to prove by induction that all other components are surjective as required in 2.1. Thus we have defined a system  $(\Psi, e)$  of equations.

b) For every T-algebra  $A = (X, \{\omega^A\})$ , define  $A' = FX \xrightarrow{\delta} X$  by

$$\delta(\omega) = \omega^{A}(1_{X})$$
 for all  $\omega \in FX$  ( =  $B(X, 1)$ ).

c) It is routine to verify that the assignement  $A \mapsto A'$  defines an isomorphism of categories T-alg and  $(F, \Psi, e)$ -alg. Notice that the inverse isomorphism sends each  $(F, \Psi, e)$ -algebra  $A = FX \xrightarrow{\delta} X$  to a T-algebra A  $=(X, \{\omega^A\})$  defined by

$$\omega^{A}(\alpha) = \varepsilon_{i}(\omega \alpha^{*})$$
 for all  $\omega \in T(n, 1), \alpha \in X^{n}$ ,

where  $\varepsilon$  is as in 2.1 h), and i is such that  $\omega \alpha^* \in X_i$ .

## References

- [1] J. Adámek, Free algebras and automata realizations in the language of categories, Comment. Math. Univ. Caroline 15 (1974), pp. 589-602.
- [2] M. Barr, Coequalizers and free triples, Math. Z. 116 (1970), pp. 307-322.
- [3] W. Felscher, Birkhoffsche und kategorische Algebra, Math. Ann. 180 (1969), pp. 1-25.
- [4] A. W. Hales, On the non-existence of free complete Boolean algebras, Fund. Math. 54 (1964), pp. 45-66.
- [5] J. R. Isbell, General functorial semantics I, Amer. J. Math. 94 (1972), pp. 535-596.
- [6] G. M. Kelly, Notes on the transfinite induction, preprint,
- [7] V. Kurková-Pohlová and V. Koubek, When a generalized algebraic category is monadic, Comment. Math. Univ. Carolinae 15 (1974), pp. 577-602.
- [8] F. W. Lawvere, Functorial semantics of algebraic theories, Thesis, Columbia University 1963.
- [9] F. E. J. Linton, Some aspects of equational categories, in: Proceedings of the conference on categorical algebra La Jolla 1965, pp. 84-94, Berlin-Heidelberg-New York 1966.
- [10] S. Mac-Lane, Categories for the working mathematician, Springer, Berlin-Heidelberg-New York, 1971.
- [11] E. G. Manes, Algebraic Theories, Berlin-Heidelberg-New York 1976.
- [12] J. Reiterman, Large algebraic theories with small algebras, Bull. Austral. Math. Soc. 19 (1978), pp. 371-380.
- [13] One more categorial model of universal algebra, Math. Z. 161 (1978), pp. 137-146. [14] J. Słomiński, The theory of abstract algebras with infinitary operations, Dissertationes
- Math. 18 (1959).
- [15] V. Trnková, J. Adámek, V. Koubek and J. Reiterman, Free algebras, input processes and free monads, Comment. Math. Univ. Carolinae 16 (1975), pp. 339-452.

DEPARTMENT OF MATHEMATICS

FACULTY OF NUCLEAR SCIENCE AND TECHNICAL ENGINEERING

TECHNICAL UNIVERSITY OF PRAGUE

Prague 1, Husova 5 Czechoslovakia

Accépté par la Rédaction le 3, 2, 1981



## On approximate n-connectedness

## Thomas J. Sanders\* (Annapolis, MD)

Abstract. The concept of approximate n-connectedness has been given by K. Borsuk in his book Theory of Shape as a property of topological spaces to correspond in the theory of shape to the concept of n-connectedness in homotopy theory. In this paper, this concept is characterized using the homotopy bi-groups. Also, a Vietoris-Smale type theorem in compactly generated shape theory is proven, conditions are given under which the shape groups are isomorphic to the usual homotopy groups, and a result on lifting CG-shape maps and some of its applications to the theory of decomposition spaces are given.

1. Introduction. Let K be a category. There are associated categories inv(K) whose objects are inverse systems  $X = \{X_{\alpha}, p_{\alpha\alpha'}, A\}$  in K and whose morphisms are morphisms of inverse systems  $f = (f, f_B): X \to Y$ =  $\{Y_B, q_{BB'}, B\}$ , and pro(K) which is a quotient category  $Inv(K)/\simeq$  (see for example [Mar]). Dually, there are associated categories dir(K) whose objects are direct systems  $X^* = [X^{\alpha}, p^{\alpha \alpha'}, A]$  in K and whose morphisms are morphisms of direct systems  $f^* = (f, f^{\alpha})$ :  $X^* \to Y^* = [Y^{\beta}, q^{\beta\beta'}, B]$ , and ind (K) which is a quotient category  $dir(K)/\simeq$  (see for example [S-4]). If the function on indicees f of a morphism in either inv(K) or dir(K) is a bijection. that morphism will be called a special morphism. If L is a category and  $F: K \to L$  is a functor, then F induces functors  $pro(F): pro(K) \to pro(L)$  and  $\operatorname{ind}(F)$ :  $\operatorname{ind}(K) \to \operatorname{ind}(L)$ .

It can be verified (cf. [S-4]) that the following holds.

- (1.1) THEOREM. If  $f^*$  is a special dir(K) morphism, then
- (a) if each  $f^{\alpha}$  is an isomorphism in K, then the equivalence class  $[f^*]$  is an isomorphism in ind(K),
- (b) if each  $f^{\alpha}$  is an epimorphism in K, then  $\lceil f^* \rceil$  is an epimorphism in ind(K), and
  - (c) a similar statement holds for monomorphisms.
- (1.2) NOTATION. If X is a metrizable space and  $x_0 \in X$ , then  $\pi_n(X, x_0)$ denotes the usual homotopy groups,  $\underline{\pi}_n(X, x_0)$  denotes the shape groups [S-2],  $\operatorname{pro}(\pi_n)(X, x_0)$  denotes the homotopy pro-groups (whenever X is

<sup>\*</sup> Supported by a grant from the Naval Academy Research Council.

compact), and ind-pro  $(\pi_n)$   $(X, x_0)$  denote the homotopy bi-groups [S-4]. The dimension of a metrizable space X is the covering dimension (cf. [Mor]). A continuous function  $f: (X, x_0) \to (Y, y_0)$  is said to be *proper* if for each compact set  $B \subset Y$ ,  $f^{-1}(B)$  is a compact subset of X.

- 2. Approximate *n*-connectedness. K. Borsuk [Bor] has given the following definition: A pointed space  $(Y, y_0)$  is said to be approximately n-connected if, for any AR(M)-space N containing Y as a closed subset and for any compactum  $B \subset Y$  containing  $y_0$  there exists a compactum  $\hat{B} \subset Y(B \subset \hat{B})$  such that for every neighborhood  $\hat{V}$  of  $\hat{B}$  (in N) there is a neighborhood  $V_0$  of B (in N) with the property that every map of the pointed n-sphere  $(S^n, *)$  into  $(V_0, y_0)$  is null-homotopic in  $(\hat{V}, y_0)$ . If  $(Y, y_0)$  is approximately k-connected for  $0 \le k \le n$ , then the notation  $(Y, y_0) \in AC^n$  will be used. The homotopy bi-groups characterize this concept.
- (2.1) Theorem. A pointed metrizable space  $(Y, y_0)$  is approximately n-connected iff the homotopy bi-group ind-pro $(\pi_n)$   $(Y, y_0)$  is a zero object in the ind-pro-group category.

Proof. The assertion follows since the homotopy bi-group ind-pro  $(\pi_n)$   $(Y, y_0)$  is a zero object iff for each compactum  $B \subset Y$  containing  $y_0$  there is a compactum  $\hat{B} \subset Y$ ,  $B \subset \hat{B}$ , such that the morphism induced by the inclusion map  $\operatorname{pro}(\pi_n)$   $(q^{\hat{B}B})$ :  $\operatorname{pro}(\pi_n)$   $(B, y_0) \to \operatorname{pro}(\pi_n)$   $(\hat{B}, y_0)$  is the zero morphism in the pro-group category.

(2.2) Corollary (cf. Theorem 8.11, p. 145 of [Bor]). If  $(Y, y_0)$  is approximately n-connected, then the shape group  $\underline{\pi}_n(Y, y_0)$  is trivial.

As a consequence of the Whitehead theorem in CG-shape (Theorem 8.2 of [S-4]) one has the following.

- (2.3) COROLLARY. A  $\sigma$ -compact (locally compact) n-dimensional ( $n < \infty$ ) metrizable space  $(Y, y_0)$  has trivial CG-shape iff  $(Y, y_0) \in AC^n$ .
- (2.4) Note. According to [S-3], one may replace CG-shape with weak shape in (2.3).
- 3. A Vietoris-Smale theorem. Borsuk notes ([Bor], 8.10 p. 145) that approximate *n*-connectedness for compacta reduces to the following statement.
- (3.1) Note. If  $(Y, y_0)$  is a pointed compactum lying in an AR (M)-space N, then  $(Y, y_0)$  is approximately n-connected iff for every neighborhood V of Y in N there is a neighborhood  $V_0$  of Y in N such that every map  $f: (S^n, *) \to (V_0, y_0)$  is null homotopic in  $(V, y_0)$ .
- J. Dydak [Dyd] used (3.1) to give a Vietoris-Smale theorem for shape theory. As a consequence of his Theorem 8.5, one has the following.
- (3.2) LEMMA. If  $f:(X, x_0) \to (Y, y_0)$  is a surjective map of compacta such that  $f^{-1}(y) \in AC^n$  for each  $y \in Y$ , then the induced morphism of pro-groups

 $\operatorname{pro}(\pi_k)$  (f):  $\operatorname{pro}(\pi_k)$   $(X, x_0) \to \operatorname{pro}(\pi_k)$   $(Y, y_0)$  is an isomorphism for  $k \leq n$  and an epimorphism for k = n+1.

An analogue in CG-shape theory is as follows.

(3.3) THEOREM. If  $f:(X,x_0)\to (Y,y_0)$  is a proper surjection of metrizable spaces such that  $f^{-1}(y)\in AC^n$  for each  $y\in Y$ , then the induced morphism of homotopy bi-groups

ind-pro 
$$(\pi_k)$$
  $(f)$ : ind-pro  $(\pi_k)$   $(X, x_0) \rightarrow \text{ind-pro}(\pi_k)$   $(Y, y_0)$ 

is an isomorphism for  $k \le n$  and an epimorphism for k = n+1.

Proof. Suppose  $f: (X, x_0) \to (Y, y_0)$  is such a map. Let  $\underline{F}$  be the compact cover of  $(X, x_0)$  whose elements are of the form  $f^{-1}(B)$  where B is a compact subset of Y and  $y_0 \in B$ . Note that  $\underline{F}$  is CS-cofinal [R-S] and that f induces a special ind-pro-morphism

$$f^*: [A, p^{AA'}, \underline{F}] \to (Y, y_0)^* = [B, \underline{q}^{BB'}, c(B)].$$

The result then follows from Theorem 1.1 and Lemma 3.2.

(3.4) COROLLARY. Under the hypothesis of Theorem 3.3, the induced homomorphism

$$\underline{\pi}_k(f)$$
:  $\underline{\pi}_k(X, x_0) \to \underline{\pi}_k(Y, y_0)$ 

is an isomorphism of groups for  $k \leq n$ .

- **4.** Local *n*-connectedness. A consequence of Theorem 8.7 of [Dyd] is as follows.
- (4.1) Lemma. If Z is a compact LC<sup>n</sup> metrizable space and  $z_0 \in Z$ , then the natural homomorphism

$$p_k: \pi_k(Z, z_0) \to \underline{\pi}_k(Z, z_0)$$

is an isomorphism of groups for  $k \leq n$ .

It then follows that

(4.2) THEOREM. If  $(Y, y_0)$  is a metrizable space having a CS-cofinal cover consisting of LC<sup>n</sup> spaces, then the homomorphism [S-2]  $p_k$ :  $\pi_k(Y, y_0) \rightarrow \underline{\pi}_k(Y, y_0)$  is an isomorphism of groups for  $k \leq n$ .

The principal result of this section is as follows.

(4.3) Theorem. If  $(Y, y_0)$  is a  $LC^n$  metrizable space, then the homomorphism

$$p_k: \pi_k(Y, y_0) \rightarrow \underline{\pi}_k(Y, y_0)$$

is an isomorphism of groups for  $k \le n$ .

The proof of this theorem uses the following definitions and lemmas.

(4.4) Definition (cf. [Dyd]). Let  $\underline{U}$  and  $\underline{Y}$  be open covers of a metrizable space Y. A realization (partial or full)  $f: L \to Y$  of a complex K in Y is said

73

to be relative to U provided that for each (closed) simplex  $\sigma$  of K there is a  $U \in U$  such that  $f(\sigma \cap L) \subset U$ . The open cover V is said to be an n-refinement of U if every partial realization of any (at most) (n+1)-dimensional complex K relative to V extends to a full realization of K relative to U.

A consequence of Lemma 8.2 of [Dyd] is that

(4.5) Lemma. If  $Y \in LC^n$ , then each open cover U of Y has an open nrefinement V.

Suppose Y is a metrizable space and  $B \subset Y$  is compact. Select sequences  $U_k$  and  $V_k$  of locally finite (normal) open covers of Y such that the mesh of  $\underline{U}_k$  is less than 1/k,  $\underline{U}_{k+1}$  star refines  $\underline{V}_k$ , and  $\underline{V}_k$  n-refines  $\underline{U}_k$ . Let  $\underline{U}_k(B)$  $=\{U\cap B|\ U\in U \text{ and } U\cap B\neq\emptyset\}$  be the induced covers of B and let  $K_k(B)$ denote the nerve of  $U_k(B)$ ,  $p_{k,k+1}^B$ :  $K_{k+1}(B) \to K_k(B)$  canonical projections, and  $p_k^B: B \to K_k(B)$  canonical maps (cf. [Spa], p. 152). A similar sequence of open covers was used in the proof of the Whitehead theorem for CG-shape. Y. Kodama [Kod] has also used a similar sequence of open covers to obtain a ∆-space having the same shape (both weak and Fox) as a finite dimensional locally compact metric space.

(4.6) Lemma. Suppse  $Y \in LC^n$  is metrizable,  $B \subset Y$  is compact, f : K $\rightarrow K_{k+1}(B)$  is a map of an (at most) (n+1)-dimensional complex, and  $g: L \rightarrow B$ is a map of a subcomplex L of K relative to  $U_{k+1}(B)$  such that  $p_{k+1}^B g = f$ . Then there is a map  $g': K \to Y$  which is an extension of g relative to  $U_k$  such that for each point  $x \in K$ , there is a  $U \in U_k$  with  $(p_{k+1}^B)^{-1} f(x) \cup g'(x)$  $\subset$  st  $(U, U_k)$ .

Proof. Let Sd(K) be a subdivision of K and  $\tau$ : Sd(K)  $\rightarrow K_{k+1}(B)$  a simplicial approximation of f (i.e.  $f(st(v)) \subset st(\tau(v), K_{k+1}(B))$  for v a vertex of Sd(K)). Extend g to  $g_1: L \cup Sd(K)^{\circ} \to X$  by defining  $g_1(v)$  as an arbitrary element of  $(p_{k+1}^B)^{-1}(\tau(v))$  for v a vertex of Sd(K)-L. Since  $U_{k+1}$  is a star refinement of  $V_k$ , for each simplex  $\sigma \in Sd(K)$ , there is a  $V \in V_k$  such that if v is a vertex of  $\sigma$ , then  $g_1(v) \in V$ . Thus  $g_1: L \cup Sd(K)^{\circ} \to Y$  is a partial realization of K relative to  $V_k$ . Since  $V_k$  is an n-refinement of  $U_k$ ,  $g_1$  extends to a full realization  $g': Sd(K) \to X$  of K relative to  $U_k$ . Let  $x \in K$  and choose  $\sigma \in Sd(K)$  with  $x \in \sigma$ . If v is a vertex of  $\sigma$ , then

$$(p_{k+1}^B)^{-1} f(x) \cup g'(x) \subset \operatorname{st}((p_{k+1}^B)^{-1} \tau(v), \underline{U}_k).$$

Note that a homotopy of an n-dimensional complex will have an associated map. Thus we have as a corollary the following lemma.

(4.7) Lemma. Each map  $f: K \to K_{k+1}(B)$  of an (at most) (n+1)-dimensional complex has an associated map  $f': K \to Y$ . This relationship is such that if K has dimension  $\leq n$  and if f and g are homotopic as maps of K into  $K_{k+1}(B)$ , then the associated maps f' and g' are homotopic as maps of K into Y.

Proof of 4.3. Let Y be an LC' metrizable space. By Lemma 4.7, for



each compact subset B of Y,  $y_0 \in B$ , there is a homomorphism  $\alpha_R : \pi_k(B, y_0) \to \pi_k(Y, y_0)$ 

such that if  $B \subset B'$ , then  $\alpha_{B'}$ ,  $i_k = \alpha_B$ . Here  $i_k : \pi_k(B, y_0) \to \pi_k(B', y_0)$  denotes the homomorphism induced by the inclusion map  $i: (B, y_0) \rightarrow (B', y_0)$ . The universal mapping property of lim gives a unique homomorphism  $\alpha: \pi_k(Y, y_0) \to \pi_k(Y, y_0)$  such that  $\alpha i_k = \alpha_R$  for all compact subsets B of Y,  $y_0 \in B$ . Here  $i_k : \pi_k(B, y_0) \to \pi_k(Y, y_0)$  denotes the homomorphism induced by the inclusion map  $i: (B, y_0) \rightarrow (Y, y_0)$ . It remains only to verify that  $\alpha$  $= p_k^{-1}$ .

- 5. Lifting CG-shape maps. The principal result of this section is as follows (cf. [Dvd], Theorem 8.13).
- (5.1) THEOREM. Let X and Y be metrizable spaces. If  $f: (X, x_0) \to (Y, y_0)$ is a proper surjective map such that  $f^{-1}(y) \in AC^n$  for each  $y \in Y$ , then for each CG-shape map  $G: (Z, z_0) \rightarrow (Y, y_0)$ , where Z is a metrizable space having dimension  $\leq n$ , there is a unique CG-shape map  $H: (Z, z_0) \to (X, x_0)$  with  $f^*H = G$ . Here  $f^*: (X, x_0) \to (Y, y_0)$  denotes the CG-shape map induced by f.

The first of the following corollaries is immediate, the second follows using the Whitehead theorem in CG-shape.

- (5.2) COROLLARY. Suppose X and Y are metrizable spaces and dim  $Y \leq n$ . If  $f:(X, x_0) \to (Y, y_0)$  is a proper surjective map such that  $f^{-1}(y) \in AC^n$  for each  $y \in Y$ , then  $f^*: (X, x_0) \to (Y, y_0)$  is a CG-shape domination and  $Sh_{CG}(X, x_0) \geqslant Sh_{CG}(Y, y_0).$
- (5.3) COROLLARY. If X and Y are  $\sigma$ -compact (locally compact) metrizable spaces connected and finite dimensional and  $f:(X, x_0) \to (Y, y_0)$  is a proper surjective map such that  $f^{-1}(y) \in AC^n$  for each  $y \in Y$  where dim  $Y \leq n$ , then  $f^*: (X, x_0) \to (Y, y_0)$  is a CG-shape equivalence and  $Sh_{CG}(X, x_0)$  $= \operatorname{Sh}_{\operatorname{CG}}(Y, y_0).$
- (5.4) Note. According to [S-3], one can replace CG-shape with weak shape in (5.3) and also in (5.2) and (5.1) whenever the spaces are locally compact metrizable spaces.

Proof of 5.1. Let  $G = [g, g^C]$ :  $(Z, z_0)^* \rightarrow (Y, y_0)^*$  be a CS-morphism [R-S] representative of the CG-shape map G. Then for each compact subset C of Z,  $z_0 \in C$ ,  $q^C: (C, z_0) \to (g(C), y_0)$  is a compact shape map. Let  $h(C) = f^{-1}(g(C))$  and note that h(C) is a compact subset of  $X, f|_{h(C)}$ : h(C) $\rightarrow g(C)$  is a closed surjective map, and if  $y \in g(C)$ , then  $(f|_{h(C)})^{-1}(y)$  $= f^{-1}(y) \in AC^n$ . By Theorem 8.13 of [Dyd], there is a unique compact shape map  $h^{C}: (C, z_{0}) \to (h(C), x_{0})$  with  $f^{h(C)} = \underline{h}^{C} = g^{C}$ . Here  $f^{h(C)}: (h(C), x_{0})$  $\rightarrow (g(C), y_0)$  denotes the compact shape map induced by  $\overline{f}|_{h(C)}$ . An application of part 2 of Lemma 8.12 of [Dyd] verifies that  $H = [h, h^c]$ :  $(Z, z_0)^*$  $\rightarrow (X, x_0)^*$  is a well defined CS-morphism such that  $f^*H = G$ . The uniqueness follows from a similar application of Lemma 8.12 of [Dyd].



## References

- [Bor] K. Borsuk, Theory of Shape, Warszawa 1975.
- [Dug] J. Dugundji, Elements of Modern Topology, McGraw-Hill, New York 1968.
- [Dyd] J. Dydak, The Whitehead and Smale theorems in shape theory, Dissertationes Mat. 87. Warszawa 1976.
- [Kee] J. W. Keesee, An Introduction to Algebraic Topology, Brooks/Cole, Belmont, Ca, 1970.
- [Kod] Y. Kodama, Decomposition spaces and shape in the sense of Fox, Fund. Math. 97 (1977). pp. 199-208.
- [Mar] S. Mardešić, On the Whitehead theorem in shape theory I, Fund. Math. 91 (1976), pp.
- [Mor] K. Morita, On shapes of topological spaces, Fund. Math. 86 (1975), pp. 251-259.
- [Mos] M. Moszyńska, The Whitehead theorem in the theory of shapes, Fund. Math. 80 (1973), pp. 221-263.
- [R-S] L. Rubin and T. Sanders, Compactly generated shape, Gen. Top. and Appl. 4 (1974). pp. 73-83.
- [S-1] T. Sanders, Shape groups and products, Pacific J. Math. 48 (1973), pp. 485-496.
- [S-2] Shape groups for Hausdorff spaces, Glasnik Matematički 8 (28) (1973), pp. 297-304.
- [S 3] Compactly generated shape theories, Fund. Math. 93 (1976), pp. 37-40.
- [S-4] A Whitehead theorem in CG-shape, Fund. Math. 103 (1981), pp. 131-140.
- [Sma] S. Smale, A Vietoris mapping theorem for homotopy, AMS Proceedings 8 (1975), pp. 604-610.
- [Spa] E. H. Spanier, Algebraic Topology, McGraw-Hill, New York 1966.

DEPARTMENT OF MATHEMATICS U. S. NAVAL, ACADEMY Annapolis, MD 21402

Accépté par la Rédaction le 2. 3. 1981