Compactification of pointed 1-movable spaces
Cby.

Yukihiro Kodama (Ibaraki)

Abstract. Let X be a locally compact metrizable space with a locally finite cover consisting of
pointed 1-movable continua. It is proved that if aX is a metrizable compactification of X' such that
each component of X~ X is pointed 1-movable, then ¢.X is pointed 1-movable. This fact does not
generally hold in case 1-movability is replaced by r-movability, »>1.

§ 1. Introduction. Let X be a locally compact metrizable space and let ¢ X be
a metrizable compactification of X. It is known that many of topological properties
of X are not preserved by aX. For example, as shown by the curve “sin1/x”, even
if X and aX—X are both AR, the local connectedness is not preserved.

In this paper we shall prove that if X is locally pointed 1-movable and oX is
a metrizable compactification of X such that each component of the remainder
oX— X is pointed 1-movable, then X is pointed 1-movable. Thus a Freudenthal
compactification or one point compactification of a locally pointed 1-movable
space is pointed 1-movable. Also, a continuum being a disjeint union of locally
connected subspaces one of which is compact is pointed 1-movable. Since there is
a metrizable compactification of a real line which is not 1-movable, the condition
“pointed 1-movability of the remainder”™ can not be omitted in these results. Finally,
for r>1, it is shown that the pointed r-movability is not generally preserved by
a Freudenthal compactification even in case X is a locally compact AR.

The author wishes to thank the referee for a simple proof of Theorem 3 and
a correction of Example 1.

- Throughout this paper, all of topological spaces are Hausdorfl and maps are

continuous. We mean by a continuum a compact connected metric space and by AR
and ANR those for metrizable spaces.

§ 2. Pointed 1-movability. Let X be a continuum and let x, be a point of X.
Consider X as a subset of the Hilbert cube Q. Then X is said to be pointed r-movable
if for every neighborhood U of X in @ there exists a neighborhood ¥ of X in Q
satisfying the following conditions: Let (¥, y,) be a pointed CW-complex with
dim Y<r and let /2 (¥, yo) = (U, xo) be a map; then for every neighborhood W
of X in Q there exists a homotopy H: ¥xI - U such that H(y,0) = f(»),
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H(y,1)e W for pe ¥ and H(y,,t) = X, for tel Obviously this definition is
equivalent to the original one by Borsuk [2, p. 171].

In the paper [3] we gave the following characterization of pointed 1-movability
(Theorem 1) which is used in the proof of main results (§ 4). Let T' be the‘half open
interval [0, 1). Denote by E the product space IxT. Consider the Stone~Cech com-
pactification BE of E. The remainder BE~E is denoted by E*. Put

Ey = E* v Clgg({0} x T)
and E, = E* n Clgg({1} x T). Here Cl, means the closure in the space 4. Each £,
i =0, 1, is homeomorphic to the remainder fT—T, where BT is the Stone-Cech
compactification of 7. We call E* a Cech 1-cell, and E;, i =0, 1, an end of E*.

TuroreM 1 ([3]). Let X be a continuum. The following are equivalent.

(1) X is pointed 1-movable.

(2) For any two points x;, i = 0,1, of X, there exists a map fi E* > X such
that f(E) = x;, i =0, 1.

(3) Every map h: E, L E; — X is extendable over E*.

The proof is given in [3]. Following [3], a map f in Theorem 1 (2) is said to be
a Cech-path in X connecting the points x, and x,.

The following theorem was proved by Krasinkiewicz.

TaeoreM 2 (Krasinkiewicz [5, 1.8)). If X is a continuum which is a union of
a finite number of pointed 1-movable continua, then X .is pointed 1 -movable.

Note that any two points in a continunm X as in Theorem 2 are connected by
a Cech path in X,

§ 3. Lemmas in compactification. Throughout this section we assume  that

(3.1) X is a connected metrizable space and F is a locally finite cover of X con-
sisting of continua.

Note that EX is locally compact and its Freudenthal compactification FX is metrizable. ‘

Let Z be a closed set of X. The inclusion map f: Z — X induces the map
Ff: FZ - FX such that Ff(FZ—Z)=FX—X, where FZ is the Freudenthal com-
pactification of Z. Following Ball [1, p. 180] Z is said to be strongly properly embedded
in X if Ff|FZ—Z: FZ—Z — FX—X is a homeomorphism onto.

LeMMA 1. Let Z be a closed set of X such that the covering {F nZ: Fe 7}
of Z consists of continua and is similar to F. Then Z is strongly properly embedded
in X and hence FZ is identified with the closure ClpyZ of Z in FX.

For the proof we refer § 2 of Ball {1} and need a couple of lemmas.

Let & = {F,: 1€ A}. Then each F, is a continuum of X. Choose a point x,
of F, n Z for each 7 € 4. Following Ball [1], we denote by =/, the set of all admissible
sequences in X

LEMMA 2. Given sequence o = {y;1 i = 1,2, .} edy,let p={z;: i=1,2,..}
be a sequence such that for each iz, € {x.: © € A} and both y; and z, belong to the same
member of . Then fe oy and a~p (cf. [1, p. 179]).
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Proof. Let'y = {r;: i =1,2, ...} be the sequence defined by r,;_; = ¥; and

7y =25 £ =1,2, .. It is edough to prove that y € «#y. Suppose that y ¢ oy,

that is, there exist two infinite subsequences y, and y, of y separated by some compact

'set C of X. Then X—C is a union of two disjoint open sets U, and U, such that

UyieU; and Uy,clU,. Let A’ = {r: F,n C # &,1e A}. Since F is locally
finite, A’ is finite. Since each member of & is a continuum, if 7 € A — A’ either F,< U,
or F,cU,. Hence, for each j= 1,2, ry;_; = y;ey; if and only if rp; = z; €v;.
Let o; = {y;: ;€v;},J = 1,2 Then o; and «, are infinite subsequence of « and
separated by C. This contradicts that o e #/y.

LEMMA 3: Let B = {z;: i=1,2,..} be a sequence taken from {x.: te A}-
Then B e oy if and only if f € 5. Here o4 is the set of all admissible sequences in
the space Z.

Proof. The if part follows from [1, Lemma 2.7]. To prove the only if part,
let B ¢ /5. Then there exist a compact set C of Z and two infinite subsequences §,
and B, of f separated by C in Z. Let A' = {t: F,nC# @,red} and let
E={F.:7ed). Then E is compact. Put B = {z;:z;€p; and z;¢ E},
7 =1, 2. Obviously B; is infinite. Let us prove that § and B are separated by Ein X.
Suppose they are not separated by E. Then, by the local finiteness of & and the
connectedness of each member of &, there exist points z, € f; and z,, € B3, and a finite
chain {F,:i=1,2,..,n} in & such that z, e F,,, z,€F,,, 7,6€4~4" and
F,NnF,,, # @ for each i. Since {F, nZ} and {F.} are similar,

1+ 1
(FonZ:ii=1,2,..,n}

is a chain in {F,nZ} such that z,e F, nZ, z,€ F, nZ, (F,nZ) N (F,,,,nZ) # O
and F,, n C = @ for each i. Since F;, n Z is a continuum, this implies that 8 and 85
are not separated by C in Z. This contradiction means that f{ and j; are separated
by E in X. Thus fi ¢ oy.
Proof of Lemma 1. It follows from Lemmas 2, 3 and Ball [i, Theorem 2.8].
LEMMA 4. Let X be a metrizable compactification of X and let C be a component
of the remainder o X — X. Then there exists a sequence {F;: i=1,2,..} in & such that

(32 FinF,#@fori=12, ..,
(33) LimF,cC, where LimF; is the limit of {F;} ([4, p. 339]).

Proof. Let yX be the quotient space obtained from o.X by contracting each
component of aX— X to a point. Then yX is a metrizable compactification of X.
Let f: aX — 7.X be the projection. Since ind yX—X =0, by the maximality of
Freudenthal compactification there is a projection g: FX — pX. Let ce g7 (O).
We shall prove that

(3.4) there exists a sequence {F;} in & such that (3.2) is satisfied and

(3.5 LimF; = {c}.
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‘Since f and g are proper maps, this completes the proof. To show (3.4), let K be
the 1-skeleton of the nerve of #. Then K is a locally finite simplicial complex and
hence locally compact. Let {v,: 7€ A} be the set of vertices of K, where v, corres-
ponds F, for each 7 € A. Choose a point x, of F; fort € 4. Let ¥ be the quotient space
obtained by identifying the points x, and v; for each r € 4 from a topological sum
X@®K. Then Y is a connected and locally compact metrizable space. We consider X
and K as closed sets in ¥ and X n K = {x.} = {v,}. Let K’ be a barycentric sub-
division of K. For te 4, put H, = F, U Stv,, where Stv, is the closed star of v,
in K'. Then each H, is a continuum and {H,: e A} forms a locally finite cover
of Y. Since H,n X = F, and H, n K = Sty,, the collections {H.}, {H,n X}
and {H,~ K} are similar to each other. By Lemma 1 we can consider that
FY = FX U FK and FY—Y = FX— X = FK—K. To complete the proof, let S be
a maximal tree of K. The inclusion of S into Y induces the map h: FS — FY such
that A(FS—S) = FY—Y. Let ¢’ be a point of 17*(c). Since FS is an AR and FS—S
is unstable by Sher [7, Lemma (2.2)], there is an into homeomorphism k: I — FS
such that k(0) = ¢, k(1/i) = v,, is a vertex of § and k([1/i-+1, 1/i]) is a 1-simplex
of Sfori=1,2,..Put F; = F, and consider the sequence {F;: i = 1,2, ..} in #.
Obviously {F;} satisfies (3.2). To see (3.5), it is enough to mote that

(Clex U Sty,)—K

i=1

(Clex | F)=X = (Cloy U H)-Y =

= (Clex U Sto,)—S = hk(D)—5 = {h(c"} = {c} .
i=1

This completes the proof.

§ 4. Main results.

THEOREM 3. Let X be a connected and locally compact metrizable space, and
let F be a locally finite cover of X consisting of pointed 1-movable continua. If ocX is
a metrizable compactification of X such that each component of the remainder o X —
is pointed 1-movable, then oX is pointed 1-movable.

Proof. By Theorem 1, it is enough to show that any two points of X are
connected by a Cech path. Let p and g be points of «X. If both p and ¢ are contained
in X, then they are connected by a Cech path in X. This is done by Theorem 1(2)
and Theorem 2, because there is a chain {F;: i =1, 2, ..., n} in & such that p e Fy,
geF,and F;n F g # @ fori=1,2,..,n—1, and each F; is pointed 1-movable.
Thus we can assume that pe X and g e «X—X. Let C be a component of aX— X
containing g. By Lemma 4, there exists a sequence {F;: 7 = 1,2, ...} in & satisfying
(3.2) and (3.3). Without loss of generality, we can assume that p e F,. We shall

L]

prove that the union {J F; U C is pointed 1-movable. The referee has pointed out
i=1

that this fact is,a consequence of Theorem 3.1 of Krasinkiewicz and Minc [6]. Since
we generalize this fact slightly in Theorem 4, we shall give a direct and elementary
proof to this. The proof is divided into three steps.
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Step 1. Let R, be the half line {x: 1<x<oo} and let 4 = R, xR,. Put

A, =[n,n+1]xR, for n=1,2,.. Then 4 = U 4,. Consider the Stone-Cech.

compactification 4, of 4,. For each n, Cl,, {n+1}><R+ and Clp, . {n+1} xR,
are naturally identified because each of them is homeomorphic to SR, . Let B be-
the space obtained by identifying Clpy{n+1} xR, and Cly, {n+1}xR, for

each n from a topological sum EB pA,. Then 4 and f4,, n= 1,2, ..., are con-
n=1

sidered as subspaces of Band B4, 4, 4, = Clyy {n+1}x R, =Clyy, . n+1}x R,.
Put B, = Clp{1} xR, and B,;; = Bd, 0 fd,41,n = 1,2, ... Since B is o-compact,
it is obvious that

o0 0 '
4.1) B is Lindeldf and ) (B4,—4,) v U B, is closed in B.
n=1 n=1

o0 o0
Step 2. By (3.3) Cu U F; is a continuum. Imbed C U () F; into the Hilbert
i=1 i=1

cube Q. Choose a point x; of F; for each i=1,2,..

) L9
2 U (Bdy—4,) v U B, — Q as follows: f(B,) = x, and f(B4,~A,)=F, U Fpyy,
n=1 n=1

n=1,2,..8nceF, N F,.; # Jand F, u F,, | is pointed 1-movable by Theorem 2,.
such a map f exists. Since B is Lindeldf by (4.1) and Q is an AR, f is extended to
a map g B— Q. Let U be an open set of Q such that

Construct a map

4.2) U FicUc Q—Cand d(F, 0—U)<ljifori=1,2, .., where d is a metric
=1

on Q.
" !
Then g ~*(U) is an open set of B containing |J (B4,— 4,,). Thereis a map h: R, — R,
) n=1
such that D = {(x,y): (x,y)eAd and A{(x)<y}cg '(U)n A. Note that D is
homeomorphic to R, xR, and hence to Ix[0,1). Let D, be the subspace
{(x,2(x)): xe R.} of D. Consider the map y = g|D: D — O and its extension.
5 BD — Q. By (4.2)

o
(4.3) §(BD—D)cCuU U F, and §(ClypDy—Do)=C.
i=1

Step 3. Let E be the product space I'x T defined in § 2 and let E,; and E; be
the ends of a Cech 1-cell E* = BE—E. Since D, is homeomorphic to the sub-
space {0} x T' of E, there is 2 homeomorphism a«: Eg — ClppDo— Do. Define a map-
& Ey U E; » Cby ¢|E, = Ju and E(E;) = g. By (4.3) £ is well defined. Since Cis.
pointed 1-movable, by Theorem 1(3) the map & is extended to the map &: E* — C.

o0

Consider two maps §[pD—D: fD~D — Cu UF- and & E* - C. Note that

* BD—Dis a Cech 1-cell. By identifying E, and Cl,,n Do D, by the homeomorphism o

and by making use of the maps & and &, we can construct a Cech path connectmg

two points p and ¢ in Cu UFi This completes the. proof
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Next, we consider the pointed 1-movability of a continuum which is a union
of disjoint pointed 1-movable spaces. Suppose that

(4.4)  Yisa continuum which is a union of two disjoint subsets X and Z satisfying

the following conditions;

() Z is a compact set each component of which is pointed 1-movable,

(i) X is connected and locally compact and has a locally finite covering & such
that for each member F of & Cly F is compact and any two points of F
are connected by a Cech path in F.

We shall show that the space Y in (4.4) is pointed 1-movable. This is done by
the same argument as in the proof of Theorem 3. First, that each member of & is
a compactum is not necessary in the proof of Theorem 3. We need only that for
each member F of # ClyF is compact and any two points of F are connected by
a Cech path in F. Second, if C is a component of Z then C' Cly X # @. To see it,
1¢t ¥ be the quotient space obtained from Y by contracting each component of Z to
a point. Since ¥ is a continuum, ¥ is a metrizable compactification of X. If h: ¥ — ¥
is a projection, then A2(ClyX) = ¥ Therefore C nClyX % @ for each compo-
nent C of Z. By Lemma 4 it is known that for a given component C of Z there
exists a sequence {F;} in & such that LimF,cC and Fin F;yy # @ for each i.
Thus the following theorem is reduced to Theorem 3.

TusoreM 4. If Y is a continuum satisfying the conditions in (4.4), then Y is
pointed 1-movable.

The following corollaries follow from Theorems 3 and 4.

COROLLARY 1. Let X be a connected and locally compact metrizable space which
has a locally finite cover consisting of pointed 1-movable continua. Then the Freudenthal
compactification and the one point compactification of X are pointed 1-movable.

COROLLARY 2. Let X be a connected, locally connected and locally compact metriz-
able space. If aX is a metrizable compactification of X such that each component of
aX— X is locally connected, then oX is pointed 1-movable.

COROLLARY 3. Let X be a connected and locally compact ANR. If aX is a metriz-
able compactification of X such that each component of aX— X is pointed 1-movable,
then oX is pointed 1-movable.

COROLLARY 4. Let X be a continuum being a disjoint union of two locally connected
subspaces X, and X, one of which is compact. Then X is pointed 1 -movable. In particu-
lar, if X is a continuum being a disjoint union of two ANR’s one of which is compact,
then X is pointed 1-movable.

Corollaries 1, 2 and 3 are immediate consequences of Theorems 3 and 4. Let
us prove Corollary 4. Suppose that X; is compact. Since X is locally connected,
there exists only a finite number of components of X;. Let us denote them by
Ay, Ay, ..., A,. Denote the components of X, by {H.}. Put B, = U {H;: A, n
A ClgH, # @} U 4y, k=1,2,...,n. Then {B,} forms a finite cover of X. It is
-enough to prove that any two points p and g of B are connected by a Cech path

I

icm

Compactification of pointed 1- Bl

spaces 101

in B,. For it, let us consider the case where p & 4, and g belongs to a component H
of X, such that 4, N Cly H # . The proof of the other case is similar. Since H is
locally connected, connected and locally compact, there is an open cover & of H
such that # is locally finite in H and for each member F of # Fis arcwise connected
and ClgF is compact. Then the proof follows from one of Theorem 4.

In the following examples, it is shown that the condition “pointed 1-movability
of the remainder” in Theorems or Corollaries can not be omitted.

ExaMpLE 1 (Krasinkiewicz and Minc [6]). Let M be a dyadic solenoid and let C
be a composant of M. There is a 1:1 continuous map f from a real line R onto C.
Consider the product space M x Tand its subspace ¥ = {( £ (x), }/(1+| f (0)])): x & R}.
Obviously Y is homeomorphic to R and hence a locally compact AR. Put
aY = Clyxr Y. Then oY is a metrizable compactification of ¥ and the remainder
wY—Y = M x {0} is not 1-movable. Since there is a retraction from « ¥ onto ¢ ¥ — ¥,
oY is not 1-movable.

ExAMPLE 2. Let r be a positive integer >1. Let S” be an r-sphere. Consider an
inverse sequence {S;, f;;+1: i = 1,2, ...} such that S, is a point, f;, is a constant
map, for 7>1.5;is a copy of S" and each bonding map f;,,; has a fixed degree >1.
Denote by M; the mapping cylinder of f;;.;. Then M; contains S; and S;,; as
closed sets. Let X be a telescope associating with the inverse sequence {S;}, that is,
the space obtained by identifying S;..’s in M; and M;,,,i=1,2, ..., from a top-

o0

ological sum ¢P M;. Then X is a locally compact AR. Consider a one point com-
=1

pactification ¢X of X with the added point ¢. Since X is a union of an increasing
sequence of continua with connected boundaries, cX is the Freudenthal compacti-
fication of X. By computing a local cohomology of ¢X about the point ¢, it is easy
to see that ¢X is not r-movable.
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