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Nowhere monotone functions and a problem of K. M. Garg
by

Paul D. Humke (Northfield, Minn.)

Abstract. In the paper “Properties of connected functions in terms of their levels” (Fund.
Math. 97 (1977)) K. M. Garg asks if a continuous real vaiued function f defined on a locally
connected seperable, complete metric space X (or on R") is nowhere monotone, does there exist
a residual set of points xe X such that x is a limit point of the level f™!(f(x)) along ‘every
simple arc in X that terminates with x? The purpose of this paper is to show that the answer to
this question is negative if X = RZ.

1. Introduction. Let X and Y be two topological spaces and f a function
mapping X into Y, then for every yeY, the set f™'(y) = {x: f(x} =y} is
called a level set (or fiber} of f. The function f is said to be monotone if
F7H(C) is connected for every connected subset C of Y (see Kuratowski [8],
p. 131]), and f is nowhere monotone if f is monotone on 1o open subset of X,
(see [2] and [4]). The function [ is said to be connected if f(C) is connected
for every connected subset C of X. The study of monotone functions and of
nowhere monotone functions has a considerable literature and the interested
reader is referred to the bibliography at the end of [4] for a few of the
appropriate works. In particular, in [2] and [4] Garg investigated nowhere
monotone functions by considering properties of their level sets and in [4] he
proves the following result.

TueoreM G. Suppose that X is Hausdorff, second countable, and locally
connected, and that f is connected and real valued. If f is also nowhere
monotone, then there is a residual set of points x in X such that x is a limit
point of the level [~ (f(x)).

Subsequently he asks ([4] p. 34, Problem 5.10): if a continuous real
valued function f defined on a locally connected, separable, complete metric
space X (or on R" is nowhere monotone, does there exist a residual set of
points x in X such that x is a limit point of the level f ' (f(x)) along every
simple arc in X that has x as an endpoint?

The answer is known to be affirmative if X = R* (see [1], Theorem 2).
In a private communication to Garg, Grande has shown that the complete-
ness hypothesis is a necessary one (see [4] p. 36, Added in proof).Then in [5]
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Grande constructed an appropriate metric space and subsequently showed that
the general answer to Garg’s questlon is in the negative. The purpose of this
note is to show that the answer is negative, even for the plane, RZ

TueoreM. There exists a continuous, nowhere monotone real valued func-
tion f defined on R such that for every point x € R there is an arc terminating
at x along which x is not a limit point of f~'(f(x)).

2. The example. Before beginning the construction of the desired func-
tion f we make a preliminary construction which will be used inductively
later on.

Let S be a square region having vertices vy, v, vs, and vy and let e > 0
be given. Suppose a real valued function, f, has been defined on the
boundary of S such that f has only two relative extrema on the boundary of
S, and f is linear (but not constant) on each edge. We first define a process
(veferred to as process (x)) by which f can be extended to the boundaries of
certain subsquares of S. Subsequently, we use process (*) in an inductive
manner to extend f continuously to a dense set of horizontal and vertical
lines, and finally we show that the resulting function has a continuous
extension to the entire plane. First, however, process (). To simplify notation
and without losing essential generality, we assume the vertices of S’ to be
v, (0; 0), v,(1, 0), v3(0, 1), and v,(1, 1), that m= min {f(v)} = f(v,), and let
M =max {f(s)}. The set of vertices for the sixteen nonoverlapping sub-

squares of S’ on whose boundaries we wish to extend f is {(4m, 4n): m, n.

=0, 1,...,4}. To insure that f is linear on the edges of these subsquares, we
need only specify f at each of the vertices and extend linearly on edges. Since
f is already defined on sixteen of these vertices (those on the boundary of S)
we will be finished upon defining f on the remaining nine vertices. To this
end, let 4 = {f(}m, in): either m or n =0 or 4} and let [a, b] be an interval
in [(3M +5m), £(5M +3m)] which misses A. Define f at the remaining nine
vertices as follows:

L f(%: %) =a, 4. f(2’ 4, =§(a+7b)» 7. f(%’ i') = %(3a+b):
2fG D =4Ga+3b), S5 fG3 8. /& P =4$(3a+5b),
3.fG D =%@+3b), 6 f(za%)~§(7a+b), 9. [, 1) =M+e.

Now, as [a, b] misses A it follows that if S’ is one of the sixteen aforemen-
tioned subsquares of S, then f takes on distinct values at the vertices of S
Further, as a exceeds £(3m+ M) it follows that f&, b is the maximum of f
on the boundary of the subsquare whose vertices are {(4m, 4n): m, n =0 or
1}. This, and the facts that f is linear on edges and has only two relative

extrema on the boundary of S allow us to make th. following observation. .
In this observation B denotes the union of the boundaries of the sixteen'

subsquares.
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OBSERVATION. If ze B\ {(0, 0)} there is an arc «: [0, 1]~ B such that
«(0)=(0,0), a(l) =z and if s <t then

f(s) < fle@)-

Now that this extension process is defined, we are ready to construct the
desired function, The construction is accomplished by first inductively defin-
ing f on a grid G consisting -of those horizontal and vertical lines whose
coordinate intercepts are of the.form [2*m+2""*(m+1)]/2" where m and n
are integral and k =0, 1, 2,...,n. We then show that this f has a continuous
extension to the entire plane. The induction proceeds as follows:

Let Gy = {(x, y): x or y is integral} and for (x, y)eG,, define f(x, y)
=x+2y. The grid G, divides the plane into enumerably many square
regions of unit edge length and f has been defired in such a manner that it is
linear on edges and it takes on distinct values at the vertices of any
particular square.

Suppose now that at the nth stage of construction the plane has been
divided into enumerably many nonoverlapping square regions of edge length.
1/4"~1. Suppose further that for the boundary of any particular such square
that f has been defined so that it is linear on edges, and has only two
relative extrema. Divide each of these square regions into sixteen nonoverlap-
ping congruent subsquares, and extend the ‘definition of f on the boundaries
using process (x) with ¢ =¢,,, = 1/2"*3.

" This completes the inductive portion of the construction, and we must
now verify that f can be continuously extended to the entire plane:

Let peR? and let.{p,: n=1, 2,...} converge to p with each p, on the
grid G defined earlier. In order to show that f has a continuous extension we
must show that the sequence {f(p,); n=1, 2,...} is Cauchy. At each of the
inductive steps described earher the plane is divided into enumerably many
nonoverlappmg square regions. If B is the boundary of one such square
region of the nth stage, we let d(B)= max(f/B)—min(f/B) and define d,
=sup {d(B): B is the boundary of a region of the nth stage} Note that d,
=3 and in general
(0))] dyiy < 5d,/8+27"

Also, if § is a region of the nth stage, and T < S is a region of the (n-1) st stage,
then

@ F(DfS) 0.
It follows from (1) and (2) that {f(p,)} is Cauchy and consequently that f has

a continuous extension to the entire plane. Without ambiguity we let. f also
denote this continuous extension.
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Let 4 denote disc in the plane. For some n there is a square region S, of
the nth stage such that S, = 4. If M and m respectively denote the maximum
and minimum of f on the boundary of S,, then there is a subsquare T of §,
which contains the center of S, and whose entire boundary maps into the
internal [&(5m+3M), $(3m+5M)). However, f~!(M) intersects both the
interior of T (because f is continuous and the center of S, maps to M+ze,)
and. the boundary of S,. It follows that f~!(M) is disconnected by the
boundary of T.

Arc accessibility

Suppose that peG. Then there is a smallest index n(p) such that p is on
the boundary, B, of a grid square of the n(p)th stage of construction. Any
segment o, which lies in B and terminates at p will have the property that

S (@) a = {p} because [ is linear on S.

Now, let pe R>—G and let S,(p) be the unique square region of the nth
stage which contains p. Let g, be that point on the boundary of §,(p) where
the restriction of f to the boundary of S, (p) attains 2 minimum, Note that g,
is necessarily a vertex of S,(p), and that f(g,) < f(g,.,). There is a piecewise
linear arc a, such that ,(0) =q,, %,(1) =q,+, and f(a,(s)) < f(,(t)) for
0<s<t<1. Finally note that since p¢G it follows that the sequence
{f(@): n=1, 2,...} does not terminate. Hence, if « = {Ju, then a U {p} is an

arc at p and f(a)r f(p) =@ because f(g,) <f(p) for every n, and this
completes the proof.

Tt should, perhpas, be noted that the hypothesxs that X = R? could

easily be replaced by X = R™ (m > 2).

References

[1] K. M. Garg, On nowhere monotone functions, 1. Derivates at a residual set, Ann. Univ. Sci.
Budapest, Eotvos Sect. Math. 5 (1962), pp. 173-177. .

[2]1 — On level sets of a continuous nowhere monotone function, Fund. Math, 52 (1963), pp. 59
68.

[31 — Monoronicity, continuity and levels of Darboux functions, Colloq. Math. 28 (1973), pp.
91~103.

[4] — Properties of connected functions in terms of their lorel sets, Fund. Math. 97 (1977)
17-36. .

[5]1 Z. Grande, Les ensembles de niveau et la monoronie dune fonction, Fund. Math. 102
(1979), pp. 9-12.

icm

©

Nowhere monatone functions 181

[6]1 J.G.Hocking and G.S. Young, Topology, Addison-Wesley, Reading, Mass., 1961.

[7] K. Kuratowski, Topology, Vol. I, New York-London-Warszawa, 1966.

[8] — Topology, Vol. 11, New York-London-Warszawa, 1968.

[9] J.S.Lipifiski, Une remarque sur la continuité et la connexité, Collog. Math. 19 (1968), pp.
251-253.

DEPARTMENT OF MATHEMATICS
ST. OLAF COLLAGE
Northfield, Minnesota

Accepté par la Rédaction le 123.1981


GUEST




