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The degree sets of conmnected infinite graphs
by

Frank Harary (Ann Arbor, Mich) and Egbert Harzheim (Diisseldorf)

Abstract. The degree set of a (finite or infinite) graph is the set of degrees of its vertices.
We determine precisely which sets of cardinals constitute the degree set of some connected

graph.

Throughout this note the concept of graph is used in the serise [2] of a
graph without loops and multiple edges, except that also infinite graphs are
studied here. The degree of a vertex v of a graph G is the cardinality of the
set of all vertices of G adjacent to v. It is denoted by deg(v), and the set of all
cardinals deg(v), where v is a vertex of G is called the degree set of G. The
degree sequence of a denumerable graph G is the nondecreasing sequence of
the cardinals deg(v). Such degree sequences were studied in [1].

A basic question immediately suggests itself: Given any set D of
cardinals, which graphs (or which graphs of a special class of graphs) have D
as degree set? Several results in the case of finite degree sets of finite numbers
were obtained by Kapoor, Polimeni, and Wall [4] and Sipka [5].

It is trivial that every set of cardinals is the degree set of a graph. For if
D = {q;|iel} is a set of cardinals, then the union of complete graphs G,,
iel, having pairwise disjoint vertex sets, and where G; has a;+1 vertices has
D as its degree set. Our object i§ to determine precisely which sets D of
cardinal numbers are the degree sets of connected graphs.

In the following, small Greek letters denote ordinals, @ the least infinite
ordinal and n a nonnegative integer. We shall always make free use of the
Axiom of Choice. So if D is any set of cardinal nimbers we can represent it
in the form,

(1) D ={a)| v<a} for an ordinal a, where u <v <a implies a, < a,.

‘Using transfinite induction, (1) easily yields

v a,= for v<a.

We partition D into the subsets D, and D; where Dy contains all finite
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cardinals of D and D; the infinite ones. The case where D; is empty is very
easy. It is settled by the following immediate observation.

Lemma 1. If a,, 0 <v < w, are positive integers (not necessarily pairwise
different) with a, > 1 for v > 1, then there exists a rooted tree such that the
root vertex r has degree a;, all vertices of the 1-sphere of r have degree a,, all
of the 2-sphere of r have degree a; and so on.

CoroLLARY. Every set D of positive integers is the degree set of some tree.

If D is finite this follows from the lemma because we can repeat an
element > 1 of D infinitely often in a,, 0 < v < w. Of course, for finite D, one
can derive more special results (see [4]).

It remains to discuss the situation D; 5 (). We split it into two cases,
namely where D, (and hence D) has a greatest element or not.

Lemma 2. Let D be a set of cardinals which has a greatest infinite
cardinal. Then there exists a connected graph G having D as degree set.

Proof. Let D be represented as in (1) and D; = {a,| f <
there exists an ordinal 7 such that t+1 == a. For every v satisfying f < v <a
let G, be a complete graph whose vertex set ¥, has cardinality a,. Further we
can assume that the sets V,, B <v <a, are pairwise disjoint. We choose a
fixed element u,e¥,. Then we construct the union of the graphs G,, B <v
<o, and add to it an edge linking u, with u, for every v with § < v < 1. The
resulting graph G* is connected and still has D; as its degree set since a+ 1
= g for infinite cardinals a and since the degree of u, in G* is increased at
most by |z] < a, (see (2)!). Then it is easy, using the method of Lemma 1, to
implant G* in a suitable tree for D, by replacing a branch of this tree in such

a way that the resulting graph G is. connected and has D as its degree set.

For the discussion of the remaining case where D; is non-empty but has
no greatest element we have to recall some basic concepts and theorems of
set theory which were stated by Hausdorff [2, p. 130-131].

According to von Neumann’s approach, an ordinal « is the set of all
ordinals § satisfying f < a. A subset § of an ordinal a is called cofinal in o if
for every xeuw there exists an element seS such that x<s, If A is a given
limit ordinal, then among the (well-ordered) sets S = 4 which are cofinal in 4

there is one whose corresponding ordinal type is minimal. This latter is

denoted by cf (4). A limit ordinal A is called regular if cf(4) = A, otherwise A is
singular. A regular limit ordinal must be an initial ordinal @,. An initial
number , with o > 0 is said to be weakly inaccessible if w, is regular and  a
limit number. All @, where ¢.is not a limit number are regular. If & > 0 is a limit
riumber then o, is regular only if w, = a.
Lemma 3. Let D ={a,| v <A} be an infinite set of cardinals where a,

<a, for p<v<Jland D has at least one infinite cardinal, but no greatest
cardinal, so that A is a limit ordinal. We put w, =cf(1). If there exists an
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v < a}. Then
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ordinal v < A such that a, = W,, then there exists a connected graph having D
as its degree set.
Proof. The set D; of infinite cardinals of D is representable as D,
={a,| B<v<A}for a suitable . Let B={y] f<v< A}. Then there exists
a subset C = B of order-type o, which is cofinal in A. For veB let G, be a
complete graph of order a,. We can assume that the corresponding vertex
sets V,, ve B, are pairwise disjoint. For every ve B we choosc an element
u,€V,. We write U for the union graph of the graphs G,, ve B. Now let 7 be

an ordinal satisfying our assumption. Without loss of generality we can

assume that te C. Then for every ceC which is different from © we join u,
with u,. So there are |C| = N, additional edges having u, as vertex. But this
does not increase the degree ¢, > N, of u, in U.

Further, if ueB\C, we join u, with u,, where ¢ is the first ordinal in C
which satisfies u < ¢. For every QEC this introduces at most g < a, new
edges having u, as vertex. But this does not increase the degree a, of u,. Also
the degrees of the vertices u, with ueB\ C are not changed by one addmonal
edge. So we have constructed a connected graph having D, as degree set. As
in Lemma 2 we can now accomplish the proof for the entire degree set D.

Now we can give a complete characterization of thqse sets of cardinals
which are the degree set of a connected graph as our main result.

TueoREM 1. Let D = {a,| v < A} be a set of cardinals, where p<v < 2
implies a, < a,. If A is a regular initial number w, with & > 0 and a, < X, for
all v < A then D is not the degree set of a connected graph. In all other cases D
is the degree set of a connected graph.

Proof. According to the three lemmas, we can restrict ourselves to the
discussion of the following case:

-+ A is a limit ordinal and D contains infinite cardinals.

Now, if A is singular, then because of (2) there exists an ordinal t < 4
such that a, >N, =[cf(4). Hence by Lemma 3 there exists a connected
graph with degree set D. ' :

Suppose now that 2 is regular. Then 4 is a regular initial number w,.. If

"o =0 there is an ordinal t < A = w such that a, >N, and again Lemma 3

can be applied.

So finally we have to handle the case where A is a regular initial ordinal
«, with oo >0 and g, <N, for all v < 4.

Assume that G is a connected graph having D as degree set. Its vertex
set V clearly satisfies [V| > &,. We well-order ¥ and consider the subset V*
of the first A vertices in this well-ordering:

={v] t < 4i}.

Since G is connected, for every T with 0 < < A there is a path joining v,
with v,. The lengths of these paths are-natural numbers, and since A is
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regular it follows from the Pigeonhole Principle that there are N, pairwise
different vertices w,, T < 4, such that the corresponding paths P, joining w,
with v, all have equal length, say n.

Let w, = b2, b!,...,b" =1, be the vertices of P,, listed in their path
order. Then the set {b" 1 1< A} bhas cardinality less than ¥, because
deg(vo) < N,. Again according to the Plgeonhole Principle there exists a
subset S, = A with |S;| = N, such that all b!™*, v€'S,, are equal Repeating
this process we obtain a set S, §; <=4 wnh IS4l =N, such that all
b2, 7€8,, are equal, and after n—1 steps we arrive at aset S,y <4 of
cardinality N, such that all b, TS, , are equal, say = z. But since z is
adjacent to all w,, teS§,.,, this contradicts the inequality deg(z) <¥,.

Using the concept of weakly inaccessible numbers we can reformulate our
theorem as follows: )

THEOREM 2. Let D ={a| v <A} be a set of cardinals, where p<v <J
implies a, < a,. Then there exists a connected graph having D as degree set in
all cases with the exception of the following: L is a weakly inaccessible ordinal o,
and a, <R, for all v< A,

Proof. According to Theorem 1 in the exceptional case' A is a regular
initial ordinal w, with « >0 and a, < ¥, for all v < 4. Then. « must be a
limit ordinal number. Otherwise there would exist an ordinal # such that «
=p+1, and we would have a, <N, for v <1, which gives |D|<Ny+
+|Bl < Ny < K, contradicting |D| = |A| = N,. Now a regular initial ordinal o,
with a limit number o as index is weakly inaccessible. Hence our statement
follows from Theorem 1.
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