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Periodic homeomorphisms on S° and
cubes with torus knotted holes

by

Bradd E. Clark and Gerhard X. Ritter (Lafayette, La)

Abstract. In this paper we obtain the classification of the orbit space of a free periodic
group action on a cube with torus knotted hole. We also give a short geometric proof of the
well known fact that a non-trivial torus knot cannot be the fixed point set of a piecewise linear
periodic homeomorphism on §°. While the Smith Conjecture has been solved, our geometric
proof could conceivably lead to a purely geometric proof of the Smith Conjecture for all fibered
knots.

In this paper we establish the following three results:

1. The classification of the orbit space of a free periodic group action on
a cube with torus knotted hole.

2. A free periodic group action on S* is conjugate to a standard ro-
tation if and only if it is invariant on a torus knot.

3. A non-trivial torus knot cannot be the fixed point set of a piecewise
linear periodic homeomorphism on $°. .

Although the third result has been established by C. H. Giffen [4] and
R. H. Fox [3], our geometric proof is extremely short in comparison to
Giffen’s and does not involve the special algebraic techniques used by Fox.
While the Smith conjecture has evidently been solved, our geometric proof
could conceivably lead to a purely geometric proof of the Smith conjecture
for all fibered knots. ,

We shall only be concerned with the piecewise linear action of a given
cyclic group Z, on a triangulated 3-manifold M. For this reason all objects
in this paper should be viewed as piecewise linear objects. In particular we
shall assume without loss of generality that Z, acts simplicially on M, for
every heZ, the fixed point set of h is a subcomplex of M and that the
natural projection ¢: M —~M/Z, is simplicial and maps simplexes
homeomorphically.

. Boundary, closure and interior will be denoted by 9, cl, and int, respect-
ively. By a fibering of a 3-manifold we shall mean a decomposition of that
manifold into simple closed curves in the sense of Seifert [8]. If m and n are
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relatively prime positive integers, then the standard (m, n)-fibering of 5° is
given by the transformation

Xy = %y cos (mt)+x;, sin (mi),

Xy = —x, sin (mt)+x, cos (mt),

X3 = X3 €os (nt)+x, sin (nt),

X3 = X3 sin (nt)+ x4 cos (nt).

Thus the point (x}, x5, xj, x4) €S> traverses a simple closed curve as ¢ ranges
from 0 to 2n. In [8], Seifert proved the following:

THEOREM 1. Given a fibering of S°, then there exists a pair of relatively
prime positive integers m and n and a homeomorphism of S® onto itself which
carries the fibering onto the standard (m, n){fibering. Conversely, every pair of rela-
tively prime positive integers m and n determine a fibering of S°.

We note that under the above transformation, the points

(%1, %3, 0,0)eS> and (0, 0, x5, x,)€S® trace. the standard 1-spheres
xt+x% =1 and x}+x2 =1 in §°. Furthermore, all other points trace curves
which wind about these orthogonal 1-spheres. Thus we have:

TrEOREM 2. Every fibering of S® contains at least two unknotted simple .

_ closed curves and if a fiber is a non-trivial torus knot, then it is a regular fiber.
We are now ready to establish the main results of this paper.
TueoreM 3. Let K be a cube with torus knotted hole and let Z, act freely
on K. If he Z, is a generator, then there is an annulus A < K which splits K
into two solid tori N, and N, such that h(N))= N; and h(A) = A. In par-
ticular, the orbit space K/(h) is obtained by attaching the two solid tori
N/<hy along their common boundary annulus A/<h).

Proof. Let A, be an annulus in K such that K can be thought of as
two solid tori, V; and ¥, sewn together along A4,. We can think of ¥ as a
self-homeomorphism of K for all powers of i. Thus by [2] or [5] we know
that 4(4,) is an annulus which is isotopic to A,. Therefote we can find an
embedding of A4;x[—1,1] into K with 8K (4 x[—1, 1]) = 84, x
x[—1,1], 4; = 4, x10} and H(A) < Ay x[~1, 1] for all powers of i,

Let B= A4, Uh(A,)U...0h" 1 (4)). Clearly, h(B) = B. Hence we can
find a regular neighbourhood of the polyhedron B, say N (B), such that
N(B) = Ay x[—1, 1] and h(N(B)) = N(B). Let {C,, C,, ..., C,,} be the col-
lection of components of K~ N(B). Exactly two of these components will-
contain a core of V; or a core of ¥,. Call these components C, and C,. Let
M=N(B)UC3;UC,U...uC,. Then M is a cube with handles and con-
ceivably holes, which separates C, from C, since A; = M. Furthermore,

h(M) = M.
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Clearly, any hole in M is associated with a handle of either C, or C,.
Let D be a disk with 0D < §C, udC, which cuts that handle. Then
DURD)U...Uh""1(D) = D' is setwise fixed by h. As before we can find a
regular neighborhood of D, N(D'), such that h(N(D") = N(D'). Therefore
B(MUN(D))=MUND)=M.If {C], Cy, ..., C;} are the components of
K~ M, we still have only two components which contain a core of ¥, or a
core of V,. Let C; and Cj; be these components, and let M"
=M UC,U...UC,. We still have that h(M’)=M", and that M"
separates C; and C,. Continuing this process we obtain a cube with handles
M with h(M") = M". Also, there are two components of K—M"’, C{’ and
C% which contain a core of ¥; or V,. We redefine M = M'’, C, = Cy’, and
C, = Cj'. Since M is a cube with handles, we know by Dehn’s lemma and
the loop theorem that the orbit space M/(h) is a cube with handles.

We can find a solid torus ¥; « C; with d¥; ndK an annulus and
cl(K—V;) a solid torus. If h(C,)=C,, then K can be thought of as
¥V, Uh(V,) U C where C is a solid torus which intersects both V; and h(¥;) in
an annulus in their respective boundaries. Since a core of ¥; and a core of
h(V;) can be used as geometric generators of =, (K) we would have h, an
isomorphism of m; (K) to itself taking the generators a and b of =, (K) to a;
and b, respectively. Since m;(K)~{a, bl a*=F} and =, (h(K))
~ {a, by| @ =57}, this is impossible. Therefore h(V;)< C, and hence
h(C,) = C, and h(C,) = C,. This means that the orbit spaces C,/¢h) and
C,/{h) are separated by M/{h} in K/{h).

We call a handle of M/<h) inessential if the handle contains a meridian
disc D with oD < 0K/<hy UBC,/<hy or 8D < OK/{h)> L dC,/<hy. Let
{Dy, ..., D,} be a complete set of meridian discs for inessential handles of
M/(h) with D, D; = @ for i # j. By considering the inverse image of these
discs in K, we can find a set of meridian discs {Dj, ..., Dp} of M with
DinD)= tZ) for i#j.

We call a handle of M inessential if the handle contains a meridian disc
D with 8D = 8K W C; or 8D = 8K U dC,. Since h(C,)=C, and h(C,)
= C,, we have that the orbit space of an inessential handle of M will be an’
inessential handle of M/(h). So {Di, ..., D} will be a complete set of
meridian discs for inessential handles of M.
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Let the inverse image of D; in M/Ck> be {Dis, ..., Dy}
<{D,, ..., D,}. Let N(Dj,) be a regular neighbourhood of Dj, in M such
that

K(NDj))nW(N(Djy))=® for

Then C =C;UC, UN(D}y)U...0h" *(N(Dj})) has two components
.and M’ =cl(K—C) has fewer inessential handles than M. Clearly h(M’)
= M. Continuing in this fashion we find a cube with handles which contains
no inessential handles; call it M". 3 :

We note that M" still separates C, from C,. Therefore M" contains an
annulus which separates a core of ¥; from a core of ¥, in K. Hence M"
contains an essential handle that separates C, from C,. But any other handle
of M" would have to be inessential. Thus M" is itself a solid torus.

We can find a meridian disc D for M” with the property that
H(D)n K (D) = @ for 1 <i<j< n. The iterates of D will split M” into n—1
3cells. We find a disc D' contained in one of these 3-cells such that D’ splits
the 3-cell into two 3-cells with 8D’ = a U B Uy U h(a), where a is an arc in D,
B and v are arcs in the two annuli 9M” N 0K. We assumed here, without loss
of generality, that in the 3-cell we chose the two discs D and h(D) were
adjacent. Clearly 4 = D' Uh(D)U...u B~ 1(D’) is an annulus with h(4) = A.

1gi<j<n.
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Let Ny and N, be the solid tori which when sewn together along 4 form
K. Suppose that h(N,) = N,. This would mean that h(C,) = C,. As we saw
before, this is impossible. Therefore, h(N;) =N, and h(N,) = N,. This
proves Theorem 3. ) ‘

We consider the following lemmas.

LemMmA 1. Let T be a torus in S® and D < S? a disc such that DT .

= 0D. If 0D is homotopically non-trivial on T, then there is a solid torus V in
83 such that D is a meridian disc for V and 0V = T.

Lemma 2. Let V be a solid ‘torus in S3, A an annulus in cl(S3 — V) with
ANV =04, and let A, and A, denote the two annuli in 8V with 0A; = 04 for
i=1, 2. If the components of 3A are meridians for V, then there exist two solid
tori Vy and V, in S* such that 3V, = AU A, V <V, and the components of 04
are meridians for V. ’
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LemMma 3. Let V be a solid torus in $° and A an annulus in cl($°—V)
which splits c1(S° — V) into two solid tori Ny and N,. If V is knotted, then the
components of 0A cannot be meridians for V, N; or N,.

The proof of Lemma 1 is clear. Lemmas 2 and 3 can be inferred from
[71.

TueoreMm 4. Let Z, act freely on S°. If he Z, is a generator, then h is
topologically equivalent to a standard rotation on 8* if and only if there is a
torus knot J in S* such that h(J) =J.

Proof. If h is equivalent to a standard rotation, then such knots obvi-
ously exist. On the other hand, if J is a trivial (unknotted in $) torus knot
with h(J) = J, then it follows from [6] that h is a standard rotation up to
equivalence. Thus we shall assume that J is a non-trivial torus knot in S°.

Since h(J) =J, there is a regular neighbourhood N(J) of J such that
h(N(J)) = N(J). Let K = cl($*— N(J)). By Theorem 3, there is an annulus 4
in K which splits K into two solid tori Ny and N, with h(N;)) = N; and h(4)
=A. Let p: 82— S3/(h) denote the natural projection p(x)= p(¥ (x)),
1<i<n,and let J, and J, denote the components of dp(A). Then J, U J,
splits dp(N;) into two annuli A" and p(4). Using a piecewise linear homeo-
morphism we may view A’ as the standard annulus {(x, y)eE* 1< x*+
+y*<2}. A concentric contraction of the annulus which takes the outer
boundary onto the inner boundary determines a fibering of A4'. Similarly, we
obtain a fibering of p(4) and, hence, a fibering for dp(N;) such that J, and
J, are two fibers and any other fiber of dp(N;) is parallel to J;. Furthermore,
since h(p~*(J})) = p~1(J)) and using standard general positioning arguments,
we may choose this fibering such that: )

1. for any fiber F, h(p~(F))=p~'(F) is a simple closed curve;

2. there exists a pair of meridian discs D; = p(N;) such that {) p YD) is
a disjoint union of meridian discs in N; and

3. 8Dy intersects a fiber exactly k; points, where k; is the winding number
of J; on p(N).

Cutting p(N;) open along D; yields a solid cylinder C;. In view of
Lemma 3, k; > 0. Thus the fibering of dp(N;) decomposes the “annular”

" boundary of C; into line segments. Using a concentric contraction of this

decomposition onto the axis of C; decomposes C; into such line segments.
Reidentifying top and bottom of C; gives us a fibering of p(N;) such that for
each fiber F in p(N), p~*(F) is a simple closed curve with h(p™*(F))
=p~!(F). Since the fiberings of p(N,) and p(N,) agree on p(A)
= dp(Ny) " Op(N,), we have a fibering of K/<h> and, hence, of op(N (). As
before, we may extend the fibering of dp(N(J)) to the core p(J) of p(N(J))
such that every fiber lifts'to a simple closed curve id S3 which remains
invariant under h. :

We now have a fibering of §* with each fiber invariant under h.
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According to Theorem 2 there must be at least two unknotted fibers. Since h
is invariant on each of these, it follows from our earlier remark that h is
equivalent to a standard rotation. This verifies Thsorem 4.

TaroreM 5. If h is a piecewise linear homeomorphism of period n> 1 on

§3 with fixed point set a simple closed curve J, then J cannot be a non-trivial
torus knot.

Proof. Suppose J is a non-trivial torus knot with A(J) = J. Then there
is a regular neighborhood N(J) of J such that h(N{J)) = N(J). Using the
argument given in the proof of Theorem 4, we may fiber S such that J is a
fiber and every fiber remains invariant under the action of A.

If F is a fiber in N (J), then we may choose a meridian disc D for N(J)
such that DA J is a point, h(D) = D and the number of points in F naD
equals the winding number of F on N(J). By our previous observation, this
winding number must be greater than zero. Since the only fixed point of 4 on
D is DnJ and h(F n D) = F n 8D, the winding number of F on N (J) must
be greater than 1. Thus J is an exceptional fiber and, according to Theorem
2, cannot be a non-trivial torus knot. But this contradicts our supposition
and proves Theorem 5.

In view of Theorem 5 and the fact that every torus knot is a fibered
knot, it seems feasible that a purely geometric proof of the Smith Conjecture
for fibered knots can be developed.
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On the triangulation of smooth fibre bundles

by
F. E. A. Johnson (London)

Abstract. In this paper we prove that if p: (E, 0E) — B is a smooth fibre bundle, where
(E, OE) is a smooth compact manifold with corners in the boundary E, then p admits a piecewise
differentiable ( = P.D.) triangulation by a PL bundle, and moreover that any such triangulation
of p: 0E — B extends to one on the whole of E. This generalises the theorems of Putz, in the
case where JE is smooth, and Lashof and Rothenberg, in the case of a vector bundie.

The main technical result is that if «: K — M is a P.D. triangulation of a smooth manifold
m-ad M by a PL manifold m-ad K, then the simplicial set PL(K) \PD(K, M) is contractible,
where PL(K) is the simplicial group of PL automorphisms of K, and PD(K, M) is the simplicial
set whose n-simplices are P,D. triangulations 4"x K — 4" x M commuting with projection onto
an

§0. Introduction. In its simplest form, the main theorem proved in this
paper is that a smooth fibre bundle with compact fibre is triangulable by a
PL bundle, and that, if the fibre is bounded, such a triangulation of the
subfibre space determined by the fibre boundary can be extended to one of
the whole bundle. In its most general form, we wish, in addition, for the fibre
to have corners, and to be given a labelled collection of transversely inter-
secting submanifolds of codimension zero in the boundary, and a compatible
collection of PL bundles triangulating the subfibre spaces corresponding to
the labelled faces. The theorem then asserts the existence of a PL bundle
triangulating the whole bundle and extending the given triangulations.

~ Our main theorem, in its greatest .degree of generality, is a necessary
ingredient of our paper [5], in which we prove that compact stratified sets in
the sense of Thom are triangulable by simplicial complexes. A proof of the
simplest form of our main theorem has been given by Putz [9]. Were this
form sufficient for our application, this present paper would be unnecessary.
However, Putz gives no consideration to the case where the fibre boundary
has corners and since we definitely require the theorem in this degree of
generality, and since it is also not clear how to modify Putz’ somewhat
adhoc argument to give the result, we ‘are forced to give an independent

treatment. B o
In fact, the published result which is closest to ours, and from which
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