.

For the proof we refer § 2 of Ball [1] and need a couple of lemmas.

Let $\mathscr{F} = \{F_{\tau} : \tau \in A\}$. Then each F_{τ} is a continuum of X. Choose a point x_{τ} of $F_{\tau} \cap Z$ for each $\tau \in A$. Following Ball [1], we denote by \mathscr{A}_X the set of all admissible sequences in X.

LEMMA 2. Given sequence $\alpha = \{y_i: i = 1, 2, ...\} \in \mathcal{A}_X$, let $\beta = \{z_i: i = 1, 2, ...\}$ be a sequence such that for each $i z_i \in \{x_i: \tau \in \Lambda\}$ and both y_i and z_i belong to the same member of \mathscr{F} . Then $\beta \in \mathcal{A}_X$ and $\alpha \sim \beta$ (cf. [1, p. 179]).

Proof. Let $\gamma = \{r_i \colon i = 1, 2, ...\}$ be the sequence defined by $r_{2i-1} = y_i$ and $r_{2i} = z_i$, i = 1, 2, ... It is enough to prove that $\gamma \in \mathscr{A}_X$. Suppose that $\gamma \notin \mathscr{A}_X$, that is, there exist two infinite subsequences γ_1 and γ_2 of γ separated by some compact set C of X. Then X - C is a union of two disjoint open sets U_1 and U_2 such that $\bigcup \gamma_1 \subset U_1$ and $\bigcup \gamma_2 \subset U_2$. Let $A' = \{\tau \colon F_\tau \cap C \neq \varnothing, \tau \in A\}$. Since \mathscr{F} is locally finite, A' is finite. Since each member of \mathscr{F} is a continuum, if $\tau \in A - A'$ either $F_\tau \subset U_1$ or $F_\tau \subset U_2$. Hence, for each $j = 1, 2, r_{2i-1} = y_i \in \gamma_j$ if and only if $r_{2i} = z_i \in \gamma_j$. Let $\alpha_j = \{y_i \colon y_i \in \gamma_j\}, j = 1, 2$. Then α_1 and α_2 are infinite subsequence of α and separated by C. This contradicts that $\alpha \in \mathscr{A}_X$.

LEMMA 3. Let $\beta = \{z_i \colon i=1,2,...\}$ be a sequence taken from $\{x_\tau \colon \tau \in A\}$. Then $\beta \in \mathscr{A}_X$ if and only if $\beta \in \mathscr{A}_Z$. Here \mathscr{A}_Z is the set of all admissible sequences in the space Z.

Proof. The if part follows from [1, Lemma 2.7]. To prove the only if part, let $\beta \notin \mathscr{A}_{\mathbb{Z}}$. Then there exist a compact set C of Z and two infinite subsequences β_1 and β_2 of β separated by C in Z. Let $A' = \{\tau \colon F_{\tau} \cap C \neq \emptyset, \tau \in A\}$ and let $E = \bigcup \{F_{\tau} \colon \tau \in A'\}$. Then E is compact. Put $\beta'_j = \{z_i \colon z_i \in \beta_j \text{ and } z_i \notin E\}$, j = 1, 2. Obviously β'_j is infinite. Let us prove that β'_1 and β'_2 are separated by E in X. Suppose they are not separated by E. Then, by the local finiteness of $\mathscr F$ and the connectedness of each member of $\mathscr F$, there exist points $z_k \in \beta'_1$ and $z_m \in \beta'_2$, and a finite chain $\{F_{\tau_k} \colon i = 1, 2, ..., n\}$ in $\mathscr F$ such that $z_k \in F_{\tau_1}, z_m \in F_{\tau_n}, \tau_i \in A - A'$ and $F_{\tau_i} \cap F_{\tau_{i+1}} \neq \emptyset$ for each i. Since $\{F_{\tau} \cap Z\}$ and $\{F_{\tau_i}\}$ are similar,

$$\{F_{\tau_i} \cap Z: i = 1, 2, ..., n\}$$

is a chain in $\{F_{\tau} \cap Z\}$ such that $z_k \in F_{\tau_1} \cap Z$, $z_m \in F_{\tau_m} \cap Z$, $(F_{\tau_i} \cap Z) \cap (F_{\tau_{i+1}} \cap Z) \neq \emptyset$ and $F_{\tau_i} \cap C = \emptyset$ for each *i*. Since $F_{\tau_i} \cap Z$ is a continuum, this implies that β_1' and β_2' are not separated by C in Z. This contradiction means that β_1' and β_2' are separated by E in X. Thus $\beta \notin \mathscr{A}_X$.

Proof of Lemma 1. It follows from Lemmas 2, 3 and Ball [1, Theorem 2.8]. Lemma 4. Let αX be a metrizable compactification of X and let C be a component of the remainder $\alpha X - X$. Then there exists a sequence $\{F_i: i=1,2,...\}$ in $\mathcal F$ such that

(3.2) $F_i \cap F_{i+1} \neq \emptyset$ for i = 1, 2, ...,

(3.3) $\operatorname{Lim} F_i \subset C$, where $\operatorname{Lim} F_i$ is the limit of $\{F_i\}$ ([4, p. 339]).

Proof. Let γX be the quotient space obtained from αX by contracting each component of $\alpha X-X$ to a point. Then γX is a metrizable compactification of X. Let $f\colon \alpha X\to \gamma X$ be the projection. Since ind $\gamma X-X=0$, by the maximality of Freudenthal compactification there is a projection $g\colon FX\to \gamma X$. Let $c\in g^{-1}f(C)$. We shall prove that

- (3.4) there exists a sequence $\{F_i\}$ in \mathcal{F} such that (3.2) is satisfied and
- (3.5) $\operatorname{Lim} F_i = \{c\}.$

Since f and g are proper maps, this completes the proof. To show (3.4), let K be the 1-skeleton of the nerve of \mathcal{F} . Then K is a locally finite simplicial complex and hence locally compact. Let $\{v_{\tau}: \tau \in \Lambda\}$ be the set of vertices of K, where v_{τ} corresponds F_{τ} for each $\tau \in \Lambda$. Choose a point x_{τ} of F_{τ} for $\tau \in \Lambda$. Let Y be the quotient space obtained by identifying the points x_{τ} and v_{τ} for each $\tau \in \Lambda$ from a topological sum $X \oplus K$. Then Y is a connected and locally compact metrizable space. We consider X and K as closed sets in Y and $X \cap K = \{x_{\tau}\} = \{v_{\tau}\}$. Let K' be a barycentric subdivision of K. For $\tau \in A$, put $H_r = F_r \cup \operatorname{St} v_r$, where $\operatorname{St} v_r$ is the closed star of v_r in K'. Then each H_{τ} is a continuum and $\{H_{\tau}: \tau \in \Lambda\}$ forms a locally finite cover of Y. Since $H_{\tau} \cap X = F_{\tau}$ and $H_{\tau} \cap K = \operatorname{St} v_{\tau}$, the collections $\{H_{\tau}\}, \{H_{\tau} \cap X\}$ and $\{H_{-} \cap K\}$ are similar to each other. By Lemma 1 we can consider that $FY = FX \cup FK$ and FY - Y = FX - X = FK - K. To complete the proof, let S be a maximal tree of K. The inclusion of S into Y induces the map $h: FS \to FY$ such that h(FS-S) = FY-Y. Let c' be a point of $h^{-1}(c)$. Since FS is an AR and FS-S is unstable by Sher [7, Lemma (2.2)], there is an into homeomorphism $k: I \to FS$ such that k(0) = c', $k(1/i) = v_{\tau_i}$ is a vertex of S and k([1/i+1, 1/i]) is a 1-simplex of S for i = 1, 2, ... Put $F_i = F_{\tau_i}$ and consider the sequence $\{F_i: i = 1, 2, ...\}$ in \mathcal{F} .

$$\begin{split} \left(\operatorname{Cl}_{FX} \bigcup_{i=1}^{\infty} F_{i}\right) - X &= \left(\operatorname{Cl}_{FY} \bigcup_{i=1}^{\infty} H_{i}\right) - Y = \left(\operatorname{Cl}_{FK} \bigcup_{i=1}^{\infty} \operatorname{Stv}_{\tau_{i}}\right) - K \\ &= \left(\operatorname{Cl}_{FK} \bigcup_{i=1}^{\infty} \operatorname{Stv}_{\tau_{i}}\right) - S = hk\left(I\right) - S = \left\{h(c')\right\} = \left\{c\right\}. \end{split}$$

Obviously $\{F_i\}$ satisfies (3.2). To see (3.5), it is enough to note that

This completes the proof.

§ 4. Main results.

THEOREM 3. Let X be a connected and locally compact metrizable space, and let \mathcal{F} be a locally finite cover of X consisting of pointed 1-movable continua. If αX is a metrizable compactification of X such that each component of the remainder $\alpha X - X$ is pointed 1-movable, then αX is pointed 1-movable.

Proof. By Theorem 1, it is enough to show that any two points of αX are connected by a Cech path. Let p and q be points of αX . If both p and q are contained in X, then they are connected by a Čech path in X. This is done by Theorem 1(2) and Theorem 2, because there is a chain $\{F_i: i=1,2,...,n\}$ in \mathcal{F} such that $p \in F_1$, $q \in F_n$ and $F_i \cap F_{i+1} \neq \emptyset$ for i = 1, 2, ..., n-1, and each F_i is pointed 1-movable. Thus we can assume that $p \in X$ and $q \in \alpha X - X$. Let C be a component of $\alpha X - X$ containing q. By Lemma 4, there exists a sequence $\{F_i: i=1,2,...\}$ in \mathcal{F} satisfying (3.2) and (3.3). Without loss of generality, we can assume that $p \in F_1$. We shall prove that the union $\bigcup F_i \cup C$ is pointed 1-movable. The referee has pointed out that this fact is a consequence of Theorem 3.1 of Krasinkiewicz and Minc [6]. Since we generalize this fact slightly in Theorem 4, we shall give a direct and elementary proof to this. The proof is divided into three steps.

Step 1. Let R_+ be the half line $\{x: 1 \le x < \infty\}$ and let $A = R_+ \times R_+$. Put $A_n = [n, n+1] \times R_+$ for n = 1, 2, ... Then $A = \bigcup_{n=1}^{\infty} A_n$. Consider the Stone-Čech compactification βA_n of A_n . For each n, $\operatorname{Cl}_{\beta A_n}\{n+1\} \times R_+$ and $\operatorname{Cl}_{\beta A_{n+1}}\{n+1\} \times R_+$ are naturally identified because each of them is homeomorphic to βR_+ . Let B be the space obtained by identifying $Cl_{BA_n}\{n+1\} \times R_+$ and $Cl_{BA_n}\{n+1\} \times R_+$ for each n from a topological sum $\bigoplus \beta A_n$. Then A and βA_n , n=1,2,..., are considered as subspaces of B and $\beta A_n \cap \beta A_{n+1} = \text{Cl}_{\beta A_n} \{n+1\} \times R_+ = \text{Cl}_{\beta A_{n+1}} \{n+1\} \times R_+$. Put $B_1 = \operatorname{Cl}_B\{1\} \times R_+$ and $B_{n+1} = \beta A_n \cap \beta A_{n+1}$, n = 1, 2, ... Since B is σ -compact. it is obvious that

(4.1)

) B is Lindelöf and $\bigcup_{n=1}^{\infty} (\beta A_n - A_n) \cup \bigcup_{n=1}^{\infty} B_n$ is closed in B. Step 2. By (3.3) $C \cup \bigcup_{i=1}^{\infty} F_i$ is a continuum. Imbed $C \cup \bigcup_{i=1}^{\infty} F_i$ into the Hilbert cube Q. Choose a point x_i of F_i for each i = 1, 2, ... Construct a map $f \colon \bigcup_{n=1} (\beta A_n - A_n) \cup \bigcup_{n=1} B_n \to Q \text{ as follows: } f(B_n) = x_n \text{ and } f(\beta A_n - A_n) \subset F_n \cup F_{n+1},$ n=1,2,... Since $F_n \cap F_{n+1} \neq \emptyset$ and $F_n \cup F_{n+1}$ is pointed 1-movable by Theorem 2, such a map f exists. Since B is Lindelöf by (4.1) and O is an AR, f is extended to a map $a: B \to O$. Let U be an open set of O such that

(4.2) $\bigcup_{i=1}^{n} F_i \subset U \subset Q - C$ and $d(F_i, Q - U) < 1/i$ for i = 1, 2, ..., where d is a metric

Then $g^{-1}(U)$ is an open set of B containing $\bigcup_{n=0}^{\infty} (\beta A_n - A_n)$. There is a map $h: R_+ \to R_+$ such that $D = \{(x, y): (x, y) \in A \text{ and } h(x) \le y\} \subset g^{-1}(U) \cap A$. Note that D is homeomorphic to $R_+ \times R_+$ and hence to $I \times [0, 1)$. Let D_0 be the subspace $\{(x, h(x)): x \in R_+\}$ of D. Consider the map $y = g|D: D \to Q$ and its extension $\tilde{\gamma}$: $\beta D \rightarrow Q$. By (4.2)

$$(4.3) \tilde{\gamma}(\beta D - D) \subset C \cup \bigcup_{i=1}^{\infty} F_i \quad \text{and} \quad \tilde{\gamma}(\operatorname{Cl}_{\beta D} D_0 - D_0) \subset C.$$

Step 3. Let E be the product space $I \times T$ defined in § 2 and let E_0 and E_1 be the ends of a Čech 1-cell $E^* = \beta E - E$. Since D_0 is homeomorphic to the subspace $\{0\} \times T$ of E, there is a homeomorphism $\alpha: E_0 \to \operatorname{Cl}_{BD} D_0 - D_0$. Define a map $\xi \colon E_0 \cup E_1 \to C$ by $\xi \mid E_0 = \tilde{\gamma} \alpha$ and $\xi(E_1) = q$. By (4.3) ξ is well defined. Since C is pointed 1-movable, by Theorem 1(3) the map ξ is extended to the map ξ : $E^* \to C$. Consider two maps $\tilde{\gamma}|\beta D - D: \beta D - D \to C \cup \bigcup_{i=1}^{n} F_i$ and $\tilde{\xi}: E^* \to C$. Note that $\beta D - D$ is a Čech 1-cell. By identifying E_0 and $Cl_{BD}D_0 - D_0$ by the homeomorphism α and by making use of the maps $\tilde{\alpha}$ and $\tilde{\xi}$, we can construct a Čech path connecting two points p and q in $C \cup \bigcup_{i=1}^{n} F_i$. This completes the proof.

Next, we consider the pointed 1-movability of a continuum which is a union of disjoint pointed 1-movable spaces. Suppose that

- (4.4) Y is a continuum which is a union of two disjoint subsets X and Z satisfying the following conditions;
 - (i) Z is a compact set each component of which is pointed 1-movable,
- (ii) X is connected and locally compact and has a locally finite covering $\mathscr F$ such that for each member F of $\mathscr F$ $\operatorname{Cl}_X F$ is compact and any two points of F are connected by a Čech path in F.

We shall show that the space Y in (4.4) is pointed 1-movable. This is done by the same argument as in the proof of Theorem 3. First, that each member of \mathscr{F} is a compactum is not necessary in the proof of Theorem 3. We need only that for each member F of \mathscr{F} $\operatorname{Cl}_X F$ is compact and any two points of F are connected by a Čech path in F. Second, if C is a component of Z then $C \cap \operatorname{Cl}_Y X \neq \emptyset$. To see it, let \widetilde{Y} be the quotient space obtained from Y by contracting each component of Z to a point. Since Y is a continuum, \widetilde{Y} is a metrizable compactification of X. If $h\colon Y\to \widetilde{Y}$ is a projection, then $h(\operatorname{Cl}_Y X)=\widetilde{Y}$. Therefore $C\cap \operatorname{Cl}_Y X\neq\emptyset$ for each component C of Z. By Lemma 4 it is known that for a given component C of C there exists a sequence $\{F_i\}$ in \mathscr{F} such that $\operatorname{Lim} F_i \subset C$ and $F_i \cap F_{i+1} \neq \emptyset$ for each C. Thus the following theorem is reduced to Theorem 3.

Theorem 4. If Y is a continuum satisfying the conditions in (4.4), then Y is pointed 1-movable.

The following corollaries follow from Theorems 3 and 4.

COROLLARY 1. Let X be a connected and locally compact metrizable space which has a locally finite cover consisting of pointed 1-movable continua. Then the Freudenthal compactification and the one point compactification of X are pointed 1-movable.

COROLLARY 2. Let X be a connected, locally connected and locally compact metrizable space. If αX is a metrizable compactification of X such that each component of $\alpha X - X$ is locally connected, then αX is pointed 1-movable.

COROLLARY 3. Let X be a connected and locally compact ANR. If αX is a metrizable compactification of X such that each component of $\alpha X - X$ is pointed 1-movable, then αX is pointed 1-movable.

COROLLARY 4. Let X be a continuum being a disjoint union of two locally connected subspaces X_1 and X_2 one of which is compact. Then X is pointed 1-movable. In particular, if X is a continuum being a disjoint union of two ANR's one of which is compact, then X is pointed 1-movable.

Corollaries 1, 2 and 3 are immediate consequences of Theorems 3 and 4. Let us prove Corollary 4. Suppose that X_1 is compact. Since X_1 is locally connected, there exists only a finite number of components of X_1 . Let us denote them by $A_1, A_2, ..., A_n$. Denote the components of X_2 by $\{H_t\}$. Put $B_k = \bigcup \{H_t : A_k \cap \bigcap \operatorname{Cl}_X H_t \neq \emptyset\} \cup A_k$, k = 1, 2, ..., n. Then $\{B_k\}$ forms a finite cover of X. It is enough to prove that any two points p and q of B_k are connected by a Čech path

in B_k . For it, let us consider the case where $p \in A_k$ and q belongs to a component H of X_2 such that $A_k \cap \operatorname{Cl}_X H \neq \emptyset$. The proof of the other case is similar. Since H is locally connected, connected and locally compact, there is an open cover \mathscr{F} of H such that \mathscr{F} is locally finite in H and for each member F of \mathscr{F} F is arcwise connected and $\operatorname{Cl}_H F$ is compact. Then the proof follows from one of Theorem 4.

In the following examples, it is shown that the condition "pointed 1-movability of the remainder" in Theorems or Corollaries can not be omitted.

EXAMPLE 1 (Krasinkiewicz and Minc [6]). Let M be a dyadic solenoid and let C be a composant of M. There is a 1:1 continuous map f from a real line R onto C. Consider the product space $M \times I$ and its subspace $Y = \{(f(x), 1/(1+|f(x)|)): x \in R\}$. Obviously Y is homeomorphic to R and hence a locally compact AR. Put $\alpha Y = \operatorname{Cl}_{M \times I} Y$. Then αY is a metrizable compactification of Y and the remainder $\alpha Y - Y = M \times \{0\}$ is not 1-movable. Since there is a retraction from αY onto $\alpha Y - Y$, αY is not 1-movable.

EXAMPLE 2. Let r be a positive integer >1. Let S^r be an r-sphere. Consider an inverse sequence $\{S_i, f_{i,i+1} \colon i=1,2,...\}$ such that S_1 is a point, f_{12} is a constant map, for i > 1 S_i is a copy of S^r and each bonding map $f_{i,i+1}$ has a fixed degree >1. Denote by M_i the mapping cylinder of $f_{i,i+1}$. Then M_i contains S_i and S_{i+1} as closed sets. Let X be a telescope associating with the inverse sequence $\{S_i\}$, that is, the space obtained by identifying S_{i+1} 's in M_i and M_{i+1} , i=1,2,..., from a topological sum $\bigoplus_{i=1}^{\infty} M_i$. Then X is a locally compact AR. Consider a one point compactification cX of X with the added point c. Since X is a union of an increasing sequence of continua with connected boundaries, cX is the Freudenthal compactification of X. By computing a local cohomology of cX about the point c, it is easy to see that cX is not r-movable.

References

- [1] B. J. Ball, Proper shape retracts, Fund. Math. 89 (1975), pp. 177-189.
- [2] K. Borsuk, Theory of Shape, Warszawa 1975.
- [3] Y. Kodama, On fine shape theory III, Preprints.
- [4] K. Kuratowski, Topology I, Warszawa 1966.
- [5] J. Krasinkiewicz, Continuous images of continua and 1-movability, Fund. Math. 98 (1978), pp. 141-164.
- [6] and P. Mine, Generalized paths and pointed 1-movacility, Fund. Math. 104 (1979), pp. 141-153.
- [7] R. B. Sher, Property SUV[∞] and proper shape theory, Trans. Amer. Math. Soc. 190 (1974), pp. 345-356.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF TSUKUBA Ibaraki, Japan

Accepté par la Rédaction le 30. 10. 1980

^{2 -} Fundamenta Mathematicae CXVII