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Words, free algebras, and coequalizers
by

Andreas Bliss (Ann Arbor, Mich.)

Abstract, For a variety of infinitary algebras subject to no identities, the classical construction
of free algebras as algebras of words is shown to work in any topos. Although coequalizers in such
varieties cannot be constructed in the usual way, as algebras of equivalence classes, unless the
internal axiom of choice holds, they do-exist and can be obtained as algebras of words in.any Boolean
topos. When the definition of the variety includes identities, however, neither free algebras nor
coequalizers need exist in the absence of internal choice, even in models of Zermelo-Fraenkel set
theory (provided a certain large cardinal axiom i$ consistent).

Consider a variety of algebras, defined by specifying a set of operation symbols,
the number of argument places or “arity” of each symbol, and a set of identities,
i.e. equations between expressions built up in the usual fashion from the operation
symbols and variables. An algebra in such a variety is a set together with interpre-
tations of the operation symbols as operations (with the right number of arguments)
on this set, such that the identities are true for all values of the variables. A homo-
morphism of algebras is-a function that preserves the operations. One of the basic
theorems of universal algebra asserts that every variety contains a free algebra on
any set X of generators, i.e. an algebra 4 together with a function #: X — A such

. thzti, for any algebra A’ in the variety and any function #": X — A’, there is a unique

homomorphism a: 4 — A’ with n' = an.

This theorem has two standard proofs. The classical proof [2] begins with the
set of well-formed expressions, called words, built up from the operation symbols
and (names for) the members of X. There is a natural interpretation of the operation
symbols as operations on words. If there were no identities to be satisfied, this algebra
of words would be the desired free algebra. In general, however, this algebra is not
in the variety, so one has to identify words as required by the identities. Formally,
this means that the free algebra in the variety is obtained as the quotient of the
“absolutely free” algebra of words by an appropriate congruence relation. The
modern proof in [24] (see also [31] for a version of this proof that does not mention

_categories) applies the adjoint functor theorem to produce a left adjoint for the

underlying-set functor from the variety to the category ‘of sets. The value of this
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adjoint at X is the desired free algebra, # being the unit of the adjunction. The least
trivial hypothesis of the adjoint functor theorem to verify is the solution set condi-
tion, but this reduces to finding a bound on the sizes of algebras generated by X,
which is a straightforward calculation in cardinal arithmetic.

Even if some of the operation symbols are infinitary, everything in the previous -

paragraph remains true provided we stretch the meaning of “expression” to permit
infinite length (and perhaps stretch the meaning of “straightforward calculation ia
cardinal arithmetic” a bit). However, the classical proof now uses the axiom of choice
in forming the quotient algebra 4 of the word algebra W, for to define the valuc of
an infinitary operation at a set of arguments in 4 one chooses representatives in W
for these arguments and applies the operation to the representatives, The modern
proof also uses the axiom of choice (even in the finitary case) to justify the compu-
tations involving infinite cardinals.

Paré and Schumacher [30] have developed a version of the adjoint functor
theorem for indexed categories and used it to carry out the modern proof of the
existence of absolutely free algebras in arbitrary topoi with natural numbers objects.
Thus, not only the axiom of choice but even classical logic are dispensable.
Rosebrugh [33] has used the indexed adjoint functor theorem to obtain free algebras
for varieties involving identities, under the additional assumption that the topos
is Grothendieck over a topos satisfying the axiom of choice. '

We shall show in this paper that the classical construction of absolutely free
algebras as algebras of words can also be carried out in any topos with a natural
num-bers object. We shall also show that some additional choice-related assumption
(as in Rosebrugh’s theorem) is needed to obtain free algebras when identities are
pr«.isent. Specifically, we shall prove the consistency (relative to a certain large cardinal
axiom) of Zermelo-Fraenkel set theory ZF (without choice) plus the existence of
a variety of infinitary algebras with no initial member, i.e., no algebra freely generated
by the empty set. '

We shall also consider some related questions about the existence and nature
of coequalizers (or, equivalently, quotients by congruences) .in varieties of infinitary
algebras. We shall show that, although these coequalizers cannot in general . be
constructed as algebras of equivalence classes unless the axiom of choice holds
they. do exist in Boolean topoi with natural numbers objects provided no identitics:
are involved in the definition of the variety. When identities are present, however
coequalizers need not exist at all, even in models of ZF. ‘ , V

This paper consists of two parts that are almost completely indépendent of
ea'ch other. The first part, Sections 1 through 7, is about varieties deﬁned by opet-
ations only, without any identities. The main result here asserts that the classical
construction of free algebras of words makes sense in an arbitrary topos with natural
numbers object. In fact, we show (in Sections 4 through 6) that one can essentially
copy.the classical argument as an argument entirely within the internal logic of the
Fopos.‘ Sections 2 and-3. contain 'the needed information on how to handle and
interpret this internal logic. Neither the general discussion of internal logic in Sec-
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tions 2 and 3, nor the discussion of free algebras of words in the next three sections
contain any essential innovations (compared to [29] and [31] respectively). The
main point of these sections is simply that, when appropriately set up, the internal
logic provides a very powerful tool, essentially eliminating the need for any innovation
in passing from a classical set-theoretic argument (even a moderately complex one)
to a proof in topos theory. This part ends with a section in which we apply word
constructions to the study of coequalizers in varieties without identities. One cannot
always construct coequalizers simply by identifying appropriate elements in a given
algebra; indeed, the feasibility of such a construction implies the (internal) axiom
of choice. However, we can construct coequalizers as algebras of words, assuming
only that the topos is Boolean.

The second part, Sections 8 through 10, is about varieties whose definitions
involve identities. Section 8 contains positive results about the existence of free
algebras and coequalizers either assuming the internal axiom of choice or, in the
case of models of ZF rather than general topoi, assuming a rather weak consequence
of the axiom of choice. The main results of this part, however, are negative ones to
the effect that free algebras (Section 9) and coequalizers (Section 10) need not exist,
even in models of ZF (provided a certain large cardinal assumption is consistent
with set theory). Except for the first proposition in Section 8, the second part of the
paper makes no use of topos theory, although one could, of course, view the models
of ZF as topoi.

1. Definitions and preliminary remarks. In Sections 1 through 7, we work with
a topos &, assuming from Section 5 on that & has a natural numbers object N and in
Section 7 that & is Boolean. We are concerned with varieties of algebras in & not
subject to any identities, and our objective is to construct free algebras and co-
equalizers in such a variety as algebras of words.

Our first task is to explain what varieties and algebras are in &. Of course,
if & were the topos of sets, our explanation should reduce to the classical definition.
A variety (without identities) would be specified by giving its similarity type, namely
a set J of operation symbols and, for each jeJ, an arity I;, i.e. a set that indexes
the argument places of j. An algebra ‘would consist of a set 4 and, for each je&J,
an operation j,: A% — A. (In the theory of finitary varieties [13], it is customary to
use only natural numbers as arities, but, if we want to permit infinite arities and
do not want to assume the axiom of choice, there is no convenient substitute for
natural numbers preferable to arbitrary sets; see [32].) The definition of a variety is
easily translated into arbitrary topoi, using the standard device [17, 22] of representing
an indexed family {I,| jeJ} by the map z from the disjoint union of the. Ij. to.J,
sending all elements of J; to j. Thus, a variety in & is specified by giving a similarity
type which is simply a morphism z: I — J of &. ‘We think of J as the object of oper-
ation symbols and the fibers of 7 as arities. )

Before translating the definition of algebras, it will be helpful to recall some
basic facts about localization of topoi; see [17] for details. For any object X of
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'a’'topos &, the category &/X of &-morphisms into X (with commautative triangles
as morphisms) is also a topos. If /2 X - Y, then composition with f defines a functor
21 6]X - &Y. This functor has a right adjoint 4;: /Y — &/ X defined by pullback
along f, and 4, in turn has a right adjoint IT,: &/X — &/Y. &/1 is isomorphic to
(and identified with) &, and if f is the unique morphism from X to 1 we write Xy,
Ay, I for Z;, A, I, If & is the category of sets, we think of /X as the category
of X-indexed families of sets. Applied to such a family {4,| x e X}, Zy and II,
(where f: X — Y) yield the Y-indexed families {S,| ye Y} and {P)] ye Y1,
\yhere S, is the disjoint union of the A, for xef™'{y} and where P, is the set
of all functions that assign to each xef"’{y} an element of A,. Also, 4,{B,|
yeYh={Byyl xe X} '

In terms of these constructions, we can express the definition of algebras for
the veriety specified by 7: [ J (henceforth called 7-algebras) in a simple form
that generalizes to arbitrary topoi. To see this, note first that, if &' is the category
of sets, 4, A is the /-indexed family all of whose members are 4, so IT,4,4 is the
J-indexed family {4°"Y| jeJ}, and X,0T,4,4 is the disjoint union of this family.
But a z-algebra structure on 4 consists of, for each jeJ, a map AT A; all
these maps j, may be combined into a single map u: X,IT,4,4 — A. In this form,
the concept generalizes to arbitrary topoi.

DeFmurioN. Let 7: 7—J be a morphism in a topos 6. A t-algebra in & is
a pair (4, p), where 4 is an object of ¢ and u is a morphism from Z,IT. 4,4 to A.
A homomorphism from (A4, p) to (B,v) is a morphism o: 4 — B such that
v- I T A () = o

It is trivial to check that 7-algebras and homomorphisms form a category with
a forgetful functor to &, sending (4, p) to 4. We shall define a left adjoint for this
functor by constructing, for each object X of &, an algebra of t-words over X and
showing that it is the free ¢-algebra on X, i.e., that every morphism from X to the
underlying object of any t-algebra extends uniquely to a ‘homomorphism on the
algebra of words.
) As a preliminary step, we show that it suffices to consider the case where X
is the initial (i.e. empty) object 0 of &. For suppose we could construct the free
c-algebra on 0 (i.e. the initial 7-algebra) for every 7, and suppose we are given
w I—‘>J and X. Let J' = J+ X, and let ¢: I - J’ be the composite of T and the
inclusion i: J =7+ X. (Intuitively, ' has, in addition to the operation symbols
of 7, all the elements of X as 0-ary operation symbols, i.c., constant symbols.)
We claim that the free 7-algebra on X can be obtained as the free v’-algebra on 0

.To see this, first- check that IT;: 6/ — SlJ' sends any object {: Z —J t(;
£ —I-'xc.lx: Z+X—J+X =J'; this is easy using the definition of IT, as the right
adjoint of 4; and the fact that every object of &)J' has the form a+ f: :4+B - J+X

for some w: 4 —J and f: B> X (with o« = 4,(«
: = d(a+p), etc). It foll
2y ¢ = (Z;0)+ X, Thus, ‘ : ons that

IpHyArA = Eo0LIT, 404 = (5,01,4,4)+ X
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A t'-algebra structure u’ on A is therefore given by specifying two morphisms,
u: Z;J0 4,4 —+ A and & X — A, In other words, a t'-algebra is the same as
a t-algebra with a specified morphism of X into its underlying object, and a homo-
morphism of 1'-algebras is a homomorphism of t-algebras that commutes with the
specified morphisms. It is now clear that a 7-algebra (4, p) is free on X, with inclusion
of generators n: X — A, if and only if the «’-algebra (4, {u, n)) is initial.

Sections 2 through 6 will contain a construction of the initial ¢-algebra as an
algebra of words, for any 7 in any topos & with natural numbers object. Before
embarking on that construction, we make a few remarks to motivate some aspects
of it. :

Words built up from the operation symbols in J are customarily viewed as
well-ordered sequences of symbols, but it is clear that, in the absence of the axiom
of choice, we cannot expect the arities to be well-ordered sets, so the symbols in
a word need not be well-ordered. Indeed, they need not even be linearly ordered.
Fortunately, the ordering of the symbols is entirely irrelevant and may be dispensed
with. But what, then, is a word? There are at least two approaches to answering this
question. One involves iterated pairing, as in the customary formalization-of the
syntax of infinitary logic [1]; it seems to be unsuitable for direct translation into
topos theory. The approach adopted here is to analyze the essential structure of
words in the familiar situation where & is the category of sets. Suppose, for example,
that J contains two binary operation symbols, + and -, one unary symbol exp,
and three constant (i.e. 0-ary) symbols, 1, 7, and =, so that 1+exp(i-n) is a word.
(For the sake of uniformity, one ordinarily defines words so that operation symbols
precede their arguments, so this word would properly be + (1, exp(-(, m))) or
simply + lexp-in, but we have already seen that the order of symbols is not part
of the essential structure we are seeking.) The essential structure of this word can be
analyzed as follows. First, its principal (i.e. outermost) operator is the binary
symbol +, and this operator is applied to the words 1 and exp(i-m). There is a strong
temptation to say “1 and exp(i-x) in that order”, since there is no commutativity
here, but this is reasonable only because the arity of the symbol +, which might
be written {left, right} (since a sum has a left and a right summand), is commonly
thought of as ordered, with left preceding right. What is essential is not the order
but the fact that 1 corresponds to left and exp(i-7) to right. Thus, we should say
that + is applied, not to the words 1 and exp(i -7) in that order, but rather to the
function, from its arity to words, left~ 1, right ~ exp(i*7). Continuing the analysis,
we say that exp(i-7) has principal operator exp applied to (the function that sends
the unique member, say x, of the arity of exp to) ‘the word i+7, which in turn has
principal operator - applied to the function left & 7, right v 7. (It seems too pedantic
to distinguish this left and right from those for -+.) Finally,1 has principal operator 1
applied to the unique function from its empty arity to words, and likewise for i
and 7. Thus, the structure of the word 14exp(i-n) is described by the following list
of all the symbols occurring in it together with the location of the subword having
any given symbol as principal operator:
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Symbol Position
+ <>
1 (left)
exp (right)
. Cright, )
n (right, *, right)
i (right, *, left) ,

where, for example, the last line means that i is the principal connective of the word
assigned to left by the function on which the symbol at position {right, *) operates.
It is easy to see that any word (even with repetitions of symbols) can be described
by such a table, in which .

(a) the positions are certain finite sequences of elements of arities,

(b) there is a function assigning to each position a symbol,

(c) the empty sequence is a position,

(d) 2 nonempty sequence is a position if and only if, when it is decomposed
as the concatenation s (i where i is the last term of the sequence and s is the rest,
s1s a position, and  is in the arity of the symbol associated to s by the function in (),

(e) there is no infinite sequence all of whose finite initial segments are positions.
A word can thus be represented by a set of positions and a function from this set
into the set J of symbols; indeed, it suffices to specify the function since the set of
positions is then determined as the domain of the function. A useful way to visualize
a word is as a downward-branching labelled tree. Each node

+
left / \right
/ AN
1 exp

|«

left \right

7 4 AN

i 7
in the tree corresponds to the position given by the labels of the edges leading
from the top of the tree to that node, and the node is labelled with the oper-
ation symbol assigned to that position.

Condition. (e) excludes trees with an infinite descending path. Such trees would
correspond to “words” like exp (exp(exp(...))); we could define an algebra that
contained such words, but it would not be the initial algebra since the value of a homo-
morphism at such a word would not be well-defined. The condition that there be
no infinite descending path is equivalent, in set theory with the axiom of choice, to
well-foundedness, which means that every nonempty set of nodes has a minimal
element. In set theory without the axiom of choice, the equivalence no longer holds,
and well-foundedness turns out to be the correct condition to use 3 in non-Boolean
topoi, even well-foundedness must be rephrased in a classically equivalent but intuition-
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istically inequivalent way (see Section 4). Our definition of words (in Section 5)
will be a formulation, appropriate for general topoi, of the notion of a well-founded-
tree of finite sequences of elements of arities, together with a function assigning to
each node of the tree an operation symbol, in such a way that conditions (c) and (d)
above are fulfilled.

To find appropriate topos-theoretic formulations of set-theoretic concepts as
in the preceding sentence, we make systematic use of the internal logic of topoi,
introduced by Mitchell [26] and Bénabou [5]. Indeed, the main constructions and
proofs (Sections 4, 5, and 6) will be done in this logic; only at the end of Section 6
will we return to the external world to show that we have an initial algebra as an
actual object (and morphism) in & rather than as a term in the internal language.

, Section2isa brief explanation of the internal logic of a topos &, and Section 3
deals with the process of obtaining actual objects and morphisms from descriptions
of them in the internal logic. The material in these two sections is not new and is
included only for the convenience of the reader and to fix notational conventions.
In Section 4 we introduce the concept of well-foundedness (as a term in the internal
logic) and study some of its properties, the most important property being a version
of Mikkelsen’s theorem [25] on existence of inductively defined maps. Section 5
introduces trees of finite sequences (positions) and words. Finally, in Section 6, we
complete the construction of an initial algebra by putting an appropriate algebra
structure on the set of words and showing that the resulting algebra is initial.

2. Internal logic. The use of a many-sorted intuitionistic logic to efficiently
express and prove internal properties of a topos was pioneered by Miichell [26]
and Bénabou [5] and developed in detail by Osius [29] and Fourman [10]. Unfor-
tunately, different authors (including the present one) use different (though essentially
equivalent) formulations of this internal logic, so we devote this section to presenting
the particular formalization that we intend to use.

Throughout this section, let & be a fixed topos. The internal language of & has
the following symbols. First, for each object A of &, there are denumerably many
variables of sort A; we assume that no variable is of two different sorts, and we
write sort (v) for the (unique) sort of the variable.v. Second, for each morphism

f: T1 4; — B with a specified representation of its domain as a product of a finite .

nunl;b,::r n of factors, there is an n-ary operation symbol, also written f although,
to be completely accurate, the notation for this operation symbol ought to include
not only the morphism f but also the product representation of its domain. Finally,
there is the symbol ++, which will play the role of Church’s A-operator of function
abstraction. Note that, in the definition of the operation symbols, n =0 is
allowed, so every morphism | — B serves as a O-ary operation symbol.

The syntax of the internal language is given by the definition of its well-formed
éxpressions or terms. For all sets V' of variables, we define the terms on ¥ (also
known as terms with all their free variables in ¥) and the sorts of these terms by the
following induction, in which “tg,4” means that # is a term on ¥ of sort A. (The
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symbol ¢ is intended to-be different from, although reminisc_ent of, the membership

symbol &.)
(a) If v is a variable in ¥, then veysort(v).

() If f: T]4; — Bandif 1,6, 4, for each i<n, then ft, ... 1, &, B. (We often-

i<n
write f (%, ..., t,~,) for greater legibility.)
(¢) If x is any variable and tey (A, then x > tey, AN,

A term onthe empty set of variables is said to be closed. We omit the subscript‘

on & when it is clear from the context or irrelevant.

It will be useful later to have the notion of substitution of one term for all free
occurrences of a variable in another term and the notion of such a substitution being
legitimate in the sense that no free variable becomes bound as a result of the sub-
stitution. These concepts are defined by the following induction on terms. Let y be
a variable and aesort(y). :

(@) yla/y] = a, and the substitution is legitimate. v[a/y] = v if v is a variable
other than y, and the substitution is legitimate. ‘ :

(1) f(tos eoes i) af/y] = ftolaf D], ..., ti—1[a/¥]), and the substitution is
legitimate if and only if all the substitutions #;[a/)] are legitimate.

(© (y»t)[a/y] = yt, and the substitution is legitimate, If x is a variable
other than p, then (x & £)[a/y] is x> (¢[a/y]), and the substitntion is legitimate if
and only if the substitution ?[a/y] is legitimate and either x is not free in «
(i-e. agysort(y) with x ¢ W) or y is not free in ¢.

The usual elementary properties of substitution hold; we omit their easy proofs.

The semantics of the internal language of & assigns to each term s, A4 a de-
notation [¢]y: H/sort(u) - A,-a morphism defined as follows, with sort(¥) meaning

ve .
[T sort(v).
veV
(2) If ve V then |v]y: sort(V) — sort(v) is the sth projection.
(®) I f: Tl 4= B and t;e44;, then |fty ... t,_,|y is the composite

i<n

sort(¥) tirdi<n ;[;["Ai N B.

() If teyymd then [x i tl,: sort(V) — 4™ s the exponential adjoint of
the composite

sort (V) x sort(x) g sort(V—{x}) x sort(x) ezsort (¥ u {xh i }f»*
X

where m: sort(¥) ~ sort(V'—{x}) is the projection if x € ¥ and the identity otherwise. -
We write “#; =y 1,” to mean that ||, = |f,)y, it being understood that ¢, and #,
are terms on V' of the same sort. We write #, = ¢, without the subscript when the
intended ¥ is clear from the context or irrelevant.

It should be emphasized that the internal language contains no meaningfut
expressions other than the terms. In. particular, & | |, and = are not part of the
internal language. but rather part of the ordinary language of mathematics in which

3
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we make statements about algebras, topoi, terms, etc. By contrast, note that nothing
in the internal language has yet been interpreted as a statement. When it is being:
contrasted with a formal language or theory, ordinary mathematics (in which one
can talk about the formal langnage as well as other things) is sometimes called the
meta-theory. .

It is easy to show, by induction on 7, that if ¢ is a term on ¥ and V'< W then ¢
isaterm on W and ||y, is the composite of ||, and the projection sort( W) — sort(¥).
Therefore, if ¥< W, then t; = t, implies 7, = 1,, though the converse can fail
if the projection is not an epimorphism.

Although rather poor in basic concepts, the internal logic of a topos turns out
to be rich in expressive power. To indicate how this happens, we now introduce

‘a number of common mathematical concepts as terms in this logic. (The situation

is similar to that of classical set theory, where one begins with a very small supply
of basic concepts but eventually introduces enough definitions to express almost
all -mathematical concepts.)

‘We begin by recalling that, when n = 0, clause (b) of the definition of terms says
that every morphism 1 — A is a term (on any V) of sort A. We write  for the term id,
of sort 1. Clearly, if f: 1 — A, then f () = f, where the f on the left is the unary
operation symbol obtained by viewing the domain 1 of f as the product of a single
factor 1, while the f on the right is obtained by viewing 1 as the product of no factors.
(We could also view 1 as 1 x 1 and obtain f(x, ¥) = f, etc.) Note that, for any 7¢1,
we have ¢ = » because 1 is terminal.

The evaluation map B*x A — B, i.e., the counit of the adjunction between
product and exponential, treated as a binary operation symbol, will be denoted
by ev (or ev 4 pif such precision is needed) and usually written between its arguments.
Thus, if ¢, ¢ B* and 1, .4 then (f,evt,) £ B. (We omit the subscript on ¢ since it
is irrelevant, but of course it should be the same on all three ¢’s.) If f: 4 - B
corresponds, via the adjunction,to " 1; 1 — B% then, forany & A, (" f levt) = f(1),
as the reader may easily verify. Also, if ¢ &, B and if x is a variable of sort 4 that
is mot in V, then x & (fevx) =, Finally, there is the “A-conversion” rule,
(x> tyeva = t[u/x], where { £ B, d & 4, x is a variable of sort 4, and the substitution
is assumed to be legitimate. In particular, (x+>1)evx = 1. '

The identity map of A x B, with its domain represented as the product of A
and B, gives a binary operation symbol, written *“( , >” around its arguments. Thus,
if aed and boB then {a,b)cAxB, We write 1% and 2™ for the projections.
of AXxB to A and B. So 1%(a,bd) =a, 2™(a, b)) =b, and, if cedxB,
(e, 2"%e)> = ¢. Products of more than two factors are treated similarly.

Everything we have said about the internal language until now would make
sense for any cartesian closed category. The additional structure available because &
is a topos, namely the subobject classifier @, leads both to a deeper mathematical
structure and to a different way of viewing certain terms of the internal logic. It is
worthwhile to introduce appropriate notation to reflect this new viewpoint before
going on to thé new mathematical content. A term of sort @ will be called a formula;
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a closed formula is a sentence. Note that the denotation of a sentence ¢ is a truth
value of &, i.e. a global section of @, |pl,: 1 - Q. If ¢ is a formula, we often write
X as {x|o}; this is intuitively reasonable since this term denotes a morphism into
Q4 = P(A), the object of subobjects of A4, where A = sort(x). For an even more
suggestive notation, we may indicate the sort of the variable by writing {x & 4|¢}.
The map 4 xQ* — Q obtained by interchanging the factors in the domain of ev
will be written € (or ,) between its arguments. Note carefully the distinction
between e, which denotes a morphism of & and is therefore a symbol of the internal
langvage, and ¢, which is used in the meta-theory to indicate the sorts of terms.
Results about ev mentioned earlier can be rewritten in terms of & to give the familiar-
{ooking equivalences {x|x € 5} = 5, where se, #(4) and x is a variable of sort 4
not in ¥, and ae {x|¢p} = ¢lu/x], with the usual assumption that the substitution
is legitimate.

Using, for the first time, the fact that Q is the subobject classifier, we introduce
the notation =,, a binary operation symbol written between its arguments, for
the morphism 4 x 4 — Q that classifies the diagonal subobject AZETI;A x A. When

no confusion seems likely, we shall omit the subscript 4 and just write = . As with e
and &, note carefully that = is in the internal language while = is in the meta-
theory.

Using the equality symbol, one can define all the other basic concepts of in-
tuitionistic logic as terms in the internal language. It is well-known that, for example,
universal quantification over an object 4 is represented by a morphism Q4 — Q.
Fither this morphism, as a unary operation symbol, or its exponential adjoint
1 — PP (A), as a constant term, could serve as the universal quantifier of our internal
logic. The latter is, in fact, equivalent to the term V, introduced below. We have
chosen, instead, to define V4 and the other logical concepts as shorthand for certain
terms involving equality. The reason is primarily a matter of aesthetics and economy,
but the formulas below also provide a way of constructing the morphisms of & that
internalize these logical concepts and might thus be useful in presenting the funda-
mentals of topos theory. Before presenting these definitions which are part of the
folklore of logic and may also be found in [21], it may be worthwhile to comment
on the fact that we are apparently defining the logical concepts in any cartesian
closed category with an object @ equipped with equality morphisms Ax.A — Q
for all 4; nothing more about the topos structure of ¢ has been used. It is indeed
possible to-define the logical concepts in this generality, but the proof that they
work properly, i.e. satisfy the expected equivalences, depends on having a topos
or at least something fairly close to a topos, such as a logical category [21, 36, 37].
‘We now turn to the definitions; the symbol: = is used for definitional identity, since
we never really care that two terms are identical, only that they are equivalent.

Recall that = is the constant term given by the identity map of 1
{D true := % = * (so true ¢,Q),

@ {Ja=xo{ly=x}, where x,yed (so { },5,2(4)%.
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The reader should verify that the denotation [{ },),: 1 — #(4)* is the adjoint
of the usual singleton map 4 — #(4). Similar verifications justify the other defini-
tions given here. We usually abbreviate { }, ev a as {a},, and we omit the sub-

script 4 when possible
(3) A= {(true, trued} (50 Ag, P(Qx Q) = Q%Y

[Aly: 1 Q%% is the adjoint of the usual conjunction map QxQ — Q. We ab-
breviate Aev{p, > as ¢ A, and similarly for the other binary connectives defined
below (v, =, «»). Thus, :

oA = (o, e {Ctrue, trued} = {p, ) = (true, true),
(4) all,: = {xedltrue} (so all,s,2(4)),
(5) V= {all ey (0 Ve, 22(4).
We abbreviate ¥ ev {x|p} as Vx¢ or VxeAe, and similarly for the other quantifiers
defined below (3, A1). Thus, Yxedp = {xed|p} = all,.
(6) -1 = {zeQx QI%@) = Aevz).

Thus, ¢ = = ¢ = (p A). In the future, when writing terms of type Z#(4 % B),
we shall frequently write, not the formally correct {zeA % B|6}, but the more legible
{Ca, by A x B|0[{a, bY/z]}. Thus, for example, the right side of (6) would be, after
simplification, {<¢, > e2x Qe = (0.},

N w: = {{p, e xQp =y},

(8) vi= Ko, P e@xQVueQ((p —» ) AW - W)~ ul},
(9) false; = YueQu,

(10) ‘ ;= {false}q .

We abbreviate Tleve as Tlg, so 1@ = ¢ = false,

(11) = [zePWIVueQ[Vyed(yez > u) = ul},

(12) A, = {zeP(A)Fped z = {¥}} .

This completes the definition of the logical connectives and quantifiers in the
internal language. Using them, along with = and €, we can interpret. many stazte—
ments of ordinary set theory as formulas in the internal language. This is Fhe first
main step in translating arguments in set theory into proofs: about topc.n"

We say that a formula ¢ on ¥ is valid (on V), and we write Fy¢ (omlhttmg the
subscript when ¥ is clear or irrelevant) to mean that ¢ =y tl‘}).e,- ie. ?hat
lply: sort(V) — @ factors through [truel;: 1 — Q. The second main ingredient
in translating set theory into topos theory is the theorem [10, 29] .that 11.1any-s'ort.ed
intuitionistic logic is sound for this notion of validity. More precisely, if ¥ is in-
tuitionistically deducible from {¢Ji<n}and if Fy¢, for all iﬁn, then Fyr. A Word
of caution is in order concerning the frequently used definition of F.¢ as ky ¢ for
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the smallest ¥ such that ¢ &, 0, i.e. for V the set of free variables of ¢. The usual
formulations of intuitionistic logic are not sound for this definition of F, because
the ¥”’s involved in determining the validity of the premises ¢; and the conclusion i
may be different. There is no difficulty, however, if all variables free in any premise
are also free in the conclusion; see [29] for details.

‘We now turn from logic to set theory. Again, we shall introduce the basic con-
cepts as terms in the internal logic. Since some of the definitions would be rather
cumbersome if written out in full, we adopt some stylistic conventions to make them
easier to read. Rather than explain these conventions in abstract terms, we indicate
how they are used in some examples.

Consider, for example, the notion of the domain of a relation between 4 and B,
The object of such relations is 27(4 x B), while the object of subsets of 4 (possible
domains) is 2(4), so domain ought to be of sort #(4)*“* B A straightforward
definition of it would be

(12) domaing g = z++ {xed|dyeB{x, pd ez},

and this is, in fact, the definition we shall adopt. We should add to it the convention
(similar to the conventions adopted in logic above) that domain, pevr. is to be
abbreviated domain, y(r), with the subscripts omitted when possible. We can suc-
cinctly express both the definition (12) and this convention by writing

(129 domain, p(z): = {xsd[dyeB{x,p> ez}
or
(12" x e domain, y(z): = JysB{x,y>ez.

Both (12') and (12") should be viewed as nothing more than shorthand ways of
writing (12) and the notational convention for domain 4,56Vr. In more complicated
situations, it would be useful to indicate the sorts of the variable by writing the left
sides of (12) and (12") as domain , 4(ze (4 x B)) and x4 edomain, y(z 2 (4 x B)).

We may also omit the subscripts of domain in (12") and (12"); they are to be tacitly
understood.

Similarly, we write
(13) - zeP(AxB) is a function
P = VxsAVyeBVYy eB[((r, 3> ez alx, y>e )y = 1’]

This is to be understood as abbreviating a definition, function ap = {z|Vxed ),
of a closed term function 4,88 P (A % B), together with the convention that func-
tion, zevr is to be written “r is a function.” The definitions that follow are to be
understood” in the same way. Since this way of writing definitions makes them
practically identical with the definitions in any standard set theory text, we give
only some representative examples, assuming that the reader can easily supply any

others that may be needed. (In particular, having defined domain, we refuse to
define range.)
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(vep(As(re?(A): = VosA[vex — v ey,
(xeP () (ye? (D) = {zedlzexnzey),
N (xePP(A) = {zeA|VyeP(A)[yex ~ zey]} .
Unions are defined analogously. )
(ve () % (ye#(B)): = {a,bysAxBlaexnbey},
(ze#(AxX Bt (veP(A)): =z 0 (xxallp),
Converse (ze#(AxB)): = (b, a)eBx Al a, b € z}
(: s (A % 13)) is one to one: = Converse (z) is a function,
(xe (B C))o (e (A% B) )
= {u, e edxC|FbeB[{a, by e yalb, cdex]}.

i

Definitions like these make translating statements of ordinary set theory into
the internal langnage essentially just a matter of copying. To translate proofs, we
use the soundness of intuitionistic logic for F, along with the fact that the basic
principles of set theory are valid (or, more precisely, have valid translations) in the
internal interpretation. The most important of these are the comprehension principle

a e {x|p} « @la/x] when the substitution is legitimate,
and the extensionality principle v
Vycd(xez « xez) >z =g .

The validity of the first of these follows immediately from « e {x|o} = o[a/x];
for the second, which is a special case of the extensionality principle for maps

Vxsd((zevy) = ('evx)) — 2 = paz’,
see [29]. Among other familiar set theoretic principles whose internal validity we
shall use, we mention Leibniz's law
xomy ) (VzeP(A)[xez &' yer],
and the characterization of products
VxedxBAacAAbeBx = {a, by A
AVa, a eAVb, b eB[{a,b) = (', b’y »a=da Ab=1]

and similiu-ly for products of more factors (or fewer: Yxgl x = ).

On the basis of such principles, we can translate into the internal lang.uage
those proofs of ordinary set theory which do not use the law of th.e .cxcludcfl middle
or the axioms of choice, infinity, and replacement (which can fail in topoi). 1}' t_he
‘topos has a natural numbers object, proofs using the axiom of infinity can be inter-
nalized, while in Boolean topoi the law of the excluded middle
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VxeQ[xv Tx]

is valid. Proofs that use the excluded middle, replacement, or choice can often be
reformulated so that they do not. Indeed, much of Sections 4 through 6 of this paper
can be viewed as just such a reformulation of the classical construction of absolutely
free algebras.

The preceding discussion may be summarized by saying that, to prove k(0
for some given sentence @ in the internal language, it suffices to give an intuitionistic
proof of 8 on the basis of set theoretic principles, such as those listed above, that
are internally valid. We usually indicate our intention to employ this method of
proof by saying “We carry out the proof in the internal logic” or words to that
effect. Once this is said, we feel free to use all the usual modes of deduction (e.g. to
prove ¢ — 1, assume ¢ and prove i/; to prove Vx o, fix an arbitrary x and prove ¢)
insofar as they are intuitionistically correct. We also feel free to use standard notation,
such as f(x) when we know that fe2(4 xB) is a function and x € domain( /).

We close this section with some comments on the relation between the notion
of function defined by (13) and the notion of function as something of sort B™.
There is a canonical morphism Graph: B4 — 24 x B) = Q**E obtained by
exponential adjunction from

BixAxB

> BXB s Q.
evyXid =

We have (for aed, beB, feB*) <a, by e Graph(f) = (feva) = b, from which it
easily follows that F Graph(f) is a function A domain (Graph( f)) = all,. Thus,
every function in the B sense gives rise to a function in the sense of (13) with domain
all,. Conversely, every such total function arises from an element of B*; more
precisely,

EVze?(AxB)[(z is a function A domain (z) = ally) —.3! feB* Graph(f) = z].

The verification of this is essentially an internal version of Kock’s construction [20]
of exponentials from power objects; we leave the details to the reader.

3. Externalization. This section is devoted to pointing out the connections
between properties of objects and morphisms expressed as validity of certain internal
formulas and properties expressed in conventional category-theoretic terms. Proofs
of most of the results are left to the reader, with the suggestion that he consult [21]
in case of difficulty, )

Suppose 4 and b are terms on ¥ of sort 4 and kpa =, b. This means that

t(V) ——— —
sort(¥) <|”|V’[b|v;?-AXA =A_>Q

factors through [truef: 1 —~ Q, which is equivalent, in view of the definition of = Ay
to saying that {lal,, |b],> factors through the diagonal 4 — A x A, i.e that

laly = [bly. So Fya =b is equivalent to 4 =, b. In particular, to say that two
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(global) elements &, n: 1 — A are equal as morphisms is the same as to say that
(it is valid that) they are internally equal as constant terms, F ¢ =, #, since clearly
|€], = & By virtue of extensionality, it follows that two morphisms ¢,7: 4 - B
are equal if and only if k Vasd[¢(a) = n(a)].

Composition of morphisms is also expressible internally. If S [1B8,—=cC

Jj<n
and, for each j<n, g;: [] 4, B;, then / is the composite of f with {gi<n if
i<m
and only if
F Va() (;AO VCI,,,.,] EAm-l [h(am fery am—-l)
= f(g()(aO" rers am—l): seey gn—l(aOs LErY am-—l‘))] -

Identity morphisms are.characterized by k Vaed id (a) = 4 a.
A morphism f: 4 — B is monic if and only if

EVa,a'cA[f(a) =5f @)= a=,41].
1t is epic if and only if
FVbeBAaeAdf(a) =pb.

Tt is an isomorphism if and only if
FVYbeBAlacAf(a) =4b.

We leave it to the reader to give similar characterizations of products, coproducts,,
pullbacks, ete.; the natural descriptions in the category of sets, when expressed in
the internal logic, work in any topos.

There are two important processes for constructing objects and morphisms
of & when we are given descriptions of them in the internal logic. The first of these
amounts to invoking the fact that Q classifies subobjects. Suppose we have a closed
term 782 (A). Then its denotation [t],: 1 — £ (4) yields by exponential adjointness.
a morphism : 4 — Q, which classifics a subobject [t] > 4 of A. Thus, any closed
term ¢ of sort 2 (A4) gives rise to an object [¢] with a canonical monomorphism 7 into 4.
These are characterized by FVxed [x € > Aye[f]x = i(y)], where the quantifier Iy
can be replaced with 31y because i is monic. A’ morphism f: X — A factors through
it [t]> A4 if and only if k VxeX f(x)et. We abbreviate [{xe4lp}] to [xed|e].

As an example, [ze4 (4 x B)|z is a function A domain(z) = all,] is, in virtue
of the discussion at the end of Section 2, simply B4, the inclusion into Z#(4 x B).
being Graph. As another example, a pullback

Pt

ul/ l/ll

P, pE—p)
J

can be obtained as P = [{a, b)ed xB|f(a) = g(b)] with « =1* i and ﬁ' = Z“t’ i,
where i: P > 4 x B is theinclusion. In classical set theory, one always takes inclusion.
maps to be restrictions of the identity map. While this is not possible (or even.
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meaningful) in the present context, it is useful to adopt a notation making these
inclusion maps as unobtrusive as possible. A convenient choice is a dot over a symbol.
If we abbreviate i(x) as X (or as (x) when x is a complex expression) it is easy to
ignore the dots when reading, and then the formulas look like classical set theory.
(We try to avoid having several inclusion maps in the same context, lest we need
several shapes of dots.)

The second externalization process that we wish to discuss produces morphisms;
in its simplest form it produces morphisms with domain 1. Suppose 7 6% (4) is a closed
term such that k 31x xer. Then [t}: 1 — #(A) factors through the singleton map
H{x s A = 2(A) yielding a morphism &: 1 — A. This fact is essentially Kock’s
principle that unique Jocal (i.e. internal) existence implies global existence; sec [19].
The defining property of & is expressed by F 7= {¢} or, in view of FAlx'x et
simply k& et. In applications, we frequently have a formula ¢e.,Q such that
F 31x¢; then the preceding applies to 7 = {x|p} and provides &: 1 — A such that
F @ [£/x]. We refer to this sort of externalization (and its generalizations described
below) as Kock’s principle.

To similarly define a morphism from ¥ to X, suppose we have a closed term
18P (Y x X)such that k Vye Y3lxe X {y, x> et Thus, ks a function A domain
(1) = ally, so, by the discussion at the end of Section 2, F 3! fe X¥ Graph(f) = 1.
By Kock’s principle, there is a (unique) &: 1 — X¥ such that k Graph() = #. For
its exponential adjoint ¢: Y — X, we have F VyVx[{p,xDet « x = £(3)], or,
in view of k VyAlx {y,x)et, simply F Vyiy, EO)D et

The two externalization principles can be combined to yield the following process
for- defining a partial morphism from Y to X. Suppose we have a closed term
1e2 (Y x X) such that k ¢ is a function. Then there exist a subobject W = ¥, namely

[domain(z)], and a morphism &: W— X such that
EVyeYVxeX[{r,xyet o AweW(y = i(w)Ax = f(w)].
To obtain ¢, just apply Kock’s principle to {<w, x) eWx X|{i(w), x> et}

To prepare for one of the calculations in Section 6, and also to give a non- -

trivial example of a construction where one first describes what one wants in the
internal language and then externalizes, we present a characterization of the object
2,114, A4, which, as we have seen, occurs in the definition of 7-algebra.

THEOREM. Let t: T—J be a morphism and A an object of the topos &. Define
St ={, Y eIxPUXA)f is a function A domain(f) = {yell <(») = j}}.
Then [S] = 5,114, A.

Proof. [S] comes equipped with an inclusion 7 into J x 22(I  4); we write pr for
its composite with the projection Jx 2 (I'x A) — J. We shall show that pr: [S]1—-J
is IT.4; 4, which suffices to complete the proof since Z, sends every morphism with
codomain J to its domain. In view of the definition of IT, as right adjoint to 4, we
must establish a natural bijection between morphisms in &/J from any X 7 J to

8] d J and morphisms in &/I from 4 (X 7 J) to 4;4. We shall construct the bijec-
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tion for a fixed X 7 J; naturality is easy and will be left to the reader. Having fixed
X J, we construct the pullback

P—2sx
L
1—7—9. J

‘where P - Tis A(X ? J). In view of the definitions of &/1, 4;, etc., we are seeking
a bijection between commutative triangles of the form

3 | XS]
@ \txjﬁ

and commutative triangles of the form

]
P—>IxA4

@ N4
1

52a4, Which completely determines f§
since the commutativity of (2) is equivalent to § = <{p,y). Thus, commutative
triangles of the form (2) correspond bijectively to morphisms y: P — A.

Now consider any « as in (1). Its composite with i: [S]—Jx P (Ix 4) can be
written as (&, n)>: X - IJxP(Ix A), where the first component is ¢ because (1)

commutes. The fact that (&, s> factors through [S] can be expressed as

(3) EVxeX[n(x) is a function A domain(y(x)) = {yel| =(3) = £()}].

Let us abbreviate the term {{y, x) eIx X| ©(y) = &(x)} as t. (By previous remarks,
[t] = P.) The domain clause in (3) can be rewritten as

Vyell[y e domain(n(x)) < <y, x)et].
Set

7t = {(Cp, X0, upeIx X)x A| () = E) ALy, 4D en(x)}.

By the preceding, F # is a function A domain(7) = ¢. By Kock’s principle, 7 defines
amorphismy: P = [t] — 4. Conversely, any such y corresponds to # for a unique
satisfying (3), namely

H<r, wyelx Al 3zeP[p(@) = y Aq(2) = x Ay (@) = Wl -

Thus, morphisms y: P — A4 correspond bijectively to morphisms : X — P(Ix A)
satisfying (3) and therefore also'to commutative triangles (1). &
4 — Fundamenta Mathematicae CXVII
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This theorem allows us to define a t-algebra structure on 4, i.e. a morphism
Z,II,4;4 ~ A, by giving a closed term ueP((/xP(Ix4))xA4) and proving

EVieJVmeP(Ix 4)[m is a function A domain(m) = {iel| ©() =j}
~ Naed{j, my, ayey],

for then Kock’s principle can be applied to 7 }S to yield the desired morphism. We
shall in fact define the algebra structure of the object of words in just this way in
Section 6. (Indeed, any such morphism arises in this way from some term u.)

Notice also that a homomorphism from one algebra (4, ) to another (B, v)
can be obtained by applying Kock’s principle to any closed term o2 (4 X B) such
that

ko is a function A domain(y) = all, A
AYjeIVmePIx A)Vasd[{{j,my, ayen— {{,aomy, a(@>ev].

Furthermore, all homomorphisms arise in this way, and F ¢ = o if and only if the
corresponding homomorphisms are the same.

4. Well-foundedness. This section is devoted to developing, within the internal
logic of a topos &, enough of the classical theory of well-founded relations to permit
the definition of functions by induction over such relations. We shall work with a fixed
object X and, to avoid repetitious description of sorts, we agree to use x, y, z as
variables of sort X, a, b, ¢ as variables of sort #(X), and < as a variable of sort
2(X)*. Furthermore, we shall write <x for <evx, and y<x for ye(<x). As
a final convention, we abbreviate Vx[xeb — ..] and Ix[xebna..] as Vxeb...
and dxeb ... respectively.

DEFINITIONS. a is < inductive on b: = Vxeb[Vyeb(y<x » yea) » xeal.
< is well-founded on b: = Va[a is < inductive on b — b<al. In accordance with
the stylistic conventions of Section 2, the first of these isto be taken as the definition
of a term inductive &,((Q7*)?®¥)PX oeether with a convention for writing
“((inductive eva)ev<)evh” as “a is < inductive on 4”; similarly for the definition
of well-founded and the further definitions below.

A few easy (intuitionistic) consequences of these definitions are worth pointing
out before proceeding to the problem of defining functions by recursion. First,
applying the definition of well-foundedness with 2 = {x]p}, we obtain the principle
of proof by induction ' i

k< is well-founded on bAVxeb[Yy € b(y<x — @ [y/x]) = @] - Vxebep

where y is not free in ¢ and the substitution is legitimate. Second, if @ is < inductive
on b, then so is a n b; therefore

<is well-founded on b = Va[ac=bAa is < inductive on b — a = b] .
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Finally, as far as the definition of well-foundedness on & is concerned, the prede-
cessors outside b of any x are irrelevant. More precisely,

< is well-founded on b = (xb n <x) is well-founded on .

This is obvious since the same sets are inductive with respect to x > (b n <x) as
with respect to ~<.

It should be mentioned that our definition is classically but not intuitionistically
equivalent to the more common definition requiring the existence of minimal ele-
ments in all nonempty subsets of b. It is fairly well known [35, 3] that the latter
definition is inappropriate in intuitionistic contexts; we comment further on this in
the appendix to this section.

‘We now turn to the formulation and proof of a theorem on definition by re-
cursion. This theorem is intuitively very similar to one proved by Mikkelsen
[25, Appendix], but, unlike that theorem, ours is formulated in the internal lan guage,
and its proof is essentially the same as one of the standard proofs of the corresponding
theorem in ordinary set theory (see [9, 16]). We fix an object ¥ to serve as the co-
domain of the maps to be defined by recursion, and we let p, g be variables of sort Y,
while f, g, h are of sort #(Xx Y).

DEFINITIONS. /2 is data under x (with respect to < on b): = % is a function A
adomain(h) = b n <x. G is a recursion condition (with respect to < on b): = G
is a functionAdomain(G) = {{x,h)|xebah is data under x}. The clauses in
parentheses will be omitted when < and b are clear from the context. It should also
be clear from the context that G is of sort ?/’(X XP(Xx Y)x Y). The idea is that,
if we are defining f: [] » Y by recursion over <, then, at the stage where f(x)
is to be defined, the available data consists of x and the previous values of f,
i.e. ft b~ <x. These previous values constitute data under x, and the manner
in which f(x) is to be computed from x and f} x is codified by G. Thus, we define

[ satisfies G (w.r.t. < on b): = f is a function A domain(f) = bA
AVxYp(Cx, by €f = {5, f1 b <x), 5D €G) .

THEOREM. F < is well-founded on b A G is a recursion condition — 3! f satisfies G.
Proof. Replacing < with x+ b n <x, we may assume for simplicity that
b Vx(<x<b). Define
g is good (for G, <, b): = g is a function A domain(g) b A
AYxVp[<x,p) eg —» {x, gt <x>,p>eC].

Working in the internal logic, we are given that < is well-founded on b and that G
is a recursion condition, and we must prove 3!f[f is good Adomain(f) = b].
LEMMA. g is goodng' is good A{x,pdegAilx,p'>eg —p=7p'.
Proof. We use induction on x, with respect to <. Assume all the hypotheses
of the lemma and assume that the’lemma holds with‘any y=<x in place of x. From
"y
Eid
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the hypothesis (x;p) € g- we obtain, as g is good, {(x, g b<x),pyeG. Looking
at the clause about domain(G) in the definition of recursion condition, we see that
g }<x is data under x, which implies <x<domain(g). Likewise, <x<domain(g’).
Now the induction hypothesis yields (via extellsionality) g M<x = g’} <x. Finally,
the assumption that G is a function gives p = p’, as desired.

In view of extensionality, the lemma immediately implies the uniqueness of the
desired f; it remains therefore only to prove existence. The lemma also implies that
the union g of any family I' of good functions is a function (i.e. VheTlI
(h is good) — (U I') is a function, where I'e 22 (Xx Y)). Also, by the argument
in the proof of the lemma, we have that, if 4 is good and x e domain(4), then
<xcdomain(h), so, if I' is a family of good functions, 2 e I', and x € domain (%),
then (U I') b =<x = h}<x. It then follows easily that {J I' is good.

Let I': = {hlh is good} and f: = (J I'. By the above, fis good, and it remains
to prove only that b= domain( f), i.e., Yx e b dp{x, p) € f. We prove this by induc-
tion on x. So suppose x € b and, for all y e <x, 3g{y, ¢ €f. Of course ¢ is unique
as f is a function. So f} <x is data under x. Since G is a recursion condition, there
is p such that <(x,f[‘ <x>,p>e G.Then clearly fu {{x, pd>} is good, hencee I,
hence =f. So {x,pyef. )

It should be mentioned that, instead of building f up out of smaller good func-
tion, one can also obtain f from above, as the intersection

N {re?(Xx Y)|Vx e bVpVh[hsr alx, h),p> €G> {x,pder]}.

The proof that this gives an f as required is similar to the classical one [14], though
some care is needed to avoid using the law of the excluded middle. This approach
was used by Mikkelsen [25] in proving a topos version of the recursion theorem;
his proof used a “translation” into the standard language of category theory (com-
mutative diagrams, etc.) rather than the simpler translation into the internal
language.

Appendix to Section 4. More on well-foundedness. This appendix contains results
on well-foundedness which seem to be worth mentioning although they are not
needed for the applications to free algebras and coequalizers.

We begin by explaining why the classical “minimal element” definition of well-
foundedness is inappropriate when the logic is intuitionistic rather than classical.
(It is, of course, equivalent to the definition we have used, in the presence of classical
logic.) We shall show that, to the extent that this minimal element definition is satis-
fied in a non-trivial way, the logic must be classical. The argument is essentially the
same as one given by Myhill [28]. Retaining our conventions about the sorts of <,
a, b, etc., we define

< satisfies the minimality condition on b: = Va [acbadxxea

= Ax(xean 1y ean y<x))]. .
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PROPOSITION. F [ satisfies the minimality condition on bAxeb A yebax<y]
- (VzeQ)[zv z].

Proof. Working in the internal logic, let <, &, x,  be as in the hypothesis,

and let zeQ. Apply the minimality condition with

a={veX| v=pviv="x)Arz]}.
Then a<b because x € bA yeb. Further, 3xx e e because ye a So, by the mini-
mality condition, let #¢X be such that uea A 13v(v ez Av<u). By definition
of u, uea leads to two cases.

Case 1. u = yp. Then Tdv(veanv<u) and x<y yield “1(x e a). But, by
definition of @, z — (x € a), so we have "z

Case 2. (u = x) Az Therefore z.

Thus, we have zv 7z, B

Our goal in the remainder of this appendix is to show that well-foundedness
is exactly the right hypothesis for the justification of recursive definitions. We shall
show that the uniqueness -of functions satisfying recursion conditions implies the
well-foundedness of <. This is the internal form of a result of Mikkelsen [25]. (In
the appendix to the next section, we shall obtain the same conclusion from the
hypothesis of existence of such functions. Thus, well-foundedness is nccessary for
both the existence part and the uniqueness, part of the theorem of Section 4.) For
simplicity, we shall consider well-foundedness and recursion with respect to < on
ally; it would be straightforward to do the same with an arbitrary be2(X). We
shall also work within the internal logic in most of the discussion, although we state
the main results in the meta-theory (i.e. with F in front).

We begin by showing that the classical notion of the well-founded part of
a relation still makes sense in the present intuitionistic context.

DerFNITION. x € the well-founded part of <: = Ja[xeanVy ea(<yCa)A
A< is well-founded on. a].

ProvosiTioN. (i) F< is well-founded on the well-founded part of <.

(i) F x e the well-founded part of < & (<x)< the well-founded part of <.

Proof. (i) Write w for the well-founded part of <. Assume ¢ is < inductive
on w, and let xew; we must prove xee. As xew, fix a such that xea and
(Vyea)<y<aand < is well-founded on a. It will suffice to show that ¢ is < induc-
tive on a, for then well-foundedness on a gives x e ¢ as desired. So fix yea and
assume Vzea(z<y — zec); we must show yec. As ¢ is < inductive on w, it
suffices to show Yz e w(z<p — z € ¢). But if z<y, then z € a by choice of 4, so the
hypothesis Vz e a(z< » = zec) applies and yields z e ¢ as desired.

(ii) The 1mpllcat10n from left to right is an immediate consequence of the de-
finition of the 'well-founded part w ‘of <. For ‘the converse, we assume (<x)Sw,
and show that w U {x} is an'a of the sort required in the definition of x € w. The only
non-trivial verification is the well-foundedness of < on w U {x}. So suppose ¢
is < inductive on w U {x}. Then, in virtue of the léft-to-right part of (i), c is also
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< inductive on w. By (i), w<c. In particular, <x<c since <x<Sw. By inductiveness
of ¢, we infer xec. So wu {x}cc. B
COROLLARY. F The well-founded part of < is the largest weP(X) such that
(Vxew)<xcw and < is well-founded on' w. B
COROLLARY. < is well-founded on ally = the well-founded part of < = ally. B
THEOREM. k-~ is well-founded on ally <> VG e P(Xx P (X x xS, f ¢
e P(XxQ) [G is a recursion condition Af satisfies GAf' satisfies G — f = f'].
Proof. The left-to-right implication is just the uniqueness part of the theorem
of Section 4. For the converse, apply the assumption with G, f, f defined as follows.

{x,hy,ppeG = h is data under xAp =g (Yye <x)(y, trued eh,
x,pref=p. .
{x,p) ef’ =p =g (xethe well-founded part of <).

It is easy to verify that G is a recursion condition satisfied by both fand f” (use (ii) of
the preceding proposition and the fact that p =, true = p). So f = f”, which means,
since Vx{x, true) ef, that Vx[true =, (x € the well-founded part of <)]. So the
well-founded part of < = ally which, by the last corollary, is the desired con-
clusion. B

5. Trees and words. As we indicated in Section 1, we shall construct the initial
algebra for the variety defined by 7: I — J as an algebra of words, where a word
is a function into J from a tree of finite sequences of elements of I. The purpose
of this section is to formulate this notion of word in the internal logic and to prove
a few properties of words. In the next section we shall define a 7-algebra structure
on the object of words and show that we thereby obtain the initial t-algebra.

Let & be a topos with a natural numbers object N. We recall that the definition
of a natural numbers object requires the existence of morphisms 1 < V-3 Nsuch

that for any 1 e X 7 X there is a unique g: IV — X making the diagram

O/N———s-—>N
b
\ g g
’ X — X

commute. This definition, in the presence of the cartesian closed structure of & lets
us define morphisms in & corresponding to those functions and predicates on the
natural numbers which, in ordinary (set-based) ‘arithmetic, would be defined by

primitive recursion. In particular, we have +, *: Nx N — N and the order relation

<:NxN-Q (defined by the recursion ~1(x<0), x<Sy«> (x<yVx = ).
Furthermore, the uniqueness clause in the definition of N permits proofs by ordinary
induction in the internal logic;

EVaeP(N)[DeanVxeaSxea - a = ally];
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and
Fxw {yeN| Sy = x} is well-founded on ally .

Induction allows us to prove the basic laws of arithmetic, including the ccmmutative,
associative, and distributive laws for + and - and (despite the possibly non-Boolean
logic of &)
FVx,yeN[x<yvx =yvy<x] (where x<y means <(x,y))
and
EVYxeN[x =0vIyx = Sy

which will be important in justifying some proofs by cases later on. For a more
detailed treatment of natural number objects, see Chapter 6 of [17].

Our chief use for IV is in the following definitions of the notions of a finite se-
quence from an object I and the length of such a sequence.

length: = {{x, npeP(NxI)xNlx is a function Adomain(x) = {peN|p<n}}.
Note that F length, is a function.
Seq;: = domain(length,) .

The following discussion takes place within the internal logic. It is phrased in
an informal style that approximates ordinary mathematical usage, but it could easily
be formalized in the internal logic with the definitions already introduced.

We write ¢ for {xeNxI|false} and observe ¢ eSeq and length(¢) =0

(.e. {},0)>elength). For icl, we write (i) for {0,iy}, so i) eSeq and
length ({i>) = 1(: = S(0)). For x,y e Seq, we define the concatenation

x"y: = x U {length(®) +p, I>I<p, > €3},

and, with the help of VqeN[g<a+b > g<avIpeN(p<bArg = a+p)], we find
that x"y € Seq and length (x"y) = length(x)+length(y). From associativity of +,
we obtain associativity of ~, and clearly ¢ is a two-sided unit for ". (By externalization,
we obtain a monoid structure 1 - [Seq], [Seq] x [Seq] = [Seq] and a morphism
I 3 [Seq]. In fact, [Seq] is the free monoid on I constructed in [23]. An alternate
description of [Seq] is ZyIT,dgl, where R = [{x,y>eNxN|x<y] and where

Vi R+ NxN 2 N is the generic natural number.) Notice also that, for x € Seq,

length (x) =0~ x = ¢,
and .
length (x) = S, — dy e SeqFieI[length(y) = nax =y {HlA

A Ay e SeqIieIflength(y) = nax = i y].

The first of these is obvious. For the second, to get x = y"(i) take i = x(n) and
set y = x Mplp<n}; to get x = <id"y, take i = x(0) and

y = {(p, 2y eNxI|{S(p), z) € x}.
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We call s(e PP (NxI)) a tree iff s Seq and Vx e SeqViel [x"(i) es —» xes].
(This defines a term Trese PPP(NxI).) If s is a tree, it follows by induction on
length(y) that Vx, ye Seq [x yes—xesl A tree s is well-founded 1ir the relation
Extensions defined by

x € Extensions(y): = Jielx = y ()

is well-founded on s. (Note that longer sequences are “lower” with respéct to Exten-
sions. Also note that no harm results from the lack of transitivity of Extensions.)

Until now, we have used only the domain 7 of the given morphism ©: I — J
relative to which we wish to construct an initial algebra. At this point, t.and J enter
the picture. We call we2 (P (N x 1) x.J) a word (with respect to ) iff w is a leIlCtIOI]
and domain (w) is a well-founded tree s such that ¢ es and

VxeSeqViel[x (ides « {x, Ty ew] .

T, ‘.,:Q’}
e

The reader should convince himself that this notion of word agrées, when' & is-the
topos of sets, with the notion presented in Section 1. The term

Words ePP(P(NxI)xJ)

defined ‘here. will yield, by externalization; the underlying object [Words] of the
initial t-algebra.

For any word w, we define the principal operator of w to be w(d). If i cl and 'c(z)
is the principal operator of w, the i-constituent of w. is defined to be

HERMCOENDITR
The constituent list of w is the function whose domain is {iel] ©()) = w(¢)} and

whose value at such an i is the /-constituent of w."The range of this constituent list
(the set of all constituents of w) will be written Constituent (w).

PROPOSITION 1 Ifwis a word and ©(i) = w(¢), . then the i-constituent of w is
also a word.

Proof. Let uw= {<x, q)|<(1> x,gyewh be the i-constituent of w, lat
s = domain(w), and let 7 = domain(u). Soz = {x[¢i>"x ea} Clearly u is a function.
Since (¢, 7(i)> € w by assumptlon the fact that w is a word implies ¢"¢/> &'s, s0
@ pes (as ¢ is the unit for 7) and therefore $ et. Also, for any ael, x & Seq,

xayet « S "xades
o L x 1@))ew
@)y e,
All that remains to be shown i is that ¢ is'a well-founded tree. That it is a tree is

immediate, since s is one(and " is assoclatlvc) To prove well-foundedness suppose’
e<t is Extensions inductive on 7. Let: ‘

¢ ={g} U {{&> x| xeSeqa(a=i—xee)}.
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(Intuitively, it seems natural to take {¢} U {<> x| xee} U [Kad> x| a # inx e Seq},
but, in the absence of the law of the excluded middle, this alternate definition seems
not to work in the argument that follows. Of course the two formulations are
classically equivalent.) ‘We claim that e’ is Extensions inductive on s.

To prove the claim, suppose y € s and, for every zes n Extensions(y), ze ¢'.
By definition of Extensions, this means that, for all bel, if y™(b> e s then y(byee
We must show y € ¢’, which is clear if length(y) = 0 (as then y = ¢ e ¢'), so we may
assume (by one of the properties of natural numbers mentioned earlier) that
length(y) = S(n) for some n, so y = {ad"x for some ael and some x € Seq. By
definition of ¢, wlnt we must prove is ¢ = [ - xee, so let us assume. ¢ = i. As
y = xes, we have x €t. Also, for any bel we have the chain of implications

x et =" by = (D x"(bYes
= by = (> x by e e
—x{bYee.
But e is Extensions'inductive on 7, so x & e as desired. This completes the proof of
the claim.
Since Extensions is well-founded on s (because w is a word), the claim implies
e'2s. Thus, for any x e Seq, ‘
xet o () xes
= D xee
“ xee,
so t<e. This completes the proof that ¢ is well-founded. H
COROLLARY. If w is a word and z € domain(w) then

wez = {(x, 9| {2 x, g) ew}
is also a word. :

Proof. We use induction on length (2). If length (z) = 0 then Z x = d:"x = Xx,
80 w#z = w, a word. Now suppose length(z) = Sn. Then z = y"¢i> for some
y € domain (w) (because domain (w) is a tree) and some i¢Z. By induction hypothesis,
w y is a word. Also, because w is a word, it follows from 7> = ze domain (w)
that (y,t(i)>ew, so {(p,t()) ew*y. Now the proposition tells us that the
i-constituent of w * y is a word, and it is easy to check that this constituent is pre-
cisely w oz, H .

Recall that, for any word w,

Constituent (w) = {u|(Aie[{$, (i)) € wAu is the i-constituent of w]} .

PROPOSITION 2. Constituent is well-founded on Words.

Proofl. Let a<Words be Constituent inductive on Words, and let w be any
word; we must prove wea. Let e = {zedomain (w)| w#zea}; we must prove
¢ ee Since ¢edomain (w) and Extensions is well-founded on domain (w), it
suffices to prove that e is Extensions inductive on domain(w). So suppose
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z e domain (w) and VieJ{z (i) € domain (W) — z"(i> € e]; we must prove zee,
i.e., w* z e a. For this it suffices, since ¢ is Constituent inductive on Words and
w*z is a word, to show that every constituent z of w#z is in @. So suppose
{¢,t(i)) ew xz and u is the i-constituent of w*z The condition on (i) means
{z,1(0)) € w. As wis a word, it follows that z" (i) € domain (w). By our supposition
about z, we infer z (i) € e, 50 w * (27 {i>) € a. But, as remarked in the proof of the
last corollary, w+ (z (i) = u. B

PROPOSITION 3. For every jeJ and every function A with domain {iel| (i) = j}
and range < Words, there is a unique word w whose principal operator is j and whose
constituent list is A

Proof. It is fairly clear that the only w that could satisfy the conditions is

w={{$, 10} v {{B %, ] ©() = jalx, gy e A0} -
We need only check that this w is a word. Its domain is

s ={¢} U {K>"x| (i) = jAx € domain (A(D))} .
To show that s is a tree, suppose ¥ (a) es. As y"<a> cannot equal ¢, it must equal
{iY"x for some i with (i) = j and some x e domain (l(z)) If length () = 0, then
y=¢es so we may assume length (3) = Sn, y = {(id"z, and x = z “Lad. As
A{i) is a word, we deduce from x e domain (A())) that z € domain (1(2)), so yes.
This completes the proof that s is a tree.

To show that s is well-founded, let e=d be Extensions inductive on s. Tempor-
arily fix an arbitrary { with () = j, and set e = {x| <i>"x & €}. We shall show that ¢}
is Extensions inductive on domain ((Z)). Suppose that x e domain (A(3)) and, for
each a such that x"{a» e domain (/1 (©)), we have x aye ei In other words, (/)" xes
and, for each a such that (i} x"¢a)d &5, we have D xayee. By the assumed
inductiveness of e, we have (i>"x ce, 50 x ¢}, as desired, Since A7) is a word, its
domain is well-founded, so domain (/l(z))cei Since this holds for every such i,
we have the implication

(i) = jAx e domain (1()) » i) xee.
This shows that every element of the second set in the union defining s belongs to e,
In particular, Yiel[{i} € s — (i) € e], which implies ¢ & ¢ because e is inductive.
This completes the proof that sce, so s is well-founded.
Finally, we must verify that

Vx e Seq Viel[x"¢iy € domain (w) «» (x, 1) e w] .
Suppose first that length (x) =0, so x = ¢ and x"(i = ¢i>. Then,
x"(i) € domain (w) < <i>"¢ e domain (w)
« 7(i) = ja¢ & domain (A(2)) (by definition of w)
« 1(i) = j (as A(i) is a word)
<> ¢, t()) e w (as is the unique value of the function w

at ¢)

e xT@ew,
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so we have desired conclusion in this case. It remains to consider the case
length (x) = S(n). Then x = {a>"y for some ael and some ye&Seq. We have

x7<iy € domain (W) < 7(a) = jA ¥7<i) e domain (A(@) (by definition of w)
<« 1(d) —]/\(y,’t(l)) €4(a) (as A(a) is a word)
o a7y, ©({)>ew (by definition of w)
« {x,t()>ew,

which cornpletcs the proof that w is a word. B

Appendix to Section 5. Still more on well-foundedness.

There are results about well-founded trees analogous to the results of Section 5
about words. The simplest way to obtain these is to delete everything in Section 5
that réfers to the values of the (functions that are) words, keeping only their domains.
In the resulting arguments, words are replaced with rooted well-founded trees, where
a tree 5 is rooted if ¢ € 5. The i-constituent of such a tree s is {x] <> xes}ifGdes
and undefined otherwise. (The requirement (i) es corresponds to (i) = w(¢)
in the earlier discussion.) The analogs of the propositions of Section 5 assert that
all the constituents of a rooted well-founded treé are also rooted well-founded trees,
that Constituent is a well-founded relation on rooted well-founded trees, and that,
every function 1 with domain ¢2(I) and with rooted well-founded trees as values
is the constituent list of a unique rooted well-founded tree. These results can also
be obtained as consequences rather than analogs of the results in Section 5 by obser-
ving that rooted well-founded trees are in canonical (constituent-preserving) one
to one correspondence with words relative to

T [(x, 0 eIx P(I)| x eyl IxPA) 2 2.

We leave the details of this approach to the reader.

Rooted well-founded trees can be used as a substitute for the ordinal numbers
of classical set theory. Although direct analogs of ordinal numbers can be defined
in topoi, they do not seem to fulfill their classical roles in the absence of classical
logic and the axiom of replacement. To illustrate how trees can be used to fulfill
these roles, we prove the following theorem, which complements the results of the
appendix to Section 4.

TueOREM. Let < € P(X)* and let RAT be the object of rooted well-founded
trees over X. If every recursion condition G from X to RWT is satisfied by some f,
then < is well-founded.

Proof. Define

{<<x Iz>,s>] h is data under xAs is the (unique) rooted
well-founded tree with constituent list A} .

Then G is a recursion condition; suppose f is a function satisfying it. Thus, if y<x
then f'(p) is a constituent (specifically the y-constituent) of f(x). Since the consti-
tuent relation is well-founded, we are reduced to proving the following lemma.
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Levua. Suppose that f is a function from X to X', that < and X' are relations
on X, X' respectively, that x<y —f(x)<'f(y), and .that <’ is well-founded,
Then < is well-founded.

Proof. Let e be < inductive and let

¢ = {zeX'| VxeX[f(x) =z xee]}.
Tt suffices to show e’ is <’ inductive, for then Yze X’ z € ¢’ and therefore VxeX x e ¢’
as desired. So let ze X" and assume Vue X' [u<'z — uee']l. We wish to show ze e/,
so we consider an arbitrary xeX with f(x) =z, and we wish to show xee.
Since e is < inductive, it suffices to show that y e e for every ye X with y<x. But
y<x implies f(y)<f(x) = z, so f(3) € ¢ by assumption on z, so y € e. This proves
the lemma and thus also the theorem. E

We close this appendix with the observation that well foundedness of rooted
trees, though apparently only a special case of well-foundedness, is in fact “equivalent”
to the general case. Specifically, we can define for any <cﬂ(X )%, a rooted tree of
decreasing sequences.

Decr(<): = {v] veSeqA(YneN)[Sn e domain (v) -+ v(Sn)<v()]} .
‘PROPOSITION. < is well-founded if and only if Decr(<) is well-founded.
Proof sketch, We only indicate how to transform a < inductive set e into an

inductive subset e’ of Decr (<) and vice versa; the detailed verifications are left to

the reader. Given e, set

: el = { ¢} v

Conversely, given ', set
e = {x| YveSeqVneN[(length (v) = Se)Av(m) =x) »vee]}. B

6. The initial algebra. We continue to work in the internal logic. By virtue of
Proposition 3 of Section 5,

{v| AneN[length (v) = Sm)Av(m) ee]}.

ur= {<( . Ay, w>| w is a word with principal connective j and
‘ ‘ constituent list A}
is a function with domain

{<j, 25| 4 is a function with domain {iel| ©(i) =j} and range & Words}.

Let F = [Words]. The externalization of the domain of u is [domain ()] = X, II,4,F,
by the theorem in Section 3. Externalizing z we get a morphism, which we still call g,
from 2, IT, A, F to F, in other words a t-algebra structure on F. The purpose of this
section is to prove that (F, g) is the initial z-algebra, thereby completing the con-
struction of free algebras begun in Section 1.

Let (4, ¥) be any t-algebra. Recall from Section 3 that homomorphisms from
(F, u) to (4, v) are the externalizations of closed terms ocs.@(Fx A) such that it is
valid that

(1) « is a function A domain (@) = all, AVjeJVYmeP(IxF)YweF .
‘ . K<y my, wyep -, aomy, a(w)y e Graph ()] .
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And two homomorphisms are equal if and only if the corresponding terms satisfy
ko = o'. Using the definitions of F and p, we see (in the internal logic) that «’s
satisfying (1) correspond canonically to s (s (2 (2 (N x I)xJ)x 4)} such that

2) pis a function A domain () = Words AV}, m) € domain (1) Yw € Words

[\<1, my, w> eu— <(J, omy, B(w)> e Graph (v)] .

Since every word has a (unique) principal operator and constituent list, (2) is equi-
valent to

3) Ywe Words [B(w) = v(<principal connective of 1,
(B} Constituent (w)) o (constituent list of w)))] .

But (3) says that f satisfies a certain recursion condition with respect to Constituent,
which is well-founded on Words by Proposition 2 of Section 5. Therefore, there is
a unique such f. This completes the proof that (F, u) is the initial 7-algebra.

1t is perhaps worth pointing out that the close connection between initial algebras
and well-foundedness is not merely an artifact of our construction but is inherent
in the situation. Indeed, by combining our construction of initial algebras with the
remarks in the appendix to Section 5 about words with respect to

H<x, 10 elx 2D x ey}l IxPU) 7 P,

we see that the object of well-founded rooted trees on I is (canonically isomorphic
to) the initial algebra for this v. We leave to the reader the task of describing the
structure of trees in terms of the algebra structure. Note, incidentally, that ¢ could
be described as having exactly one g-ary operation symbol for every g=I.

7. Coequalizers. In this section, we show that, in a Boolean topos with natural
numbers object, coequalizers of t-algebras exist, and can be obtained by a word
construction similar to the construction of free algebras. Rosebrugh [34] has shown
the existence of coequalizers of 7-algebras in any topos with natural numbers object
that is Grothendieck over a topos satisfying the axiom of choice. In an appendix
to this section, we shall show that Rosebrugh’s result does not subsume ours; it
is obvious that ours  does not subsume his, since there are many non-Boolean
topoi Grothendieck over the topos of sets. As far as I know, it may be the case that
coequalizers of z-algebras exist in all topoi with natural numbers objects.

As in ordinary set-based universal algebra, it is convenient to reduce the con-
struction of coequalizers to a special case, the construction of quotients of congruence
relations. Let 7: [ - J, and let (4, 1) be a 7-algebra. Then A x 4 has a t-algebra
structure p? which can be desctibed in either of the following ways. If u: 2, IT, A A=A
corresponds, under the adjunction X; 4 4y, to fi: II.4;4 — A;4, then p? corres-
ponds, under the same adjunction, to

(IT, 4, A) % (IT, 4, 4) ~ A(Ax d),

> (A, A) % (4,4)

axp

I A(Ax A) =
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where the isomorphisms are due to the existence of left adjoints for IT,, 4;, and 4,.

Alternately, F p3((j, A9) = u((y 190 D), (<G, 2% o D).
We define, in the internal logic,

Equivalence (re (A x 4)): = Vxed[r(x, )] AVx, yed[r(c, ») = r(y, x)] A
AYx,y, zedlr(x, Y ar(y, 2) = r(x, 2)],
and
Congruence (r): = Equivalence () A

AVjeI VAVZ[Yiel(e(@) = j = r(A@), X6))) = r(u(<j, A, (s AD)] -

We call a subobject R = 4 x 4 an equivalence (resp. congruence) relation on A iff
the adjoint r: 1 — P (4 x A) of its classifying map 4 x4 — Q satisfies k Equiv-
alence (r) (resp. k Congruence (r)). Note that a congruence is simply an equivalence
that is closed under p?, i.e. defines a subalgebra of (4 x 4, u?); we often write u? for
the restriction of y* to X,II.4,R. A congruence R is equipped with two canonical
1st
homomorphisms R > 4 x 4 7 A, whose t-algebra coequalizer, if it exists, is called
znd
the quotient of 4 by R; we use the notation A//R (or, more precisely, (4, u)//R)
for this quotient, reserving the more common notation 4/R for the “set theoretic™
quotient, i, e. the coequalizer of R I 4 in & rather than in the category of t-algebras.
It is easy to verify, in the internal logic, that the intersection of any family of
congruences is again a congruence and that the kernel of any homomorphism
o: (4, u) — (B,v), defined by

. kernel (@) = {{x, 3D ed x A a(x) = ()},

I
is a congruence. Now let (X, g) (4, 1) be a pair of t-algebra homomorphisms.

g

A homomorphism o: (4, p) — (B, v) coequalizes these if and only if its kernel in-
cludes the image of (f, g} in Axd, i.e. {zedxA| @xeX)z = <{f(x), gx)pn}.
But this is, by the preceding remarks, the same as saying that the kernel of « includes
the intersection r&# (A4 x 4) of all congruences that include this image, i.e. that o
coequalizes the canonical pair of morphisms [r] I A. Thus, the coequalizer of f
and g is the same as the quotient .4//[r], in the sense that if either exists then so does
the other and they are the same. Therefore, in constructing cocqualizers of ¢- algebras,
we shall confine our attention to constructing quotients by congruence relations.

It was pointed out to me by Paré (and it is hinted at in [18, 30, 34]) that the
usual construction of a quotient algebra 4//R, by transferring the algebra structure
from 4 to A/R, fails in general. To define the value of the quotient algebra structure fi
at {j, Ay, where A: t7*{j} = A4/R, one takes an arbitrary A’: t7*{j} -+ 4 whose
composite with the projection n: 4 — 4/R is 1, and one sets BT, AD) = mu({j, A'D).
It does not matter which A’ one takes, since R is a congruence, but one must have
at least one such 1’ available, which involves the axiom of choice. The following
proposition shows that there is no way to circumvent this use of the axiom of choice.
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THEOREM. Suppose & is a topos such that, for every t: I~ J in &, every z-algebra
(A, 1), and every congruence relation R>> Ax A, the quotient t-algebra AJ|R exists.
and the canonical homomorphism 0: A — AJ|R is an epimorphism of objects in &.
Then & satisfies the internal axiom of choice. :

Remarks. It will be convenient to take the internal axiom of choice in the form
that says, for every epimorphism p: ¥ - X,

F3fe(Xx Y) [fis a function Adomain (f) = ally A (YxeX)p(f(x) = x].

Other internal formulations of the axiom of choice are equivalent to this one (as
are some external formulations, such as the axiom (IC) of [17], p. 143).

Our proof of the theorem will in fact use a weaker hypothesis than is stated.
Instead of assuming that A4//R always exists and  is always epi, we need only know
that 6 is epi whenever 4//R happens to exist.

Proof of theorem. Let p: ¥ — X be an epimorphism. Let ¢, and g, be the
two projections of Y'x Y to Y; then p is their coequalizer. For any t: I — J, the

x

diagram of free t-algebras

Fa1)
F(Yx Y) 2 F(Y) — F(X)
X F(q2) F(p)

is also a coequalizer since F is a left adjoint. By assumption, F(p) is epi. It follows
easily from our construction of free algebras that F(p) is the map that composes
any word in F(Y) (a function into J+Y) with id;+p: J+ Y = J+ X to obtain
a word in F(X). (Just check that this composition defines a homomorphism of
7-algebras mapping the free generators Y of F(Y) correctly.)

Let us specialize to the case where  is the unique map X — 1. (We consider
algebras with a single X-ary operation.) Set

wi = {(g, o} u x>, ) xe X}
then Fw is a word with respect to X — 1»>» 1+ X. Since F(p) is epi, we have

Eduuw is a word with respect to X — 1> 14+ Y A(id; +p) o u = w].

But then, working in the internal logic, we have, for any such wu, domain (z)
= domain (w) = {¢} U {¢xD] xeX}, and (VxeX)pu({x))) = w({xd) = x, so
{x, u({xy)y] xeX} is a choice function for p. B

It should be pointed out that the converse of the theorem also holds. If the
internal axiom of choice holds in & then the usual construction of the algebra structure
on A/R, as outlined just before the theorem, can be carried out in the internal logic.
Kock’s principle then gives an actual (external) algebra structure, and it is straight-
forward to verify that the resulting algebra is the desired quotient.

To construct coequalizers in the absence of the axiom of choice, we begin with
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AR and define as much as we can of an algebra structure in the usual way. But
when we have a : 7 1{j} — 4/R that cannot be lifted to a function into 4, we
freely adjoin a new element to serve as (<, A)). This is the idea behind the following
construction.

THEOREM. Let ©: I — J be a morphism in a Boolean topos & with natural numbers
object. The category of t-algebras has coequalizers.

Proof. Let (4,u) be a t-algebra and R Ax A4 a congruence on it. Let
n: A~ AJR be the projection to the set-theoretic quotient, and construct the free
t-algebra F on 4/R. By Section 6 (and Section 1), we may view F as [Words], where
the term Words is defined with respect to ©': I — J>>J+(4/R).

Working in the internal logic, call a word (with respect to t') a redex if it has
the form {{¢,/>} U {Ki, n(f )))| ©(i) =/} for some j¢J and some function f with
domain {iel| ©(i) =j} and values in 4. For such a redex, define its reduct to be
{<q5,n(,u((j, I )))>}; since R is a congruence, every redex has just one reduct.
(Intuitively, a redex is a word for which a value in 4/R can be defined by the usual
procedure described before, and its reduct is that value, considered as a word.)
By induction with respect to Constituent, define a reduced word to be one which is
not a redex and all of whose constituents are reduced. (Intuitively, w is reduced iff it
includes no redex.) For j&J and A a function from ™ *{j} to reduced words, define

the unique word w with principal connective j and constituent

v({j, Ap) = <list 4, if this word is reduced (i.e. if it is not a redex, since

its constituents are reduced), and its reduct otherwise.
Because & is a Boolean topos, this defines v at every such pair {j, 1>, so, by ex-
ternalizing, we get a t-algebra (B,v) where B = [reduced words] and where
v: Z;I1,4,B — B is the externalization of the term v defined above.

We define a morphism 0: 4 — B by externalizing 0: = {<a, Ko, 7r('a)>}>| asA}.
The reduct clause in the definition of v makes 0 a homomorphism of 7-algebras.
Clearly F aRa’ — n(a) = n(a’) - 0(a) = 0(c’). Finally, suppose {B’,v'> is another
T-algebra and 0': 4 —» B’ is a homomorphism such that k aRa’ — 0'(a) = 0'(a').
We must prove that there is a unique homomorphism /#: B — B’ such that
0" = I6. By Kock’s principle, it suffices to prove this in the internal logic, which we
now proceed to do. For each reduced word w, we must define /1 (w) e.B’. If the principal
connective of w is some 7(a)sA/R, then w = {{b, n(a)>} = 0(a), s0 we must sct
h(w) = hf(a) = 0'(a); this is well-defined by our assumption on ¢’. On the other
hand, if w has principal connective j&J and constituent list 2, then w = v({Jj, A))
and, in order that 2 be a homomorphism, we must set h(w) = V((/’ ,hel)). By
recursion with respect to Constituent, there is a unique such /4. This proves the uni-
queness of 2 and almost proves existence; we must still check the homomorphism
property A(v({j, A3)) = v'(j, h o 1) in the case where v{j, 2> is not the word w
‘with principal connective j and constituent list 1 but its reduct. In this case, we have
A= 0o f for some function f from t~1{;} into 4, and v({j, A)) = o m(u(s f }))>.
Therefore
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I

h(v({J, A)) = @'(u(<f, /) by definition of 1
=V ({j, 8 of>) as # is a homomorphism

=V({j,hed)) as O cf=holof=hol). B

COROLLARY. For any t: I — J in a Boolean topos & with natural numbers object,
the category of t-algebras is internally cocomplete, in the sense of Paré and Schu-
macher [30].

Proof. Since we have already constructed coequalizers, it suffices, by 1II. 3.6
of [30], to construct internally-indexed coproducts. Suppose we have an internal
family of 7-algebras (4, u,) indexed by an object P of &. In other words, we have
a dp(t)-algebra (4, u) in &/P. To form the coproduct z-algebra in &, divide the
free algebra F on XpA4 by the smallest congruence making the canonical injection
of each Ap a t-homomorphism (more precisely, making the canonical injection
A — ApF a Ap(7)-algebra homomorphism). B

A few words are in order about our use of Booleanness. This assumption was
needed because we cut down the algebra of words to the algebra of reduced words,
essentially throwing away all redexes, and then needed to be able to decide whether
the result of an operation is a redex. It is, of course, more natural not to throw away
redexes but to identify them with their reducts, thus obtaining a quotient, rather than
a subset, of the set of words. Unfortunately, putting a t-algebra structure on such
a quotient is a particular case of the theorem being proved. So we arrive at a vicious
circle. I do not know whether one can break the circle and show that coequalizers
of ¢-algebras exist under no special hypotheses on & (except the existence of natural
number objects). Even if this turns out to be impossible, one might still obtain a com-
mon generalization of the present result and Rosebrugh’s [34] by requiring only
that & be Grothendieck over a Boolean topos.

Appendix to Section 7. In this appendix we show that not every Boolean topos
is Grothendieck over a topos satisfying the axiom of choice; thus, the main theorem
of Section 7 is not covered by the theorem of Rosebrugh [34]. In fact, we show that
the “best” Boolean topoi without choice, namely the well-pointed ones (essentially
models of set theory [11, 26]) can be used as the required example.

PROPOSITION. Let f: & — % be d geometric morphism, where & is well-pointed
and F satisfies the axiom of choice. Then & also satisfies the axiom of choice.

Proof. It'is well-known [11] that well-pointedness is equivalent to the con-
junction of three conditions: Booleanness, two-valuedness (0 and 1 are the only
subobjects of 1), and supports (epimorphisms to subobjects of 1) split. It therefore
implies that subobjects of 1 generate [17, Lemma 5.33].

Let & e & = F be the factorization of f as a surjection g followed by an
inclusion [17, Section 4.1]. We claim first that & inherits the axiom of choice from £
Indeed, let o A -— B be an epimorphism in &. Its image under 7, need not be epi,
but we consider its epi-mono factorization

i)z ig(A) —;,_’J e iy(B)

5 — Fundamenta Mathematicae CXVII
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Since i* preserves both epimorphisms and monomorphisms, and since 7 is an inclusion,
we have the following factorization of «:

A &2 i*i(A) o

P*(J) i;U)i*[*('B) =~ B,
where the isomorphisms are given by the counit of the adjunction i* 4 i,.. Since « is
epi, i*(y) must be iso. And the axiom of choice in & guarantees that the epimor-
phism f is split. It follows that /*(8) and therefore o are split. This completes the
proof of the axiom of choice in &. Two thirds of well-pointedness of & follows,
for the axiom of choice implies that supports split (trivially) and that & is Boolean
(by Diaconescu’s theorem [7]). We next show that . inherits the remaining third
of well-pointedness, namely two-valuedness, from &. Indeed, suppose U is a sub-
object of 1 in &. Since & is two-valued, one of 0> U and U/>s1 must be sent to an
isomorphism by ¢*, and must therefore already be an isomorphism since q is
a surjection, :

We have shown that & is a well-pointed topos satisfying the axiom of choice.
It remains only to point out that any such topos can play the role of the topos of
sets in Theorem 5.39 of [17], so &, being a Boolean & -topos where subobjects
of 1 generate, must satisfy the axiom. of choice, H

8. Free algebras subject to identities. We turn-to the study of varieties whose
definition involves identities. Formally, an identity for c-algebras is a triple
V., w, w"), usually written w = w'(V'), where ¥ is a set (of “variables”) and w and w’
are words in the free z-algebra F(V). A t-algebra (4, 1) satisfies this identity if,
for every function from ¥ into 4, the induced homomorphism f: F(V) — 4 has
J(w)=f(w). This definition makes sense in any topos, and so does its extension
to an (internally) indexed family of identities and an algebra satisfying such a family.
In the topos of sets, it is customary to omit reference to ¥ and write an identity
simply as w = w'; this is legitimate because if V< W then any V' — A4 can be extended
to W —'4, but in other topoi the reference to ¥ is essential.

We are interested in constructing free algebras for any variety, i.e., for any r and
any family of identities. As in Section 1, we reduce the problem to constructing
initial algebras for all varieties.

This problem contains, as a special case, the, construction of coequalizers of
c-algebras. Indeed, the coequalizer of (X, p) (A4, p) may be viewed as the initial
algebra for ': I = J>J+ A subject to identitics guaranteeing that the canonical
map from 4 into the algebra is a 7-homomorphism and coequalizes the two given
maps from X to 4. The results of Section 7 therefore show that, in the absence of
the axiom of choice, we cannot comstruct the desired algebras in the usual
fashion, by starting with the initial v-algebra Ay and identifying words when forced
to do so by the identities. At best, we must expect to add new words, to serye as
values of the operations j on argument lists A that cannot be lifted to .A,. ‘

But the situation here is worse than in Section 7 in that, after we add the necessary
new words, obtaining a t-algebra 4, with a canonical homomorphism «: Ay — 4,
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the identities will force more identifications — identifications among the new words,
and possibly even among the “old” ones if there are maps ¥ — a(4,) that cannot
be factored through «. These identifications will, like the earlier ones, force the
addition of more words, requiring more identifications, requiring more words, ... ad
infinitum. The question is, can we somehow bound this infinitum. We shall show in
the next section that we cannot (provided certain large cardinal axioms are consistent
with set theory). Free algebras simply need not exist. Furthermore, the topos in
which this happens has logical properties as nice as possible except for the failure
of the axiom of choice; it is a model of Zermelo-Fraenkel set theory (ZF). In parti-
cular, in contrast to the situation in Section 7, Booleanness (or even well-pointedness)
cannot overcome the difficulties presented by the absence of the axiom of choice.

In this section, we present some positive results on existence of free algebras.
The hardest of these, Proposition 2, gives a sufficient condition in the context of ZF;
its necessity is the main result of the next section. We begin, however, with a much
simpler result for more general topoi.

PROPOSITION 1. In a topos with natural numbers object and the internal axiom
of choice, free algebras exist for any variety. '

The proof is left to the reader since it is merely the translation into the interna
logic of the familiar construction [13, 31] of such free algebras as algebras of equiv
alence classes of elements of the free t-algebras without identities.

Rosebrugh [33] has shown that the same result holds in any topos with natural
numbers object that is Grothendieck over a topos satisfying the external axiom of
choice.

From here on, we work in ZF rather than in topoi.

PROPOSITION 2. (ZF). If the regular cardinals are cofinal in the class of ordinals,
then free algebras exist for every variety. .

Proof. As remarked earlier, it suffices to construct an initial algebra for every
variety. So let a variety be given, determined by =: I — J and a set of identities
w = w'(V), where we may assume that ¥ is the same for all the identities because
we can always increase V without affecting satisfaction of the identity.

We construct a direct system of t-algebras 4, (not necessarily satisfying the
given identities) and t-homomorphisms fp,: 4, — A4, for a<f, indexed by the
ordinals. (Readers who worry that such a system is a proper class and therefore
outside the scope of ZF set theory are referred to [16] for an account of how one
can fit such notions into ZF. They may also find it reassuring that, from an appro-
priate ordinal on, all the f;, are isomorphisms.)

We begin by letting 4, be the initial v-algebra (which exists by Section 6). At
fimit ordinals A, we let 4, be the direct limit of the system of 7-algebras 4, (@<4)
with respect to the homomorphisms f3,(¢< < A). The corollary in Section 7 guaran-
tees the existence of this direct limit, but the reader should note that 4, is not in general
the direct limit of the sets A,. Finally, for a successor ordinal a+1, we let 4,.; be

“the quotient of A, by the smallest congruence R such that'for all the given identities

5%
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w = w' and all homomorphisms /: F(V) — A4,, <h(w), h(w")> € R. Let f,.,, be
the canonical homomorphism from A, t0 4,,,, and, for y<a, let £, , = fos10Suy
as required for a direct system. The results of Section 7 guarantee the existence of
A, .1, but they also show that f,.,,, though an epimorphism of t-algebras, need
not be surjective as a map of sets.

Let B be any algebra of our variety, i.e., any t-algebra satisfying the given
identities. By definition of A,, there is a unique 7-homomorphism go: Ao — B.
Its kernel X has the property stipulated in the definition of A4, that (A(w), h(w')> e K
for all identities w = w’ and all homomorphisms /i: F(V) — A,. Indeed, since
w=w is satisfied by B, goh(w) = goh(w’). So g, factors through f; o yielding
a t-homomorphism g,: 4; — B. The uniqueness of the factorization and the
uniqueness of g, combine to imply that g, is in fact the only z-homomorphism
from A; to B. Continuing in this manner, and using the universal property of direct
limits at limit stages, we find by induction on o that every 4, has a unique 7-homo-
morphism g, to B, and g,f,; = g, for all f<a. Thus, if any one of the ©-algebras 4,
satisfies the given identities and is therefore in our variety, then it will be the desired
initial algebra of the variety. (Furthermore, f3, will be an isomorphism for every
B> 0, so the construction essentially terminates once it achieves its goal.) The proof
will thus be complete once we show that some A, satisfies the identities.

For any «, the kernels R, of the homomorphisms fp,: 4, - 4, for f>a form
a non-decreasing sequence of congruence relations on 4,. Since there are only a set
of congruence relations on 4, and since no set is cofinal in the ordinals, there must
be an ordinal y>a such that R, = R, for all f>y. Write o* for the least such y,
and define a non-decreasing sequence of ordinals «; as follows.

oy = 0;

Oepy = (“5)*§ .

o, = supremum {o;|¢<A} for limit ordinals A.
To simplify notation, let us agree that a superscript & has the same meaning as a sub-
soript o5 thus, for example, /™ 4° — 4" means f, ..: A,, = A,,. The defining
property of a* guarantees that, if two elements of A° have the same image (under /%)
in some later 4" then they have the same image already in A4%*1. It follows that,
for a limit ordinal 4, every element a of the set-theoretic (not ©-algebra) direct limit
of the A%(¢ <) has a canonically chosen precursor b in some A", n<A (i.e. b maps
to a under the canonical map of 4" into the direct limit). To find b, first find the
smallest ¢ such that a has a precursor in 4°; all its precursors in 4% have the same
image in 4***, by the above, and this image serves as b. (The point of all this is to
be able to choose a specific precursor b for a without invoking the axiom of choice.)

If there is no cofinal map of I (the domain of 7) into the limit ordinal J, then the

set-theoretic direct limit 4’ of 4* (¢ <) can be equipped with a 7-algebra structure '
as follows. For any operation symbol j € J and any list of arguments g: T} - A,
let b() € A" be the canonically chosen precursor of g(i) for each ie v~ *{j}. By
the assumption on I and 1, the supremum ¢ of all the (i) is smaller than A Let
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() = £oB (), and set 1'({j, g>) equal to the image in A’ of p¥((J, c) (where ut
is the algebra structure of 4°). It is straightforward to verify that A’, with this
t-algebra structure, has the universal property of a direct limit of t-algebras, so
A =4

Now assume, in addition to the hypothesis of the preceding paragraph, that ¥V
cannot be mapped cofinally into 4. Consider any one of the given identities, say
w= w, and any map h: V- A’ = A* For each v e ¥, let b(s) € A" be the canoni-
cally chosen precursor of 2(¥). By the new assumption on ¥ and 1, the supremum &
of all the 5(v) is smaller than A. Let ¢(0) = f*Y(b(v)), so ¢: V= 4% and f*%-¢ = h.
For the homomorphism & F(V) — 4° extending ¢, we have that &(w) and &(w’),
though not necessarily equal in 4 have the same image in the next algebra Agert
of our original sequence and, a fortiori, also in A°*1. So, if k: F(V) — A% is the
homomorphism extending 7,

]‘1(w) =fl.§+1f§»l-1,55(w =fl,§+1f5+1,55(w1) = U(W') 3

Thus, to complete the proof of Proposition 2, all we need is a limit ordinal 1 into
which neither I nor ¥ can be cofinally mapped.

By Hartogs’s theorem, there is an ordinal o that admits no one-to-one map
into (1 u V); the hypothesis of the proposition provides a regular cardinal A>a.
Then I U ¥ cannot be mapped onto o or any larger ordinal, for if f were such a map.
then the function & > f71{¢} would contradict the choice of «. In particular, neither I
nor ¥ (nor even 1 U ¥) can be mapped onto a cofinal subset of 2, so 4* is the initial
algebra for our variety. B

9. Consistency of non-existence of free algebras. This section is devoted to the
proof of the converse of Proposition 2 of the preceding section.

" THEOREM. (ZF) If the regular cardinals are not cofinal in the class of all ordinals,
then there is a variety with no initial algebra.

Gitik [12] has constructed a model of ZF in which w(= %, = N) is the only
infinite regular cardinal, assuming the existence of a model of ZFC (= ZF plus the
axiom of choice) in which the strongly compact cardinals [9] are cofinal in the ordi-
nals. This construction allows us to convert our theorem into a relative consistency
result.

COROLLARY. If it is consistent with ZEC that the strongly compact cardinals are
cofinal in the ordinals, then it is consistent with ZF that there is a variety with no initial
algebra. B

To avoid notational complications, we shall prove the theorem under the stronger
hypothesis that o is the only infinite regular cardinal. This special case suffices to
yield the corollary. For the general case, one would replace the w-ary operation
in the proof below with a set of x»-ary operations, one for each regular cardinal 2.

Suppose, then, that e is the only infinite regular cardinal. Since the cofinality
of any limit ordinal is always such a cardinal, our assumption implies that every
limit ordinal is the supremum of a sequence of order type w.
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The variety which, we shall show, has no initial algebra has three operation
symbols, a 0-ary (constant) symbol 0, a unary symbol S, and an w-ary symbol sup.
Before completing the definition of the variety by specifying a set of identities, we
indicate the intended interpretation of the operation symbols to motivate the choice
of identities. We intend 0 to denote the ordinal number zero, S to denote the successor
operation on ordinals, and sup to denote the least upper bound operation on
w-sequences of ordinals. If they formed a set rather than a proper class, the ordinals
would constitute a t-algebra for the ¢ described here. The simplest way to describe
the identities we want is to say that they are all the identities, in @ or fewer variables,
that are satisfied in this interpretation. (Although satisfaction of first-order formulas
in proper classes is not definable in ZF, there is no such problem with satisfaction
of identities.) For readers who. feel uncomfortable with this definition, we give
a more explicit list of identities; other readers can skip the next paragraph except
for the notational conventions following (1).

The following identities (1) through (5) suffice to define the desired variety.
The x’s and y’s in these identities are intended to be variables taken from a fixed
.countable list. First, we have 2% identities saying that sup does not depend on the
order of its arguments nor on repetitions among them.

{xo, Xy, } = {J’Oa Yis }
(as sets of variables).

(1) sup(xg, Xq,...) = sup(yg, ¥y, ...y if

“This identity allows us to unambiguously write sup Q, for any nonempty countable
set @, to mean sup(qq, 4, ...) where the ¢’s are an enumeration of Q in any order
(possibly with repetitions). In the following identities, X and ¥ stand for {x,, x;, ...}
and {yq, ¥y, ...} or subsets thereof

2 sup(X v {sup(Xu ¥)}) =sup(Xu ¥),

3)  sup(X u {SGup(X U Y)}) = S(sup(X U T)),

4) supP = sup Q where every element of P U Q is of the form sup R, and every
element of P (resp. Q) occurs as an element of R for some supR & Q (resp. P),

(5)  sup{0} =

Suppose this variety had an initial algebra F. We note first that F has no proper
subalgebra A, for, by initiality, ¥ would admit a homomorphism into 4, whose
-composite with the inclusion 4 — F would, by initiality again, have to be idy, so
the inclusion must be surjective. It follows in particular that every element of Fis 0
-or Safor some a € F, or sup X for some X < F, since the elements of these forms clearly
-constitute a subalgebra. To analyze the structure of F in more detail, we introduce
the operator I' on subsets X' F that applies the algebra operations once to clements
of X, and we formalize the notion that iterated application of this operator should
produce the whole algebra F from the empty set. The definition of I" is

CT(X)= XU {0} U{S(@| ae X} U {sup(d)| 4 countable, @ # A= X}.
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By induction on ordinals, define I'° =@, I*** = ('), and I'* = |J I for
<A
limit ordinals . The sequence of subsets I'* of F is clearly non-decreasing. For some e,

the difference I'*** —I'* must be empty, as otherwise we would have a proper class
of distinct such differences (one for each ordinal &) which is absurd as F is a set.
Let 0 be the smallest ordinal for which I'’** = I, This equation implies that I'? is
a subalgebra of F, so by our carlier remarks I' = F. For each element a e F, there
is a first #<0 such that ¢ e I'"; inspection of the definition of I'® and I'* for A a limit
shows that this # must be the successor of some « which we call the rank of a. Thus,
ge [rrk@rl_ prnk® gy definition of ", we see that « is either 0, or S(b) with
rank (b) <rank(«), or sup(B) with rank (b) <rank(«) for all b € B, Note also that all
ranks are <@.

Fix an arbitrary limit ordinal 3%, We define an algebra structure on the set %+ 1
of all ordinals < exactly like the intended interpretation in the class of all ordinal
numbers except that S(x) is defined to be 5 (rather than %+ 1 which is not in our set).
That this algebra, %+ 1, is in our variety can be seen either by inspection of the ex-
plicit list of identities (1) through (5) or by noting that %+1 is the quotient of the.
“algebra” of all ordinal numbers obtained by identifying everything beyond x
with ». (An identity satisfied in an algebra A remains satisfied in a quotient B provided
the projection 4 — B admit a set-theoretic section. The proviso is satisfied here,
and there are no difficulties due to the fact that the ordinals form a proper class.)
Since F'is assumed to be initial, let n: F — %+1 be the unique homomorphism.

Cram. Every ordinal o< is the image under © of a unique element of F.

We prove the claim by induction on a.

Case 1. o = 0. The existence is clear, as =, being a homomorphism, must
send O to 0. To prove uniqueness, suppose 7(a) = 0 buta # 0. We may assume that ¢
has been chosen to have the smallest possible rank. Clearly, a % S(b) for any b & F,
as w(S(b)) = S(n(b)) # 0. So a must be sup(B) with rank(b)<rank(a) for every
beB. As © is a homomorphism, we have 0 = n(a) = n(sup:B) = sup(n(B)). In
view of the definition of sup in the algebra 3%+ 1, we have n(b) = O for every be B.
By the minimality of rank(«), we may infer b = 0 in F for every b e B. But then
a = sup{0} = 0 by one of the defining identities (5) of our variety.

Case 2. o= f-1. By induction hypothesis, there is a unique be F with n(d) = 8.
Then 7(S(b)) = S(n (b)) = S(B) = « (as f <). This proves existence. For uniqueness,
suppose that « is a counterexample (n(a) = o but a # Sb) of minimum rank. Clearly
a# 0, and almost as clearly a # S(¢) for any c; indeed, f+1 = o0 = n(S(c))
= S(n(c)) = n(c)+1 would imply f = w(c), so by the uniqueness part of the induc-

‘tion hypothesis ¢ = b and ¢ = Sb. So a = sup C for some C'= F with rank(c) <rank(a)

for all ¢ e C. As  is a homomorphism, f+1 = sup(n(C)), which is possible only
if B+1 & =(C), since the successor ordinal f+1 cannot be the supremum of strictly
smaller ordinals. By the minimality of rank(s), we must have S(b)e C. Let
C’ = C~{S(b)}. Thus, n(C’) consists of ordinals <p, and
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n(sup(C’ U {b})) = sup(r(C") U {B}) = B = n(b)
so, by induction hypothesis, sup(C’ u {b}) = b. Now
a = sup(C’ L {S®)}) = sup{C’ L {S(sup(C’ L {PH)})
= S(sup(C’ U {b})) by identity (3)
= S().
Case 3. o is a limit ordinal. Since w is the only infinite regular cardinal, there

is an increasing w-sequence f, with limit «. By induction hypothesis, each f, is
u(b,) for a unique b, e F. Let B = {b,| ne w}. Then

n(supB) = sup{f,| new} =u,

which proves existence. For uniqueness, suppose again that « is a counterexample
(m(a) = abut @ # supB for our fixed B) of minimum rank. Since o is a limit ordinal,
a cannot have the form 0 or S(¢), so a = sup(C) for some set C of elements of F of
strictly lower rank than a.

Subcase 1. For each c € C, n(c) <a. We shall rewrite every element of Bu C
as a supremum in such a way that identity (4) will become applicable. Let {z,| o<y}
be an enumeration of B u C in order of increasing values of =, i.e. <o’ implies
(z,) <m(z,). Note that; since sup(n(B)) = « and sup{(n(C)) = n(sup(C)) = n(a) = o
and since o ¢ n(C), both B and C must be cofinal in the z-enumeration. Also note
that each z, equals sup{z,| o'<o} in F, because of the trivial equation
n(z,) = sup{n(z,)| o'<o} and the uniqueness part of the induction hypothesis.
Let all the z’s be expressed as sups in this way. Then the mutual cofinality of B
and C allows us to apply the identity (4) to conclude supB = supC = a.

Note that the argument in Subcase 1 did not use the fact that all elements of C
have lower rank than a.

Subcase 2. For some ce C, n(c) = a. The minimality of rank(a) shows that
the only such ¢ is supB. Let C' = C— {supB}. By subcase 1, sup(C’ U B) = sup B,
and therefore ‘

a

I

supC = sup(C’ U {supB}) = sup(C’ U {sup(C’ U B)})
sup(C’ u B) by identity (2)
= supB.

I

This completes the proof of the claim.

If we now let % vary, we find that arbitrarily large ordinals » admit one-to-one
mappings into F. This contradicts Hartogs’s theorem, so there cannot exist an
initial algebra for our variety. H

We close this section with a brief summary of what is known concerning the
set-theoretic strength of the proposition that the regular cardinals are not cofinal
in the ordinals (or, equivalently, that some variety lacks free algebras). As mentioned
earlier, Gitik [12] has proved the consistency of this proposition relative to a proper
class of strongly compact cardinals. Some large cardinal axiom is certainly needed
for any such consistency proof, since it follows from Jensen’s covering lemma [6]
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that the proposition implies the existence of 0%, In fact, by work of Jensen and
Dodd [8], the proposition implies the existence of inner models with measurable
cardinals, and I believe that Mitchell’s results [27] will yield inner models with many
measurable cardinals.

10. Consistency of non-cxistence of coequalizers.

THEOREM. If it is consistent with ZFC that the strongly compact cardinals are
cofinal in the ordinals, then it is consistent with ZF that there is a variety of algebras
in which coequalizers do not always exist.

Proof. We shall work in a universe satisfying ZF plus

() w is the only infinite regular cardinal, and

(b) there is a Dedekind-finite set D with a linear ordering < and a map p of D

onto @ such that d,<d, implies p(d,)<p(d,).
(A Dedekind-finite set is one into which w cannot be injectively mapped.) Our first
task is to obtain a model in which these hypotheses hold.

It is easy to satisfy (b) in a Fraenkel-Mostowski model (see [15] for definitions).
Take a countable set 4 of atoms and label them a,, with n e w and g e Q the set of
rationals. Let = be the lexicographic order of the atoms, with respect to the standard
orderings of w and Q, and let p: 4 — w map each a,, to its first subscript n. Let G
be the group of permutations of A that preserve both < and p, and let # be the
finite-support filter, generated by the subgroups Hj = {g € G| g fixes E pointwise}
for finite E< 4. Then the permutation model determined by G and & is easily seen
to satisfy (b), with .D being the set 4 of atoms and <{ and p being as defined above.

By the Jech~Sochor theorem [15], every model M of ZF has a symmetric Cohen
extension M’ satisfying (b). The hypothesis of our theorem permits us to apply
Gitik’s construction, already used in Section 9, to obtain an M satisfying (a). The
Cohen extension M’ satisfying (b) also satisfies (a), since it has no new ordinals and
contains all the cofinal maps in M from o into each limit ordinal. Thus, M" is the
desired model.

From now on, we work in a universe satisfying ZF and (a) and (b). The variety
which lacks coequalizers will be a slight variation of the one shown to lack free
algebras in Section 9. Tt has a unary operation symbol S and an w-ary operation
symbol sup, but instcad of a single constant symbol it has a D-indexed family of
constant symbols ¢ for ¢ e D, Its identities are all identities in a fixed countable
sct of variables, not involving constants, that are satisfied in the class of ordinal
numbers with the standard interpretations of $ and sup (or, more explicitly, iden-
tities (1) through (4) from Section 9), plus the identities

(6) S(d) =d for each de D,
and

(7) sup(dy, d,, ...) = max{dy, dy, ..} for each dy,d;,...e D.
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In (7), the maximum is taken with respect to the linear ordering =<{ on D given
in (b), and it exists because {d;, d, ...}, being the range of an w-sequence in
a Dedekind-finite set, is finite.

For each ordinal «, we define an algebra B, as follows. Its underlying set is the
ordinal w-+a+1. Each constant d is interpreted as p(d) € . Sup is interpreted as
least upper bound with respect to the usual ordering of w+a+1, and § is inter-
preted as the identity map on the first @ elements and the last element but as the
successor map on the intervening « elements. The strange definition of S on the first o
elements guarantees that (6) is satisfied, while (7) is satisfied because p preserves
order. (1) through (4) are easy to see directly, or one can use the fact that B, is
isomorphic to the quotient of the class of all ordinals (with standard S and sup)
by the congruence that identifies two distinct ordinals iff either they are less than o?
and their difference is finite, or they are both >w?+w.

There is also an algebra structure on D, interpreting  as d, sup as maximum
with respect to < (since any w-sequence in D has finite range), and S as the identity.
All the defining identities of our variety clearly hold in D. (This is obvious in the for-
mulation using (1) through (4). In the formulation using the identities true in the
class of ordinals, one observes first that they are satisfied in each B, and second that,
when such an identity, involving countably many variables, is interpreted in the
Dedekind finite set D, there can be only finitely many distinct values of variables,
so the relevant part of D, a finite linearly ordered set, is isomorphic to a finite part of
(the initial w-segment of) B,.) It is trivial to check that, because of identities (6)
and (7), the algebra D is the initial algebra in our variety.

Suppose D had a quotient algebra A by the congruence

R = {{dy, d>| p(dy) = P(dz)} >

and let g: D — A be the canonical homomorphism. For any ordinal «, the unique
homomorphism h: D — B,(d+ p(d)) has kernel R, so it factors through 4, say
as D v A4 — B,. We write fi for the element ¢(d) € A (the denotation of d) for any
de D with p(d) = n; this is well-defined because ¢ has kernel R. As in Section 9,
we define an operation I' on subsets of 4 and a rank function on 4. We set

I'X)=Xv{il new} u{SK)| xe X} U {sup(C)| C countable, Ce X},
=@, I'*'=prrYy, I*={)I*for limt A.
w<l

Let 0 be the least ordinal such that I'*** = I'%; it exists because A is a set. Then I is
a subalgebra of 4 containing the range of ¢. By the universal property of A, there is
a homomorphism 4 — I’ whose composite with the inclusion I'’ — A is the identity
map of 4; therefore I’ = A. Therank of x 4 is the unique o such that x & I+ — [,

Still proceeding as in Section 9, we claim that every element & of w-as B,
is m(a) for a unique a € 4. The proof is by induction on ¢.

Case 0. & = n<w. By definition of 7, we have n(#) = n. To prove uniqueness,
suppose a € 4 were a.counterexample, n(a) = n but @ % f, with rank(a) as small

icm
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as possible. If @ = S(b) with rank(b)<rank(a), then n = n(a) = S(r (b)), which
implies 7(b) = A by definition of B,. Minimality of rank () gives b = A, and then (6)
gives a = S(A) = A. On the other hand, if a = sup(C) with all elements of C of
lower rank than a, then n = sup(n(C)), so, by definition of B,, n(C) is a subset
of {m| m<n} containing n. By induction hypothesis and minimality of rank(a),
C is a subset of {M| m<n} containing A. By (7), a = sup(C) = f.

Case 1. ¢ = . The existence is clear as n(sup{A] n € ®}) = sup{n| ne w} = w.
The uniqueness is proved exactly as in Case 3 of the proof in Section 9.

Case 2 (resp. Case 3). & = w-+n with n a successor (resp. limit) ordinal. These:
cases are treated exactly like the corresponding cases in Section 9.

Having established the claim, we let « vary and, as in Section 9, obtain a con-
tradiction with Hartogs’s theorem.
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