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Reduced powers of ¥,-trees
by
Keith J. Devlin (Lancaster, U.K.))

Abstract. Let T be an N,-tree, D a upiform filter on . Assuming CH, the reduced power tree
T¢/D is an N,-tree. We investigate the relationship between T and T*/D with regard to the
properties of being Souslin, Aronszajn, and Kurepa.

The first work on this topic was done by Devlin in 1978, who proved -all of the results given
here, assuming V = L and using fine structure arguments for the two main theorems — Theorems 4
and 5 of this paper. Baumgartner and Laver subsequently found much simpler proofs of these
results, and it is their proofs which we present here.

§ 1. Preliminaries. We work in ZFC set theory throughout. Qur notation is
standard. A tree is a poset T = (T, <) such that for each xeT the set

£={yeT| y<px}

is well-ordered by < ;. The order-type of X (under <) is called the height of x in
T, denoted by ht(x). The ath level of T is the set

T, = {xeT| ht(x) = a}.
We define
Tla= U T
A B<a
and denote by T [ « the restriction of T to the set T | a. (In practice, we often do
not bother to distinguish between a tree and its domain, however.)

An N,-tree is a tree T such that:

i) T,, = O and (Va <w)(T, # 0); .
(i) (Vo <o)(T| < 8y);

(i) (Ve < B < 0)(VxeT)Ay,2e ) (y # 2&x <y y & x <y 2).

The point to notice about the above definition is that it is possible that at
limit levels « of T there are distinct x, y & T, such that X = y. It is quite common
in the literature to exclude this possibility in the definition of an “N,-tree”, but in
the present circumstances this restricted notion is of noe use to us.

A branch of a tree T'is a totally ordered initial segment of 7. If it has order-
type o (under <) it is called an a-branch.

An antichain of a tree Tis a pairwise incomparable subset of T.

An R,-tree with no w,-branch is said to be Aronszajn. An N,-tree with no
antichain of cardinality N, is said to be Souslin. It is easily seen that a Souslin
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N,-tree is necessarily Aronszajn. An N,-tree with at least N3 w,-branches is said
to be Kurepa.

Assuming CH, it is easy to construct an Aronszajn N,-tree. Assuming V
=1, one may also construct Souslin ¥,-trees and Kurepa N,-trees though in
neither case can the assumption of V = L be weakened as far as CH. For further
details, see [1].

§ 2. Tree reduced powers. Let 7 be any N,-tree, and let D be a (non-
principal) uniform filter on w. For each « < w,, define an equivalence relation
on T, by

s~t iff {neow| s(n=tn)}eD.
Let T.* denote the set of all equivalence classes from 7,” under ~, and let [s]
denote the equivalence class of se T. Let ‘

T*= |J T*.
E<(02

Define a binary relation <* on T* by
[s] <*[1] iff

It is easily seen that {(T*, <*)isa tree, and that if we assume CH, it is in fact an
N,-tree. T* is the reduced w-power of T by D, denoted by T“/D (or T* if it is clear
which D is involved).

LemMA 1. There is a canonical embedding e: T— T* such that e[ T] is an
initial segment of T*.

Proof. Set

{.ew| s(n) <rt(n)}eD.

e(x) =[xl n<w)], xeT.
It is a routine matter to check that e is as claimed. w

By Lemma 1, we see that up to a canonical isomorphism, T* is an extension
of T.In section 3 we investigate the relationship between T and T* with regards
to the properties of being Aronszajn, Souslin, and Kurepa. By and large we
shall show that the only relationships are trivial ones. In particular, assuming V
= L we shall construct a Souslin ¥,-tree T such that T/D is Kurepa. In the
meantime, we conclude this section with a technical result of some interest.

Let T be any N,-tree. We say T is a-closed iff, whenever o < W, is a limit

level of cofinality @ and b is an a-branch of T [, there is a point of T, with
extends b. ’

LemMma 2. T* is always o-closed.

Proof. Let « < w, be a limit ordinal of cofinality w, and let B be an o-
bra‘nch of T* Ta. Let {a,| n < ) be a strictly increasing sequence of ordinals
cofinal in a. Let B T* = {[b,]}, where b, = <b,.| m < w)eT,?. Thus for n,
<m <o, {m<ol by, <rby,m€D. Tt suffices to find a "sequency b

= {byml m <w)eT” such that for all n <w, [mew| b,, <, bom) €D.

@
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By recursion we define sets A,eD, n<w, 4,24, 24,2..., and
elements b, € Ty mE Ay~ Ayyy. Set Ag =w. Let A; = {meAg| bop <1 bym}-
For each me Ag— Ay, pick by, €T, so that bo, <rb,,. In general, let A4,
= me Ay bun <71 Pys1,m and for cachmed,— A4y pick b€ T, so that b,
<o Let by, = {bym| m < ). For eachn < w, we have 4,41 € {mew| by
<phemts 0 [b,] <*[b,]. Hence [h,] extends B on ¥ m

§3. The main results. We sce what effect on T“/D it has for T to be
Aronszajn, Souslin, or Kurepa. It turns out that the exact choice of D is
irrelevant, All we need to know is that D contains all cofinite sets.

Qur first result is a negative one.

Turorem 1. T* is not Souslin.

Proof. For each o < w, such that oo =« and each xe T, we can pick
elements x,6 T4, 1 < o, such that x <px, and x, # x, forn <m <. Let A
be the set of all [{x,| n < w)] for all such a, x. It is easily seen that A is an
antichain of T* of cardinality ¥, . (This uses Lemma 1: for each xe T; as above,
[{x,] n<w)] is an extension of e(x) in T* which is not in e[T]) =

Broadly speaking, the only positive result possible is the following:

TueoruMm 2. Assume CH. If T is Kurepa, so too is T*.

Proof. By Lemma 1. (We require CH in order for T* to be an ¥,-tree.) w

Assuming V = L, we construct N,-trees which violate all reasonable
implications,

THrorREM 3. Assume V = L. There is a Souslin NXy-tree, T, such that T* is
Aronszajn.

Proof. Let

E = luew,| lim(e)&ef(@) = o},

and let {f,| aeE) be (by O, (E)) a sequence of functions f,: (w+1)x«a g
such that whenever f2 (w+1) X w, = @, the set {aeE| [ [(w+1)xa =f,} is
stationary in w,.

We construct an ¥,-tree T by recursion on the levels, using the elements of
Wy,

: To commence we set Ty = {0} If T, is defined, T .y is obtained by
appointing lwo new ordinals as successors to each element of T;.

There remains the case when lim(x) and T o is defined. There are two
cases.

Case 1. cf (o) = w. Let T, consist of one-point extensions (by new orQixaa]s)
of every a-branch of T | a. By CH, there are at most ¥, of these, so this will not
prevent T from being an Nj-tree. .

Case 2. of(a) = w;. Thus aeE. There are three subcases.

Case 2.1, f,(w, 0) = 0and 4 = ({0} x ) is a maximal antichain of T [a.
For each xe T | o, let b, be an a-branch of T l o containing x {e.g., take the <,-
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least- such). Since « is the limit of a strictly increasing ;-sequence of ordinals
continuous at limit, our behaviour in Case 1 ensures that such a b, can always bé
found.

. Let T, consist of one-point extensions (by new ordinals) of each b, such that
x lies above an element of 4 in T | o, By the properties of 4, every element of
T [ will have an extension on T,.

Case 2.2. a is not of the form f+w,, f,(w, 0) = 1, and {[e,]| v < adis an
oc—b_ranclll of (T [)®/D, where ¢, = {f,(n,v)] n<w). Let {y,] v<w,)> be a
strictly increasing, continuous sequence or ordinals, cofinal in o, such that
cf(?zvﬂ) = w, for each v < w. For each xe T u, pick an cx-branch,’b of Tla
which contains x and is sich that for each v <w,, if xeT ro: ’+ 1 then
ben T, . N {fi(hps1)l n<w} =@ Itis easily seen that such a bvranch b
can always be found. (In particular, if ae T | y,, ; there are N, extensions of a i;

- T,,.,) Let T, consist of one-point extensions (by new ordinals) of each

by, xeT [a.

i Cas : 2.3. Otherwise. In this case, for each xe T | o pick any a-branch, b,,, of
o, and extend each b,, xe T a, onto T,. Agai i in Case
oo ane exiend cach - Ag ' n, our behaviour in Case 1

The construction is complete. Clearly, T= |} T, is an ¥,-tree. We show

. . a<o
that.Tl_s Souslin. Suppose no{, and let 4 be a rﬁaximal antichain of T of
cardinality )X,. Let h: w, — w, enumerate A monotonically. Let f: (w+1)x w,

— w, be such that f(w,0) =0 and £(0, &) = h(&) f :
3 oo snch th f(0,8) =h(f) for all ¢ < w,.

C={aew) f'(w+)xa S o and f" ({0} xe) is a

maximal antichain of T [a}

is clearly club in @,. So we can find an o e E such that =
case t2.1f e/xipp]ied in the definition of T,. But then cveryfpggﬁtzi)g o]cies Ql;ciguast
'3(_)1111-1 e(;l - r’; (;.IS" i Sag,u 2?1 Ir‘ve must have A = 4 N (T | «), contrary to the choice of

We finish by showing that T* is Aronszajn. Suppose not, and let el v
< cqz‘) be an w,-branch of T*, where ¢, = (f(n,v)| n< a;> Extend fv‘to
function fro_m (w+1) x w, into w, by setting f (5, v) = 1 for all v < m,. We caa
find an ordinal a € E now such that « is a limit of ordinals of coﬁnalitz'); W ang
j; [(@w+1) xo =f,. Now, for each n <o, S (n, o) extends some a-branch é of

[, where x,e T | o, and where b, was chosen as in Case 2.2 above (Walc'rich

clearly must have applied in the construction of T)). With {y .| V<) as i
Case 2.2 now, we can find a v < w, such that x,e T |y, for allvn <w Blut tilélr:
each branch b,,'l misses the set {f(n,y,,,)| n< w}, contrary to the' fact that
{neow| f(n, yy41) <rf(n, &)} eD. The proof is complete. m

In contrast to Theorem 3, we have: ‘
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THEOREM 4. Assume V = L. There is a Souslin NX,-tree, T such that T* is not
Aronszajn.
Proof (Baumgartner). Let {C,| « < w, &lim(e)} and E S w, be such
that:
(i) weE — lim (o) & ef () = ;
(ii) E is stationary in w,;
(iii) C, is closed in o and has order-type at most @,;
(iv) cf(x) = w; —»C, is unbounded in o and otp(C,) = wy;
(v) deCy> Cz =aNC,;
(vi) C,nE = 0.
The existence of such C,, E follows from the combinatorial principle [ (see

[2)). .

Let <S,| «eED bea ¢ (E)-sequence; i, S, o and for any X < w, the set
{aeE| X na=S§,} is stationary.

Construct an ¥,-tree, T, by recursion on the levels, using ordinals from w,
as elements, simultaneously constructing on @,-branch [ty n<@D]| @
<w;> of T* by defining elements ty, €T, 1 <.

To commence we set T, = {0} and let to, = Ofor alln < . If T, is defined,
we obtain T}, by appointing two new ordinals to extend each member of T,
and choosing t,+ . to extend t,, for each n < . There remains the case when
lim(a) and T o is defined. There are several subcases to consider.

Casel.cf(@) = o &« ¢ E. Appoint a successor to eacha-branch of T [ a. By
GCH, |T;| € ¥, here. If now C, is bounded ina, using the technique of Lemma 2
we can pick t,,€ T, n < o, so that, if y = max (Cy), t,, <7l for alln < o, and
for any B <o, tg, <ylsm for almost all n< w. If, on the other hand C, is
unbounded in «, and if it is the case that (V n < @) (t,, <rts,) Wherever y, 6eC,
and y < 6, then we let t,, be the extension on T, of the a-branch of T [«
determined by <t,,| 7€C,), for eachn < . In any other case the construction
breaks down.

Case 2. cf(x) =w&acE.

For each xe T | &, let b, be an a-branch of T [ o containing x, and to obtain
T, appoint an extension to each by such that x lies above an element of S,, if S, is
a maximal antichain of Tla, and to each b,, xe T [o, otherwise. Use the
technique of Lemma 2 to pick t,,€ Ty, n < @, 80 that for any y < o, t,, <7 toy fOT
almost all n < w.

Case 3. of () = @;. C, is a club subset of o of order type w,, disjoint from
E, so for each xeT [a we can easily construct an o-branch, by, of T o
containing x, and extend each b,, xe T la, to obtain T,. And providing that
(Vn < @)(t,, <rls) Wherever 7, §eC, and y < 8, we may ensure that the o-
branches of Tla determined by (t,| yeCy), n <o, are amongst those
extended, whence we can take t,, to be the extension on T, of the branch defined
by (tyl y€Co)- In any other event the construction breaks down.
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That completes the definition. Using the properties of the sequence (C,| «

< w, &lim(x)), it is easy to see that the construction never breaks down, and
that for any o, ‘

yeC, ~(Vn<o)(t, <pt).

The proof that T = () T, is a Souslin ¥,-tree is standard, and <[<r,z,,|v n

a<w

<w)]] ¢« <w,) is clearly an w,-branch of T*. w

Remark. Using observations of Gregory and others (including ourselves),
we see that all that we needed to assume above was GCH -+, (See [2].)

‘ THEOREM 5. Assume V = L. Then there is a Souslin N,~tree, T, such that T*
is Kurepa. |

Proof. (Laver) By.V = L we can pick some Kurepa &,-tree, K. We now
construct a Souslin N,-tree, T, much as above. The only differenvce‘ is that we
embed K into T* as we proceed. That is, instead of simply defining one w,-
branch ([(ta,{| n<o)]| a <w,) of T, we define an entire copy of K Tlie
details are easily worked out by comparison with the proof of Theorem 4 éo
shall not go beyond these few remarks. m | e

Remark. The assumption of V = L ab.
m , = ove can be weakened to
+[0+ “there is a Kurepa N,-tree.” oci
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Topological degree and Sperner’s lemma
by ’
H. Sies (Hamburg)

Abstract, Starting with a combinatorial theorem of Ky Fan on pseudomanifolds we define a
topological degree mod 2 for a certain class of continuous maps from an n-dimensional finite
polyhedron /1" into R** ! — {0}, In case IT" is an n-simplex the strong version of Sperner’s lemma is
used for finding conditions under which the degree of a map does not vanish. In this way we can
gencralize some well-known topological results including the fixed point theorems of Brouwer and
Kakutani.

Introduction. Sperner’s lemma has turned out to be useful in different
mathematical fields. Usually this combinatorial result is applied via the
celebrated covering theorem for simplexes due to B. Knaster, C. Kuratowski, S.
Mazurkiewicz [9]. It is remarkable, however, that the proof of this covering
theorem makes use only of the weak form of Sperner’s lemma, ie. only the
existence of at least one completely labeled subsimplex is needed, whereas
Sperner’s lemma states that the number of completely labeled subsimplexes is
odd, It is the goal of this paper to improve the mentioned covering theorem by
utilizing the strong version of Sperner’s lemma and thus to extend classical
topological results such as the fixed point theorems of L. E. J. Brouwer and S.
Kakutani.

Our approach is closely related to anidea of M. A. Krasnosel'skii [10] who
introduced the Brouwer degree 8( ) of a continuous map fof an n-dimensional
closed finite orientable polyhedron into the n-dimensional unit sphere on a
combinatorial basis. A famous result of K, Borsuk giving a sufficient condition
for B(f) # O s derived there from a combinatorial antipodal point theorem. In
this paper, starting with a combinatorial theorem of Ky Fan [5, Theorem 2] on
pseudomanifolds, we shall assign one of the numbers 0, 1 to each cnntinuous
map F: II" — Ri*! of an n-dimensional finite polyhedron I1" (not necessarily
closed or orientable) into RL"':= R"**—{0} that satisfies a certain boundary
condition; this number y(F) will be called degree of F here. For the sake of
simplicity we shall do without orientation consideration, so y will be a degree
mod 2. Particularly important for the utility of our degree are sufficient
conditions for y(F) = 1. In the most interesting case II" = >" where 2" denotes
the n-dimensional unit simplex, such conditions will be obtained from Sperner’s
lemma. )
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