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see [1], this and the previous result show that given any nonlimit ordinal o, there
exists a topological space with derived dimension «4-1. We also observe that
Lemma 3, Lemma 4 and Corollary 4 immediately yield the well-known fact that
asserts acc on prime ideals is equivalent to having classical Krull-dimension.

Added in proof. There exists a commutative Noetherian ring R with an arbitrary
classical Krull dimension (see [1]). Hence X = spec(R) with the V-topology is quasi-compact
(see Proposition 3). This immediately shows that given a nonlimit ordinal a, there exists
a space X such that d(X)=a.
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Strictly convex spheres in V-spaces
by

Raymond Freese (St. Louis, Mo.) and Grattan Murphy (Orono, Maine)

Abstract. A well known theorem of Functional Analysis states that Strict Convexity is equi~
valent to unique metric lines in a Banach space. In this paper that result is put in a more general
setting — the class of V-spaces. The class of V-spaces includes Banach spaces, as well as other
metric spaces.

Rotundity or Strict Convexity has been studied extensively in Banach spaces.
It is well known that metric lines are unique in a Banach space B if and only if B is
strictly convex [1, 4, 5, 7, 10, 14]. The list of conditions in B equivalent to strict
convexity (and therefore unique metric lines) is long. Day [7] lists six such conditions,
Bumcrot [4] gives four other conditions, Andalafte and Valentine [1] list some of”
the conditions of Day and Bumcrot as well as four others. In related result Reda [13]
proved the equivalency of algebraic and metric lines in Hilbert space and Nitka and
Wiatrowska [12] proved that in Minkowski space, both more restricted than Banach
space. Freese [9] found a number of conditions equivalent to the monotone property
in a complete, convex, externally convex metric space. He also showed that the-
monotone property was equivalent to unique metric lines in a Banach space. In
this paper it will be shown that unique metric lines and strict convexity (redefined
in purely metric terms) are equivalent in a larger class of spaces.

I

Many of the conditions mentioned above may be defined in purely metric terms.
and, hence, discussed in that more general setting.

It is not difficult to find examples of complete, convex, externally convex metric
spaces in which the concepts of strict convexity and unique metric lines are not
equivalent. Therefore the spaces of Freese’s result are too general if we wish to show:
the equivalency of unique metric lines and strict convexity. The spaces considered
here are all complete, convex, and externally convex metric spaces, however, and we-
will call those spaces line spaces. In a line space more than one metric line may con--
tain two given points.
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DerRNITION 1. A line space has unique metric lines if the set I(p, g) of points
linear with each pair of distinct points p, ¢ is isometric with the real line.

Since line spaces are too general for our purposes we consider other properties
to assume valid in our spaces. One of these properties is a generalization of a property
of four points which form a parallelogram.

DEFINITION 2. A metric space M is said to have the vertical angle property
if for each four pairwise distinct points p, ¢, r, s such that a midpoint of p and s is
a midpoint of ¢ and », then pg = rs.

If in the definition we relax the requirement that p, ¢, » and s be distinct, then we
have the strong vertical angle property.

If for each p, g, r of M there exist points m and s of M satisfying the conditions
of Definition 2, then M has the weak vertical angle property.

Spaces with vertical angle properties will be said to be VA, SVA or WVA,
as appropriate.

DEFINITION 3. A metric space M is said to be FS'if, whenever points p, g, r,se M
with pgr and pgs, there exists a ¢ such that pgt, grf, and gst.

V-spaces

The spaces of prixﬁary interest here will be spaces having the weak vertical angle

property which are FS.

DEFINITION 4. A V-space is a line space which is FS and WVA.

THEOREM 1. A complete metric space M is a V-space iff it is FS and WVA.

Proof. Since 4 V-space is already complete, FS and WV 4, we need to show that
a complete, F'S, WFA metric space is a V-space. It is not difficult to show that WV A4
implies. convexity and external convexity.

For the vertical angle properties, SVA = VA == WFA in a line space. The
question arises whether a V-space is ¥4 or SV (i.e. whether FS and WV A imply VA4
or SVA). It is not, however, as will be shown in the second part of this paper. We
also show that every Banach space is a V-space (Theorem 3). There are, however,
V-spaces which are not Banach spaces (e.g., the hyperbolic plane). Theorems 2
and 8 are therefore more general than those in [1], [4], [5], [6], [7], and [10].

Slits, forks and bows

If two metric segments with common endpoints have no other points in common,

‘then their union is called a sliz. If two metric segments have exactly one endpoint

in common and intersect in a metric segment their union is called a Sork. If two
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metric segments whose union is not a segment have no common endpoints, intersect
in a metric segment, and each contains an endpoint of the other, then their union
is a bow. Lelek and Nitka [11] describe a metric space not having these phenomena
as strongly convex, without ramifications and without edges (SC, WR and WE).
Blumenthal [2] proved that a complete, convex, externally convex metric space has
unique metric lines iff it does not have slits, forks or bows.

LemMa 1. If a line space has a bow, then it has a fork.

Proof. Suppose there exists a bow. Then there are points p, ¢, r, s with pgr,
grs but not prs. Choose s* on a metric line containg p, g and r such that prs* and
rs* = rs. Then grs* holds by properties of betweenness. But grs, grs* s # s* implies M
has a fork. :

A normed linear space is said to be strictly convex if, whenever p and g are
p+

points such that ||p|| = |lg|| = 1, then <1. Since all spheres of a normed

linear space have the same shape (may be translated to the origin), strict convexity
is a property of all spheres. In a metric space the same homogeneity is not necessarily
assumed, so the equivalent condition in a metric space must be stated for each sphere.

DEFINITION 5. A metric space M has strictly convex spheres if for every p, q,r, s
of M such that pg = pr and s is metrically between g and r, then ps<pq.

LemMa 2. If M is a line-space with strictly convex spheres, then there do not exist
slits in M.

Proof. Suppose the contrary, then there exist points p, g with two distinct
midpoints, m and m’. Let m* be a midpoint of 7 and m'. Since S has strictly convex
spheres, pm*<pm and gm*<gm so pg = pm+mq>pm*+m*q, contradicting the
triangle inequality. ) ’

Since a V-space is a line space, Lemmas 1 and 2 hold for ¥-spaces.

THEOREM 2. In a V-space unique metric lines are equivalent to strictly convex
spheres.

Proof. Assume that M is a V-space with strictly convex spheres. We must rule
out slits, forks and bows. Lemma 2 rules out slits and, by Lemma 1 bows imply forks,
so all that is needed is to eliminate the possibility of forks. We shall show that forks
imply slits. Suppose we have a fork. Then there exist points p, g, 7, s with pgr and pgs
and segments S(p, r), S(p, 5) that diverge at g. Since M is FS, there exists a 7 such
that grt and gst. We must, therefore, have two distinct segments joining ¢ and ¢
one of which contains r and the other s. But this would imply that these segments
contain a slit, contradicting Lemma 2.

Now assume that M has unique metric lines. Therefore, let p, ¢, r, s-be points
with pg = pr-and s is between ¢ and r (g, s, and r are then distinct). We may w.l.o.g.
assume that 5 is a midpoint of g and r. M has strictly convex spheres; unless for some
quadruple p, g, r, s as above, ps>pq. Suppose pspgq. Then, applying, the weak
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vertical angle property to p, g, r we have points m and p’ with m a common midpoint
of ¢, r and p, p'. Since lines are unique, m = § 50 ps = sp' = 4pp’. From the weak
vertical angle property pg = rp’ and pr = qp’ 50 all of those distances are equal.
Now

pp'<pg+qp’ = pa+qp<ps+sp = pr'

implies that g is a midpoint of p and p’, which is impossible if M has unique metric
lines.

THEOREM 3. A Banach space is a V-space.

Proof. We need to show that a Banach space B is FS and WVA. To show B
is WVA we assume p, g, r € B. The required points m and s may be taken to be
m = 1(g+r) and s = g+r—p. To show B is FS we assume p, ¢, I, § € B with pgr
and pgs (the betweenness is metric betweenness not necessarily algebraic betweenness).
The point ¢ required in Definition 3 may be taken to be r+s—q.

B

In this part we investigate some of the properties of ¥4 and SVA line spaces
and some further consequences of Theorem 2.

The properties ¥4 and SVA are stronger than WVA in line spaces since each
implies WVA. It is surprising, though, that each of the properties ¥4 and S¥4
imply unique metric lines in a line space. This is proved in Theorem 6. Additional
conditions equivalent to strictly convex spheres are given in Theorem 7 for Banach
spaces and Theorem 8 for V-spaces.

The first step is to relate forks and slits in ¥-spaces.

TrEOREM 4. If a VA line space has a fork, then it has a slit.

Proof. Suppose M is a V4 line space with a fork. Then we have points p, g, r
and s with pgr, pgs and segments S(q, ) and. S(g, s) with S(g, r) n S(q, 8) = {q}.
Suppose, without loss of generality, that pg = gqr>gs. Let pq = «a, gs = b. Let u be
a point between p and g with ug = b. Then ¢ is a midpoint of p and r and « and s
and the points p, r, ¥ and s are distinct, The vertical angle property implies pu = rs
= a—b. Then gr = a = b+a—b = gs+sr implies s is between g and r, so we
have a slit.

COROLLARY. A VA line space is a V-space.

Proof. Since V4 implies W¥4 in a line space, we need only show that the
V-space M is FS. Let p, g, r, s € M with pgr and pgs. By external convexity, there
exists a #, such that the segment S(p, t) contains g and r and gt>gs. The proof of
Theorem 4 shows that gsz, Therefore the point ¢ is the one required by Definition 3.

THEOREM 5. A VA line space has strictly convex spheres. )

Proof. Suppose M is a VA line space without strictly convex spheres. Then
there exist points p, ¢, r and m (distinct) with pg = pr, m a midpoint of ¢ and r
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and pm>pgq. There exists a point p such that m is a midpoint of p and p'. By the
vertical angle property applied to p, g, r, p’,. we have pg = rp’ and pr = qp’ so
pq = gp’ = rp’. If pm>pq, then pg+qp’>pm+mp = pm+mp’ = pp' contradicting
the triangle inequality. Hence pg = pr = pm. We construct a sequence {g;} as follows:
do = ¢, ¢y is on a metric line containing r, m and ¢ such that ¢ is a midpoint of m
and ¢y, and g, is on a metric line containing r, m and g; (j<7) with ¢;—; a midpoint
of g; and g;..,, for all i>1. The vertical angle property, applied to p, m, ¢y, p’ implies
that pm = ¢,p" and p'm = ¢,p so pq; = q,p' = pq. By induction we may show,
in the same manner, that pq; = pg. Consider the triangle p, m, ¢;. mq; = (i-+1)-mgq
because 7 and ¢, are on a metric line containing all of the g;’s. The triangle inequality
requires mq; = (i+1)mg<mp+pg; = 2pq. By choosing i sufficiently large we get
a contradiction. Therefore M has strictly convex spheres.

THEOREM 6. A VA line space has unique metric lines.

Proof. A ¥4 line space is a P-space with strictly convex spheres by Theorem 5
and the corollary of Theorem 4. By Theorem 2 strictly convex spheres are equivalent
to unique metric lines.

Our contribution to the list of conditions equivalent to strict convexity in Banach
spaces is given by the following theorem.

TaEOREM 7. In a Banach space, the following are equivalent:

(a) Strict convexity (strictly convex spheres).

(b) Unigque metric lines.

(¢) The vertical angle property.

(d) The strong vertical angle property.

Proof. We know that (d) = (c) from part I. By Theorem 6 (c) = (b). (b) = (a)
is well known. We need only observe that a Banach space with unique metric lines
is SVA so (b) = (d). :

Actually, the conditions mentioned in Theorem 7 are all equivalent in a V-space.
Many other properties are equivalent to those, also. The following properties are
defined in terms of a metric so are possible prqpcrties of a V-space.

DEFINITION 6. Metric lines are Chebyshev setsin M iff for each x in M and each
metric line L Ja unique point of L nearest x.

DerNiTION 7. M has the monotone property provided for each point p and
metric line L of M the distance px between p and a point x of L is monotone increasing
as x recedes along either half-line of L determined by a foot of p on L.

In a metric space the distances of four points p, ¢, r, s may satisfy the strict
ptolemaic inequality:

pq-rs+preqs>ps-qr.
DERINITION 8. M has the isosceles weak strict ptolemaic property if each non-

linear quadruple p, ¢, r, s for which grs and pg = ps satisfies the strict ptolemaic
inequality.
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DERINITION 9. M has the isosceles feeble strict ptolemaic property if each non-
linear quadruple p, g, r, s for which grs, pg = ps and gr = rs holds satisfies the strict
ptolemaic inequality.

THEOREM 8. In a V-space the following are equivalent:

(a) Strict convexity (strictly comvex spheres).

(b) Unique metric lines,

(¢) The vertical angle property.

(d) The strong vertical angle property.

(e) The monotone property.

(f) The isosceles weak strict ptolemaic property.

(&) The isosceles feeble strict ptolemaic property.

Proof. It is easy to extend Theorem 7 to ¥-spaces. Freese [9] has shown that
in a complete, convex, externally convex metric space e, f and g are equivalent. It
is not difficult to show that (e) implies (a). We show that (a) implies (e).

Suppose (a) and not (). If we do not have the monotone property then there
exists a point p and a line L not containing p with ‘points ¢, r, s and f, on L such
that pg = pr = ps, and f, is a foot of p on L. Without loss of generality we may
assume the points of L are in the order ¢, f,, r, 5. Then pg = ps = pr and grs con-
tradict the assumption of strictly convex spheres.

In [1] it is shown that strict convexity in a Banach space is equivalent to the
condition that metric lines are Chebysbev sets. Each of the conditions listed in
Theorem 8 will imply that the metric lines are Chebyshev sets in a ¥-space. It would
be interesting to know if this condition is also equivalent to strictly convex spheres
in V.
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