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The relationship between algebraic numbers and expansiveness of
automorphisms on compact abelian groups

by

Nobuo Aoki and Masahito Dateyama (Tokyo)

Abstract. The structure of a compact group which admits an expansive automorphism
has been investigated by several authors. The purpose of this paper is to characterize such
a compact group. We firstly examine the relation between an automorphism ¢ of a d-dimensional
solenoidal group X and the automorphism y of the real vector space R? extended by the dual (G,7)
of (X, 6). Then it will be shown that (X, 0) is expansive if and only if all the eigenvalues of y are
off the unit circle and G is finitely generated under y. We shall prove that every expansive automor-
phism of a compact abelian group is densely periodic, and that every factor is also expansive. Let X
be solenoidal and o be an expansive automorphism of X. Then we shall prove that X contains
o-invariant subgroups S and T where S is a solenoidal group without torus subgroups when S # {0}
and T'is a torus when T 3 {0}, such that both (S, ¢) and (7, o) are expansive and (X, o) is a factor
of a direct product of (S, 6) and (T, o). It seems likely that these results will play a role for the
study of the structure of automorphisms with the specification property.

§ 0. Introduction. The notion of expansive homeomorphisms of a compact
metric space was introduced by Utz [26] with the term “unstable homeomorphisms”.
The properties of such homeomorphisms have been investigated in many papers,
including the papers [6], [7], [9], [10], [15], [17], [18], [28] and [29]. It is known in
the ergodic theory that a symbolic flow is expansive, and conversely if a discrete flow
of a compact metric space is expansive then it admits a finite topological generator
(see [15]). However it is not true that every compact metric space admits expansive
homeomorphisms. This follows from the results in [17] and [18]; i.e. if a compact
connected group admits an expansive automorphism, then it is finite-dimensional
and abelian, and its dual group is finitely generated under the dual automorphism.
For this case, the automorphism is densely periodic (see [19]). However, when a com-
pact group with an expansive automorphism is not connected, it is unknown yet
whether the automorphism is densely periodic. It will be interesting to examine what
kind of automorphisms of a solenoidal group are expansive. This problem was
studied partially in [9]; i.e. let E be a separable finite-dimensional real (complex)
topological vector space and let y be an automorphism of E, then y is expansive
if and only if all the eigenvalues of y are off the unit circle. It was proved in [10]
that an automorphism ¢ of a d-dimensional torus T is expansive if and only if all
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the eigenvalues of the automorphism of R? corresponding to ¢ are off the unit circle,
From this result, we see that every expansive automorphism of a torus is ergodic
under the Haar measure (p. 53 of [12]). This was extended in [1] to a solenoidal
group.

The purpose of this paper is to investigate the structure of expansive automor-
phisms on solenoidal groups. It seems likely that results obtained here will furnish with
a tool for the study of the topological structure of automorphisms with the spesifi-
cation property introduced in [5], [23] and [24].

The contents of this paper will be divided into four sections. In § 1 we shall
prepare definitions and notations. In particular, we shall mention the relation between
an automorphism ¢ -of a solenoidal group X and the automorphism y of the real
vector space associated with (X, ). We shall prove in § 2 that an automorphism of
a solenoidal group is expansive if and only if all the eigenvalues of the corresponding
matrix (Def. 5) are off the unit circle and its dual group is finitely generated under
the dual automorphism (Theorem 1). We shall show in § 3 that every factor auto-
morphism of an expansive automorphism of a compact metiic abelian group is
expansive (Theorem 2), and that the expansive automorphism is densely periodic
(Theorem.3). In § 4 it will be proved that a solenoidal group X which admits an
expansive automorphism ¢ contains o-invariant subgroups S and T where S is
a solenoidal group without torus subgroups when S # {0} and T is a torus when
T # {0}, such that both (S, ) and (T, o) are expansive and (X, o) is a factor of
a direct product of (S, ¢) and (T, o) (Theorem 4).

§ 1. Definitions. Throughout this paper, we shall deal with a compact metric
abelian group and its dual group, and write the group operation by addition. Sub-
groups of a compact metric abelian group will be closed. Sometimes non-closed
subgroups are said to be algebraic subgroups. The identity of the group will be denoted
by “0”. To distinguish the direct sum of subgroups from the sum we denote them by
the symbols “@” and “+” respectively. The direct product of two groups will be
denoted by the symbol “x . It will be assumed that all maps used here are continu-
ous. We shall call simply automorphisms group automorphisms. Given an auto-
morphism of a group, its restrictions, its factors and its extensions will be denoted
by the same symbols if there is no possibility of confusion.

In the remainder of this section, we shall give the definitions and the notations
which are used in the proofs of the theorems.

DermnviTion 1. Let X be a compact metric abelian group and ¢ be an auto-

morphism of X, then we call that (X, o) is expansive (positively expansive) if there
. 0 o

exists an open ball U of the identity such that ) ¢"U[ () ¢”"U] consists only of

n=-—o n=0
the 1dent1ty We call an expansive nezghbarhood (a positively expansive nelghborhood)
for (X, o) such a neighborhood U.
DeFmviTioN 2. Let X be a compact connected metric abelian group and ¢ be
an automorphism of X. Denote by (G, y) the dual of (X, o) ((yg)(x) = g(ox),
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ge@ and x € X). Since X is connected, G is torsion free (cf. see p- 148 of [21)).
A finite set of elements gy, ..., g4 of G is called linearly independent if, for integers
Qs eer gy A1 g1+ Fa,g9, = Oimplies @, = ... = a; = 0. An infinite set of elements
of G is called linearly independent if all finite subsets are linearly independent. The
maximal cardinal number of a linearly independent set of G is called the rank of G
(cf. see p. 19 of [21]).

DernNiTION 3. Let G be the dual group of a compact metric abelian group X.
Then X is said to be rank(G)-dimensional (p. 148 of [21]). Obviously, X is zero-
dimensional if and only if X is totally disconnected. We say that X is solenoidal
if X is connected and finite-dimensional. A finite-dimensional torus is clearly solen-
oidal.

DErFINITION 4. Let G be a discrete countable abelian group and y be an auto-
morphism of G. Then G is said to be finitely generated under y if G contains a finite
, gy} such that G = gp{y™Jg;: —w<j<o, 1<i<n} (the notation
“gp E” means a subgroup generated by a subset E of G).

Let ¢ be an automorphism of a d-dimensional solenoidal group X and as before
(G, y) denote the dual of (X, ). Since rank(G) = d (by Def. 3), G contains a linearly
independent set {g, ..., g,}. Hence 0 5% g & G is expressed as dg = a, gy +...+ @494
for some integers 0 # a and aq, ..., ay with (ay, ..., a;) ¥ (0, ..., 0). We now define
an into isomorphism ¢: G — Q (the notation Q“ denotes the d-dimensional rational
vector space) by the equality ¢(g) = (a4/a, ..., a,/d) (notice that ¢ is continuous
since G is discrete). To simplify the notations, we identify g with (a/a, ..., a,/a)
under the map ¢. Then Ge Q! (cRY) andso g; = (1,0, ...,0), ..., g, = (0, ..., 0, 1).
By p. 166 of [21], we can define a homomorphism from R? into X by

Y(t)g = tiayja+...+1,a,/a (addition modl),

t=(tg,..,t)ER, g=(aj/a,..,aja)eG,

and define the adjoint map § of R? by
(g =g,

Then y is similar to 9. The annibilator F of gp{gy, ..., g4} = 7% in X is totally
disconnected. If in particular X is atorus, then it follows that F is finite. We denote
by 7y the projection X — X/F. In order to clarify the relation between the maps
o, 7, 9, ¥ and 7y obtained above, we set the following diagram

geG and teR’.

isomorphic

®%, 9 -®,7)

,/,\L Tmclusinn
(X, 0) (G,7)

"Fl' Tinclusinn
XF -gp{g1, > 9a}
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DEFINITION 5. Let X be a d-dimensional solenoidal group and ¢ be an auto-
morphism of X. Let gp{gy, wesfap W, 9, f and 7 be as above. Then we call
(gp{g1> > 9a}> ¥> 9, F, mp) to be the system induced by the linearly independent set
{915 s 94}

The followings will be easily obtained.

@ Y (®RY is dense in X.
This follows from the fact that if g e G and Y (t)g = 0 for all e R? then
=0 -
(i) {teR*: y()eF} =Z°

This is clear from the definition of y.

(iti) mpW(RY = X/F and npy is an open map.

From (ii) we have

7l (RY) = mp (E) E={(t;, .., t)eR": 01,51, 1<i<d),
which implies that mzif (R% is compact. Hence, by (i) we get mzy(RY) = X/F.
Obviously 7zr: R* - X/F is open since it is an onto homomorphism.

(iv) X = ¢ RY+F. If in particular X is a torus, then X =y (R%).

These follow from (iii).

where

Hereafter the eigenvalues of 9]¢ mean those of y: R — RY, since G<=R? and
the linear span of G is equal to R°.

§ 2. Expansive solenoidal automorphisms. The aim of this section is to prove
the following

THEOREM 1. Let o be an automorphism of a solenoidal group X and as before
let (G, y) be the dual of (X, o). Then (X, o) is expansive if and only if all the eigen-
values of y are off the unit circle and G is finitely generated under y.

For the proof we need the following Lemmas 1, 2 and 3.

LeMMA 1. Let y be an automorphism of the d-dimensional real vector space R%.
Then (R%, ) is expansive if and only if all the eigenvalues of y are off the unit circle.
Further, (R%, y) is positively expansive if and only if all the eigenvalues of y are out
of the unit circle.

The result of Lemma 1 is extended in [9] to a more general vector space. We
give here a simple proof of Lemma 1 for completeness. It follows that (R?,9) is
expansive if and only if the complexification of (R?, y) is expansive. And further the
complexification is expansive if and only if the linear map given by the Jordan normal
form is expansive. Finally we can show that the normal form is expansive if and only
if A} # 1 for each eigenvalue A. The second statement is obtained from the similar
proof to the above one. '

LemMa 2. Let (X, 0) and (G, y) be as in Theorem 1. If (X, 6) is expansive, then
all the eigenvalues of y are off the unit circle and G is finitely generated under 7.

Proof. It is proved in [18] that G is finitely generated under y. Thus it only re-
mains to show that all the eigenvalues of y are off the unit circle. Let X be d-dimen-
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sional, then rank(G) = d (Def. 3). Hence G contains a linearly independent set
{g1» s 9} We construct a system (gp{gy, > gu}, ¥, %, F, mg) as in Def. 5. Let U
be an expansive neighborhood for (X, o). Choose a small neighborhood ¥V of the
sero vector of R? such that (V)< U and  is one-to-one on V. The existence of
such a neighborhood ¥ is a consequence of Def. 5 (ii). We now have

©= 0 o"Us N e =v( 0 97)

n= =00 n=—0
(see Def.. 5 (iv)),

which implies that (R%, 9) is expansive. Hence all the eigenvalues of § are off the unit
circle by Lemma 1. Since § and y are similar, we get the conclusion of Lemma 2.

Remark 1. From p. 53 of [12] together with Lemma 2, it follows that every
expansive automorphism of a solenoidal group is ergodic (under the Haar measure).
However there exists an ergodic automorphism which is not expansive. For example,
let y be the automorphism of the 2-dimensional rational vector space, corresponding
to a matrix ((; ~1) Let us put G =
all integers. If G is imposed with the discrete topology, then the dual (X, ) of
(G, y) satisfies our requirement.

It is known that every expansive automorphism o of a 2-dimensional torus X
has the specification property (see [5]). If in general X is solencidal and (X, 0) is
expansive, then it is unknown yet whether (X, ¢) has the specification propert}f.
It will be interesting to examine the existence of dynamical systems with the speci-
fication property.

LemMa 3. Let (X, o) and (G, ) be as in Theorem 1. Assume that

Y 9i(Zx{0}) where Z denotes the st of
j=—w

G =gp{y Yg: —w<j<c0}

for some 0 5= g€ G. If all the eigenvalues of y are off the unit circle, then (X, 0) is
expansive.

Proof. Since X is solenoidal, rank(G) = d for some integer «>0. Hence
{g,79, .,y "'g} is linearly independent. Construct

(ep{g, 79, - ¥ " g} W, 9, Fymp)
as in Def. 5 and take a bounded closed set
D = {(ty, .., 1) eR": —}<1<Y, 1<i<d}.

Then 1 (D)+F is a closed neighborhood of the identity 111 X since npi: R‘n—+ X|F
is an open map (Def. 5(iii) and (iv)). Obviously (D) ~ F = {0} (Def. 5 (i)). Put
1 1

D; = ) 4D and Fy = 1cr"jF. It is easy to see that (D) +Fy is a closed
j=-1 Jj=-

neighborhood of the identity in X. Indeed, D, is a closed neighborhood of the zero
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vector in R%. On the other hand, since the dual group of F/F, is the finite group

d—1 d—1

1
. ZI v ge{g, va, . v g}ep{g. vg. v g},
7= ‘

F|F, is finite (cf. see p. 140 of [21]), whence F; is open in F. To see that V(D) +F,
is a closed neighborhood of X, it is enough to show that /(D) x F is homeomorphic
to y(D)+F. Define a map f (/(d), x) = y(d)+x, de D and xe F. Then fis onto
and continuous. It is easy to see that f is one-to-one. Indeed, if Sy, x)
= f{¥(d), x') for some d, ' D and some x, x' & F, then Vid-dYey R AF
and so d—d’e Z* since Y(RY) N F = Y(Z") and ¥ is one-to-one on D (Def. 5 (ii)).
Thus the distance of each component of d—d’ is not more than %. This implies
that d—d’ = 0. Therefore f must be one-to-one.

We shall show that (X, o) is expansive. Since all the eigenvalues of y are off
the unit circle and y is similar to §, (R, 9) is expansive by Lemma 1, from which we

get (| 97D, = {0}.Since 3, 7'ep{g,7g,...,y""'g} = G and Fis the annihilator
J=—o® ==
of gp{g.vg, ...y *g} in X,
@ ©
N ¢Fe N ¢/F={0}.
J==e Jj==w
We now have
n n

N oy Dy+F,) = n YHIDY+ n A

J==n

o0
for all n>0, and so ) o™y (D) +F,) = {0}. By definition (X, 0) is expansive.
J=—o .

Proof of Theorem 1. Assume that (X, o} is expansive. By Lemma 2 we get

that all the eigenvalues of y are off the unit circle and G is finitely generated under 9.’
It remains only to show the converse.

Since G is finitely generated under y, G contains a finite set {915 -, g,} such
n

that G = _Zth where G; = gp{y™/g;: —~co<j<oo}fori=1,..,n Let K; denote
&
the annihilator of G, in X for i = 1,.

Using Lemma 3, we see that (XK,
X - X|K; for i=1,.

-, #. Then each G, is the dual group of X/K,.
, 0) is expansive, Denote by n; the projection
> and put U= n7%(U;) A ... " 7, '(U,) where each U,

. . . K n
1s an expansive neighborhood for (X/X;, ). Since Y, G, = G, wehave N K, = {0}.
=1 i=1

Hence U is an expansive neighborhood for

(X, 0). The proof of Theorem 1 is com-
pleted.

COROLLARY 1. Let X be solenoidal and ¢ be an expansive automorphism of X.

If H is a a-invariant subgroup of X, then (X7H, 6) is also expansive,
4 Proof. . As before let (G;y) denote the dual of (X, ¢). Then the rank of G is
finite and G is torsion frée. Since (X, o) is expansive, G is finitely generated under y
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by Theorem 1. Let Gy be the annihilator of H in G, then it follows that each eigen-
value of ylg,, is off the unit circle. We claim that Gy is finitely generated under p.
Indeed, since G is finitely generated under y, G contains a finite set {g1, > G} SUCh

that G = i y“j gp{g:: 1<i<k}. Under the action of y, we can consider G to
j=—w

be a Z[x, x~*]-module (the notation Z[x, x~*] denotes the ring of a]ll polynomials
in x and x~1 with integral coefficients). Then Gy is clearly a Z[x, x™']-submodule

of G. Since Zlx,x”'] is Noctherian, we have that G,,:; y77'G" where

G = gp{fis s "} for some fi, ..., f, € Gy. Using Theorem 1 again, we see that
(X/H, o) is expansive. ' _
Remark 2. We remark (Theorems 8 and 9 of [7]) that every solenold'al group
does not admit positively expansive automorphisms. Let ¢ be an expa.‘nswe auto-
morphism of a solenoidal group X. Assume that there exists a totally dxsc.onnected
subgroup H such that the following conditions hold; (1) cH g H,(2) X|Hisa t‘orus
and (3) (X/H, o) is positively expansive (o: X/H — X/H is an endomorphism).
We write ) .
X, ={xeX: o’x—>0asj— o},
X,={xeX: 07'x >0 asj- o0}
Then X; and X, are algebraic subgroups and they are dense in X. For, s1:110§ X z
solenoidal, dim(X) = d<co. As before let (G, y) be th.e dual of (X', o), an eno11
by G,, the annihilator of H in G. Then G/Gy is a torsion group (since H is tz}af y
disconnected) and yGy & Gy by (1). Since rank(GlH) = fl,lGH(ls) 1s01;;:—r;6>[hlc E; _1+or
i r find a polynomial p(x) = -1
me integer d>0 by (2). We can fin :
so—i—a € Z[x] such that yig = —(ad_]yd“1+.‘.+a1y+ao)g? g € G (notice tha; the
-I;l)lyn(:)mial p(x) is monic). Since o is expansive, G is finitely generated under y
(by Theorem 1). Hence G contains a finite set {gy, ..., ga} SUCh that

G =gp{ylg; 0<j<oo, 1<i<n}.
Choose a maximal linearly independent set {f, ... fa} such that

g { fur oS} = 20 {y g5 0j<d—1, I<i<n}

| = Uy leplfis - fid
Then we get 7(gp{f1: s :I})Cgp{f1:~'-sfd} and G 1907 gp{f1 d
Construct (gp{fis wesSfu}s ¥ 9, F> wp) 88 in Def. 5. Since F is the annihilator of

N = {0}. Hence the diameter
gp{fys s fa} in X (sce Def. 5), oF<F and ono’F {0}

U 6~/ Fe X,. By (3), (X/H, o)
. T -iFex.. ’ i
of o/ F converges to 0 as j — oo, which implies that 1900 # y o
is positively expansive and H is totally disconnected. Thus all the eigenvalues ot ¥

oy ... fa} = {0}. Hence
are out of the unit circle (see Lemma 1), so that jDOV gp{fi, oS} = {
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©

U o~ Fis dense in X, and so X, is dense in X. Since y and 9 are similar (Def, 5(v)),
j=0

we have that for all zeR? 9741 — 0 as j — o0. Hence 1//(R”)cX,, since 9 =‘m//.
Since Y (R”) is dense in X (Def. 5(i)), X, is also dense in X. It is easy to check that X,
and X, are algebraic subgroups of X.

§ 3. Expansive automorphisms. In this section we shall study the structure of
a compact metric abelian group X which admits an expansive automorphism o.
Obviously o preserves the normalized Haar measure of X, We denote by h(o) the
Kolmogorov entropy of ¢ with respect to the normalized Haar measure. The
followings are well known in the ergodic theory.

PRrOPERTY (1). Let X be a totally disconnected compact metric abelian group
- and o be an automorphism of X. Assume that Kis an open subgroup of X If h(o) = 0,

then () 'K = ) 6’K for some n>0.
0 1

n n
To see this, we assume that ()} 6/ K () ¢/ K for all n>0. Then it follows that
0 1

n
|X/) o’ K[=22" for all n>0 (the notation “|E|” means the cardinality of a set E).

0
Let o(K) be the partition of X consisting of the cosets of K, then ¢(K) is a finite

n n n
measurable partition of X and \/ ¢/¢(K) = o( ) ' K) holds. Since le(N o' K)|>2",
0 o 0
by definition we have h(s)=lim(1/(1+n))log2" = log2, which is a contradiction.
n-+oo

Let H be a compact metric group and X be the direct product of a doubly
infinite sequence of replicaes of the group H. The elements of X will be the sequence
{ha}, Bye H, n =0, +1, +2,... A Bernoulli automorphism with the groups of
states H will mean the automorphism ¢ of G defined by o{h,} = {h,.,}.

PROPERTY (2). Under the above notations, one has h(e) = log|H| (p. 95
of [27]).

PROPERTY (3). Let X and ¢ be as in Property (1) and let X = FyoF =... be
a sequence of o-invariant subgroups such that N F, = {0} and for every n>0,
OF,fFy.; 15 2 Bernoulli automorphism. Then ¢ is densely periodic (Proposition 10.6
of [13]).
' PROPERTY (4). Let X'be a compact metric abelian group and o be an automorph-
ism of X. If H is a o-invariant subgroup of X, then h(e) = hloym) +hioy)
(§ 6 of [13]). :

PROPERTY (5). Let X and ¢ be as in Property (4). If (X, o) is expansive, then
<]

. there exists a finite open covering p such that the topology of X generated by () o/p
o0

equals the ‘original topology (see [15]). Let p’ denote the partition of X consisting
of the finitely many atoms of the algebra generated by p. Then we have
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h(o) = h(o, p’)<oo since \ o'y’ is the partition into points of X (p. 87 of [27)).
’ -

PrROPERTY (6). Let X be solenoidal and ¢ be an automorphism of X. As before
let (G, y) be the dual of (X, ¢). Since rank(G) = d< o0, G is imbedded in Q" Thus
we can consider G to be a subset of Q¥ and as before denote by the same symbol
the extension on QY of y. Let p(x) be the characteristic polynomial of y. Then we
have

h{e) = Y log|A|+log4
2>1
where A’s are the eigenvalues of y and 4 is the smallest positive integer such that
Ap(x) has integral coefficients (see [14]).

THEOREM 2. Let o be an expansive automorphism of a compact metric abelian
group X. Then for every o-invariant subgroup H (cH = H), (X]H, o) is expansive.

Before beginning with the proof, we shall prepare the following Lemmas 4-7.

LemMA 4. Let o be an automorphism of a totally disconnected compact metric
abelian group X and as before (G, y) be the dual of (X, 6). Then (X, o) is expansive

o

if and only if G =Y, y7IG, where Gy is a finite subgroup.
Jj=—c

Proof. If (X, ¢) is expansive, by definition there is an open set F such that

ﬁ o~JF = {0}. Since X is totally disconnected, F contains an open subgroup Fo and
- o0

@ 2 . L
obviously () ¢/ F, = {0}. Hence S 97/Gp, = G where Gy, is the annihilator
-0 —0

~of Fy in G.

Conversely, if G = i 9~JG, where G is a finite subgroup, then the annihila-
- 00

« . .
tor F of G, in X is open and () ¢~4F = {0}. This implies that (X, ¢) is expansive.
-

LemuMa 5. Let X and o be as in Lemma 4. If (X, 0) is expansive, then for every
o-imvariant subgroup L (oL = L), (X]L, o) is expansive. N '
Proof. Let (G, ) be the dual of (X, 0) and Gy, be the annihilator of L in G.

o0
Since (X, o) is expansive, there is a finite subgroup G, such that _Zw yIG =G
(by Lemma 4), Under the action of y, Gis a Z[x, x"]-modlile and so Gy, is clearly

. i P
a Z[x, x™*]-submodule. Hence Gy, is expressed as Gy = _Za;y G4 where Gy is
a finite subgroup (since Z{x, x™*] is Noetherian). By Lemma 4 again, we get the
conclusion of the lemma. - iy

LEMMA 6. Let o be an automorphism of a compact metric abelian gr:oup X ;n the;
be the connected component of the identity in X. If o is an automorphism of h, hen
there exists a o-invariant totally discormected subgroup K (0K = K) suci

X = Xo+K.
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The lemma is proved in [4] or [2] and so we omit the proof.
LemMa 7. Let X and o be as in Lemma 6 and H be a o-invariant subgroup
(6H = H) of X. If (H,0) and (X|H, o) are expansive, then (X, o) is expansive.
Proof. Let U and U’ be expansive neighborhoods for (X/H, o) and (H, )
respectively. Obviously, U = {x+ H: xe ¥} and U’ = Hn V where U and V are
o0 ©
suitable neighborhoods of X. Letting W = U n V, we have () W= No'WnH
~w

-

=] o0

= ¢/(Wan H) = {0} since () ¢/(W+H) = H. Therefore W is an expansive
- -
neighborhood for (X, o).

Proof of Theorem 2. Since X is a compact metric abelian group, X splits
into a sum X = X,+K as in Lemma 6. Since (X,, ¢) is expansive, the dimension
of X, is finite; i.e. X, is solenoidal. Let H be a o-invariant subgroup given in
Theorem 2. Then we have X/H = {(X,+H)/H}+{(K+H)/H}. Since (Xo+H)/H
is a factor group of Xy, ((X,+H)/H, ¢) is expansive by Corollary 1. On the other
hand, (K+H)/H, ¢) is expansive by Lemma 5. Therefore (X/H, o) is expansive
by Lemma 7. The proof is completed.

Let X be a compact metric abelian group and ¢ be an automorphism of X.
Let us put

P,o) = {xeX: o"x =x}, nxl,
It is obvious that P, (o) is an algebraic subgroup of X for n2>1. The automorphism ¢ is
0

said to be densely periodic if |) P,(o) is dense in X.
n=1

THEOREM 3. Let o be an expansive automorphism of a compact metric abelian
group X, then o is densely periodic.

For the proof we need the following Lemmas 8 and 9.

LemMA 8. Let ¢ be an automorphism of a totally disconnected compact metric
abelian group X. If (X, o) is expansive and h(c) = 0, then X is finite.

Proof. Take an open subgroup K as an expansive neighborhood for (X, g).
k k

By Property (1) we get () ¢"K = () ¢"K for some k (since hi(s) = 0). Thus
n=0 =1

n=

k
K> () ¢"K for some integer k, because X is compact and each ¢"K is closed and

n=1
k

open. We have oK' = K’ where K’ = () ¢"K. Since K is an expansive neigh-
n=1

borhood, K' = {0} and K’ is open. Therefore X is finite.

The following is proved in [2].

LEMMA 9. Let o be an automorphism of a compact metric abelian group X. If
h(0)>0, then there exist o-invariant subgroups X, and X, such that the following
condizion; hold; (i) (X, 6) has zero entropy, (ii) (X,, ) is ergodic and (iii) X = X, + X,.
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Proof of Theorem 3. As before let X, be the connected component of the
identity of the group X. By Lemmas 6 and 9, X splits into a sum X = X, + K, +K,
of subgroups where K, and K, are ¢-invariant totally disconnected subgroups such
that (K;, o) has zero entropy and (K, o) is ergodic. Expansiveness implies that K,
is finite by Lemma 8. Obviously ¢y, is densely periodic. Since (X,, o) is expansive,
the dual group of X, is finitely generated under the dual of oy,. Hence oy, is densely
periodic (see [19]).

To show that gy, is densely periodic, let (G, , y) be the dual of (K, ¢). Obviously
Gy, is a torsion group and y on Gy, has no periodic points except the identity. Since

(K, 0) is expansive, G, = ¥ 979G, where Gy is a finite group (by Lemma 4),
-

n
and G, splits into a direct sum G, = @ G,,, of primary groups G, (p. 137
m=1

of [16]). Hence it follows that

n
G= @ G, where

m=1

bt s
G:n = Z y-JGI,m M
—
If (Ky,,0) denotes the dual of (Gi,,7) for 1<m<n, then we have (X,,0)
n o
= @ (Kz,» @) Thus it will be enough to show that each o, , is densely periodic.
1

To see this, let Gy, be a p,,-primary group for 1<m<n. Denote by W, the subgroup
of G!, annihilated by multiplication by pl. for i>1. Then there is an integer a>0
such that

WicWyc..cW,= Gy,

since Gy, is finitely generated under y. It is easy to see that for 1<i<a, Yw,,yw,
has mno periodic points except the identity. Considering W;./W; to be a
Z/p, Z]%, x~*]-module (the notion Z/p,, Z [, x™*] denotes the ring of all polynomials
in x and x~! with coefficients in the field Z/p,,Z), we see that W;, /W is finitely
generated under Z/p,Z [x, x~*]. Since Z/p, Z[x, x™*] is a principal ideal domain,
we have

WH- I/Wi = Z/me[v: ’))_1] g1@-@Z/PITZ[V= v_l]g-k

— (@ P<3)®-0( & 7<4)

for SOME §q» .or §x € Wi s/ Wy Let ¥, be the annihilator of W; in K, ,, for 1<i<a.
Obviously, V> V,=..0V, = {0} and each ¥, is o-invariant. Since ¥3/V;4, has
the dual group Wi/ W, Gpyvs ., is & Bernoulli automorphism. Using Property (3),
we sec that (K,,,, ) is densely periodic, and therefore so is (K,, o). Since (X, o)
is a factor of a direct product system (X, x Ky x K, oxox0a), (X,0d) is densely
periodic. The proof is completed.

Remark 3. Let G be a countable discrete group of type p® (see p. 56 of [16]).
We remark that p is a prime number. Assume that m is a prime number such that
m>p. We can define an automorphism y of G by yg = mg for ge G. Let (X, o) be
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the dual of (G, 7). Then X is totally disconnected and o has no periodic points except
the identity. This shows that (X, o) is not expansive by T heorem 3. To get this, it
will be enough to show that (y*—1)G = G for all k>0 (the notation “I” means the
identity map). When there is k>0 such that p does not divide m*~1, we get easily
that (y*—I)G = G since G is a group of type p®. When p divides m*~1 for some
k>0, we can write m*—1 = p"q where n>0 and ¢ is prime to p unless ¢ = 1. Then
for every a>0 and a generator g € G with order p*", it follows that (y*—1I)g is
a generator with order p. Hence we get (y*—IG = G. In any case we sce that
#*~IG = G for all k>0; i.e. ¢ has no periodic points except the identity.

If in particular p = 2 and m = 3, then yg = ¢ for 0 # ge G with 2g = 0.
This shows that (X, ¢) is non-ergodic (see [12]). It is clear from the above conclusion
that ¢ is not densely periodic.

The first author proved the existence of an ergodic automorphism of a totally
disconnected compact metric abelian group which has no periodic points except the
identity. He will treat it in a future paper (*).

§ 4. The structure of expansive solenoidal automorphisms. Let X be a solenoidal
group and ¢ be an automorphism of X. Then (X, o) is said to satisfy condition (x)
if X has not a o-invariant subgroup H such that X/H is a torus.

The aim of this section is to show the following

THEOREM 4. Let X and ¢ be as above. If (X, o) is expansive, then there exist
in X ¢-invariant subgroups T and S where T is a torus when T#{0} and S is a solen-
oidal group without torus subgroups when S # {0}, such that (T, o) and (S, o) are
expansive and (X, o) is a factor of the direct product of (T, o) and (S, o).

For the proof we use the following lemmas.

LeMMA 10, Let X and o be as above. If h(a) < oo, then there exist a totally discon-
nected subgroup N and connected subgroups T and S such that the following conditions
hold; (a) N, S and T are o-invariant, (b) h(oy) =0, () N = ST, (d) if S # {0}
then it is a solenoidal group with condition (%), (¢) if T # {0} then it is a torus and (f)
X/N = T/N®S/N.

For the proof the reader may refer [3].

Lemma 11. Let o be an automorphism of a solenoidal group S. If (S, o) has
condition (%), then S has no torus subgroups.

Proof. As beforelet (G, y) be the dual of (S, ¢). We assume that S contains
a o-invariant torus subgroup 4. If G4 is the annihilator of A4 in G, then yG, = G,
and G/G, is the dual group of 4, so that G/G,, is torsion free and finitely generated.
Hence there are 07 e G and p(x)€Z[x] such that p(y) fe G, We remark that p(x)
is monic and its constant term is 1 or —1. Let p(x) be a polynomial with minimal
degree satisfying p(y) fe G,. Since rank (G ) < oo, it follows that qp () f=0 for
some 0 # ¢(x) € Z[x] with minimal degree.

If g(y)f =0, then q(y)fe G, and hence p(x) divides g(x) over Q (the no-

() See the paper by N. Aoki, J. Math. Soc. Japan 33 (1981), pp. 693~700.
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tation Q denotes the rational field); i.e. ¢(x)= p,(x)p(x) for some 05 p1(x) e Q[x].
When p.(y)f =0, by the same reason we have P1(X) = po(x)p(x) for some
pa(x) € Q[x]. Repeating this process, we see that there is p,(x) e Q[x] with
g(x) = p(x)p(x)" such that p,(y)f # 0. Put g = p(y)" *p,()f. Then g # 0 and
p(y)g = 0. Since p(x) is monic and its constant term is 1 or —1, the subgroup Gp
generated by {#g: —<j<co} is y-invariant and finitely generated. Therefore
the annihilator B of G in S is o-invariant and S/B is a torus, which is a contra-
diction.

For the case when g(y) f s 0, by the same way we get that § has no o-invariant
torus subgroups.

Assume that § contains a torus subgroup C to get the conclusion. For n321,

n
C, = Z o' C is also a torus subgroup of S. Since dim.(S)< oo, we have C, = C,,,
)

m
for some n>>0, and so ¢C, = C,. Put C,,, = ¥ 07°C, for m>0, then C,,, = Cps1
i=0

for some m>0. Hence o™ * C, ,,& C, . Since 6C,,,, = 6C,+...+67 "1 C,cC, s Cre

is a o-invariant torus subgroup of S. This can not happen by the above conclusion.
The proof of the lemma is completed.

Proof of Theorem 4. Since X is solenoidal, 2(c) < co by Property (6). Hence X
splits as in Lemma 10, and so (X, o) is a factor of a direct product of (7, ) and
(S, 6). Since h(oy) =0 (Lemma 10 (b)) and (N, o) is expansive, N is finite by
Lemma 4. Hence the duals of (S, ¢) and (T, o) are finitely generated under the dual
automorphisms and they are hyperbolic. By Theorem 1, (S, ¢) and (T, o) are ex~
pansive. It follows from Lemma 11 that S has-no torus subgroups. The proof is
completed.

Remark 4. Let X and o be as in Theorem 4. For the case when (X, 0) is ex~
pansive, it is not always true that X splits into a direct sum of T and S which are the
subgroups in Theorem 4. For, let y be an automorphism of Q¥ induced by a matrix

4 00
(011)‘
012

/

Define by ¢ the discrete subgroup of Q° generated by {47g: —co<j<o0} for
g= {5+ ile Q2 Then G is finitely generated under y and all the eigenvalues
of y are off the unit circle. Therefore the dual (X, o) of (G, 7) is expansive. We assume
that X = S@7T to get a contradiction. Then we have G = Gs@Gr where Gy and Gg
are the annihilators of S and T in G, respectively. It is not difficult to see that
Gre{0}®Z? and Gs=Q@®{0}®{0). Hence we have G = Gs@®Gr=Q@Z*. But
g ¢ Q®Z?, which is a contradiction. s

Remark 5. Let X be a compact metric abelian group and o be an expansive
é.utomorphism of ¥, Denote by X, the connected component of the identity in X.
If X)X, is finite, then it is a problem whether X splits into a direct sum of X, and
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a g-invariant subgroup. But this answer is negative. We have an easy example.
Let G¢ be the subgroup {m/3*: k, me Z} of Q and Gy be the abelian group of order 2
consisting of {0, 1}. We denote by G the direct product group of G¢ and Gp, and
define an automorphism y of G by

_ [Ba1,92) if g1€{29: geGc},
M= G1. 0 if g, ¢{29: geGc}

for g = (g4, 9.)€G = Gcx Gy and g; # g,. Let (X, 0) be the dual of (G,y).
Then it is easy to see that (X, o) is expansive. Indeed, let C denote the annihilator
of G¢x {0} in X and F denote that of {0} x G in X. Then Cis finite and Fis connected.
We have the direct sum splitting X = C@®F. Since ({0} Gp) = {0} x G and
P(Gex {0}) # Gex{0}, 6C % C and oF = F. Using Theorem 1, we see that
(F, o) is expansive. Since C is finite, F is open in X and hence (X, o) is expansive.
To get the conclusion, we assume that there exists a y-invariant subgroup G’ such
that G = G@®({0}xGy). Then there is an element 0 # ge @ such that
g ¢#{29: g&Gc}xGg. But we have 0 # yg—3g € {0} x Gy. This can not happen.
Therefore the group X does not split into a direct sum of a finite subgroup and a con-
nected subgroup, invariant with respect to o.

Added in proof. The specification property was studied in Monatsh. Math. 93 (1982), pp.
79-110 for solenoidal automorphisms, and in Lecture Notes 729, Springer, pp. 93~104 for toral
automorphisms.
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