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to prove by induction that all other components are surjective as required in
2.1. Thus we have defined a system (¥, e) of equations.

b) For every T-algebra A = (X, {w4)), define 4’ = FX %> X by
d(w)=wi(ly) for all weFX (= B(X,; 1)).

¢) It is routine to verify that the assignement A+ 4’ defines an isomor-
phism of categories T-alg and (F, ¥, e)-alg. Notice that the inverse isomor-
phism sends each (F, V¥, ¢)-algebra 4 =FX X to a T-algebra A
= (X, {©*}) defined by

o*(0) = g(wa*) for all weT(n, 1), ac X",

where ¢ is as in 2.1 h), and i is such that wa*e X.
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On approximate n-connectedness
by

Thomas J. Sanders* (Annapolis, MD)

Abstract. The concept of approximate n-connectedness has been given by K. Borsuk in his
book Theory of Shape as a property of topological spaces to correspond in the theory of shape
to the concept of n-connectedness in homotopy theory. In this paper, this concept is character-
ized using the homotopy bi-groups. Also, a Vietoris-Smale type theorem in compactly generated
shape theory is proven, conditions are given under which the shape groups are isomorphic to
the usual homotopy groups, and a result on lifting CG-shape maps and some of its applications
to the theory of decomposition spaces are given.

1. Introduction. Let K be a category. There are associated categories
inv(K) whose objects are inverse systems X = {X,, Purs A} in K and whose
morphisms are morphisms of inverse systems =t X-Y
=1{Y;, 4gp» B}, and pro(K) which is a quotient category inv(K)/= (see for
example [Mar]). Dually, there are associated categories dir (K) whose objects
are direct systems X* = [X% p*, 4] in K and whose morphisms are mor-
phisms of direct systems f* =(f, f*): X* > Y*= [Y?, ¢*”, B], and ind(K)
which is a quotient category dir(K)/= (se¢ for example [S—4]). If the
function on indicees f of a morphism in either inv(K) or dir (K) is a bijection,
that morphism will be called a special morphism. If Lis a category and
F: K — Lis a functor, then F induces functors pro(F): pro(K)— pro(L) and
ind (F): ind(K) — ind(L).

It can be verified (cf. [S-4]) that the following holds.

(1.1) Tueorem. If f* is a special dir(K) morphism, then

(a) if each f* is an isomorphism in K, then the equivalence class [f*]is
an isomorphism in ind (K),

(b) if each f* is an epimorphism in K, then [f*] is an epimorphism in
ind(K), and

"(c) a similar statement holds for monomorphisms.

(1.2) Noration. If X is a metrizable space and xpeX, then m,(X, xo)
denotes the usual homotopy groups, 7,(X, xo) denotes the shape groups
[S-2], pro(m){X, xo) denotes the homotopy pro-groups (whenever X is

* Supported by a grant from the Naval Academy Research Council. '
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compact), and ind-pro(zm,) (X, xo) denote the homotopy bi-groups [S-4].
The dimension of a metrizable space X is the covering dimension (cf. [Mor]).
A continuous function f: (X, xo) = (Y, yo) is said to be proper if for each
compact set B< Y, 7! (B) is a compact subset of X.

2. Approximate n-connectedness. K. Borsuk [Bor] has given the fol-
lowing definition: A pointed space (Y, yo) is said to be approximately n-
connected if, for any AR (M)-space N containing Y as a closed subset and for
any compactum B« Y containing y, there exists a compactum
B < Y(B < B) such that for every neighborhood ¥V of B (in N) there is a
neighborhood ¥, of B (in N) with the property that every map of the pointed
n-sphere (S", ) into (V,, ¥o) is null-homotopic in (¥, yo). If (Y, yo) is ap-
proximately k-connected for 0 < k < n, then the notation (Y, y,) s AC" will be
used. The homotopy bi-groups characterize this concept.

(2.1) THEOREM. A pointed metrizable space (Y, yo) is approximately n-
connected iff the homotopy bi-group ind-pro(n,) (Y, y,) is a zero object in the
ind-pro-group category.

Proof. The assertion follows since the homotopy bi-group ind-pro (z,)
(Y, yo) is a zero object iff for each compactum B < Y containing y, there is a
compactum B < ¥, B < B, such that the morphism induced by the inclusion
map pro{n,) (¢°%): pro(n,) (B, yo) = pro(=,) (B, y,) is the zero morphism in
the pro-group category.

(2.2) Cororrary (cf. Theorem 8.11, p. 145 of [Bor)). If (Y, yo) is ap-
proximately n-connected, then the shape group m(Y, yo) is trivial,

As a consequence of the Whitehead theorem in CG-shape (Theorem 8.2
of [S-4]) one has the following.

(2.3) CororLARy. A g-compact (locally compact) n-dimensional (n < o)
metrizable space (Y, yo) has trivial CG-shape iff (Y, y,)eAC".

(24) NoTte. According to [S-3], one may replace CG-shape with weak
shape in (2.3).

3. A Vietoris-Smale theorem. Borsuk notes ([Bor], 8.10 p. 145) that

approximate n-connectedness for compacta reduces to the following
statement.

(3.1) Note. If (Y; o) is a pointed compactum lying in an AR (M)-space
N, then (7, yo) is approximately n-connected iff for every neighborhood V of
Yin N there is a neighborhood ¥, of Yin N such that every map f: (S", *)
— (¥4, ¥o) is null homotopic in (¥, y).

J. Dydak [Dyd] used (3.1) to give a Vietoris-Smale theorem for shape
theory. As a consequence of his Theorem 8.5, one has the following.

(3.2) Lemma. If f: (X, xo) = (Y, yo) is a surjective map of compacta such

that f~'(y)eAC" for each yeY, then the induced morphism of pro-groups
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pro(m) (f): pro(m) (X, x¢) = pro(m) (Y, yo) is an isomorphism for k < n and
an epimorphism for k =n+1.

An analogue in CG-shape theory is as follows.

(3.3) TueoreM. If f: (X, xo) = (Y, yo) is a proper surjection of metrizable
spaces such that f~*(y)e AC" for each yeY, then the induced morphism of
homotopy bi-groups

ind-pro(m) (f): ind-pro(m,) (X, x,) — ind-pro(m) (¥, yo)

is an isomorphism for k < n and an epimorphism for k =n+1.

Proof. Suppose f: (X, xp) = (Y, yo) is such a map. Let F be the
compact cover of (X, x,) whose elements are of the form f ~1(B) where B is
a compact subset of Y and y,€ B: Note that F is CS-cofinal [R-S] and that f
induces a special ind-pro-morphism

¥ 4, p**, F1- (Y, yo)* = [B, ¢°%, c(B)].
The result then follows from Theorem 1.1 and Lemma 3.2.

(3.4) CorOLLARY. Under the hypothesis of Theorem 3.3, the induced
homomorphism :

T (f): m (X, x0) = m (Y, yo)
is an isomorphism of groups for k < n.

4. Local n<connectedness. A consequence of Theorem 8.7 of [Dyd] is as
follows.

(4.1) Lemma. If Z is a compact LC" metrizable space and zo€Z, then the
natural homomorphism’

P m(Z, zo) > T (Z, 20)

is an isomorphism of groups for k < n.

It then follows that

(4.2) Tueorem. If (Y, yo) is a metrizable space having a CS-cofinal cover
consisting of LC" spaces, then the homomorphism [S-2] pi: m (Y, yo)
~ m (Y, yo) is an isomorphism of groups for k < n.

The principal result of this section is as follows.

(4.3) TaroreM. If (Y,yq) is a LC" metrizable space,
homomorphism

then the

P (Y, yo) = M (Y, Yo
is an isomorphism of groups for k < n.
The proof of this theorem uses the following definitions and lemmas.

(4.4) DeFmNITIoN (cf. [Dyd]). Let U and ¥ be open covers of a metrizable
space Y. A realization (partial or full) f: L— Y of a complex K in Yis said
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to be relative to U provided that for each (closed) simplex ¢ of K there is a
U e U such that f (6~ L) = U. The open cover Vis said to be an n-refinement
of U if every partial realization of any (at most) (n+1 )-dimensional complex K
relative to V extends to a full realization of K relative to U.

A consequence of Lemma 8.2 of [Dyd] is that

(4.5) Lemma. If YeLC" then each open cover U of Y has an open n-
refinement V.
Suppose Y.is a metrizable space and B < Yis compact. Select sequences
U, and ¥, of locally finite (normal) open covers of Y such that the mesh of
U, is less than 1/k, U, star refines Vi, and ¥, n-refines U,. Let U.(B)
={UnB| UeU and UnB ;é O} be the induced covers of B and let K, (B)
denote the nerve of Uy(B), pEys1: Ki+1(B) — K, (B) canonical projections,
and p?: B — K, (B) canonical maps (cf. [Spa], p. 152). A similar sequence of
open covers was used in the proof of the Whitehead theorem for CG-shape.
Y. Kodama [Kod] has also used a similar sequence of open covers to obtain
a A-space having the same shape (both weak and Fox) as a finite dimen-
sional locally compact metric space.
(4.6) LemMa. Suppse YeLC" is metrizable, B< Y is compact, f: K
~ Ky, (B) is a map of an (at most) (n+ 1)-dimensional complex, and g: L - B
is a map of a subcomplex L of K relative to Uy, (B) such that pf.,g = J.
" Then there is a map g': K — Y which is an extension of g relative to U, such
that for. each point xe€K, there is a UeU, with (pfe) " 'f(x)ug(x)
cst(U, Up.

Proof. Let Sd(K) be a subdivision of K and 7: Sd(K) — K;..,(B) a
simplicial approximation of f (i.e. f (st(v)) < st(t(v), Ky (B)) for v a vertex of
Sd(K)). Extend g to g,: LuSd(K)° — X by defining ¢, (v) as an arbitrary
element of (pp+ ;)" ! (x(v)) for v a vertex of Sd(K)—L. Since Uy, is a star
refinement of ¥, for each simplex ¢ €Sd(K), there is a Ve ¥, such that if v is

" a vertex of o, then gy (v)e V. Thus g,: LU Sd(K)" — Yis a partial realization
of K relative to V. Since ¥} is an n-refinement of U,, g, extends to a full
realization g': Sd(K)— X of K relative"to U,. Let:xeK and choose
oeSd(K) with xeo. If v is a vertex of g, then

(PRe )" () g (x) o st ((PE+1)_1T(")a yk)

Note that a homotopy of an n-dimensional complex will have an
associated map. Thus we have as a corollary the following lemma.

(4.7) LemMma. Each map f: K — K, (B) of an (at most) (n+ 1)-dimen-
sional complex has an associated map f': K — Y. This relationship is such that
if K has dimension <n and if f and g are homotopic as maps of K into
K,+1(B), then the associated maps f' and g are homotopic as maps of K
into Y.

Proof of 43. Let Y be an LC" metrizable space. By Lemma 4.7, for
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each compact subset B of Y, y,e€B, there is a homomorphism
ag: (B, yo) = m (Y, Yo)

such that if B < B, then ap, i, = ay. Here i,: m, (B, yo) = m (B, yo) denotes
the homomorphism induced by the inclusion map i: (B, yo) = (B, ¥o). The
universal mapping property of lim gives a wunique hoemomorphism
o T (Y, yo) = m (Y, yo) such that ai, = oz for all compact subsets B of Y,
yo€B. Here i: m (B, yo) = m (Y, yo) denotes the homomorphism induced
by thle inclusion map i: (B, yo) = (Y, yo). It remains only ‘to verify that a
= Dx

5. Lifting CG-shape maps. The principal result of this section is as
follows (cf. [Dyd], Theorem 8.13).

(5.1) TueoreM. Let X and Y be metrizable spaces. If f: (X, xo) = (Y, Yo)
is a proper surjective map such that f~*(y)e AC" for each yeY, then for each
CG-shape map G: (Z, zo) — (Y, yo), where Z is a metrizable space having
dimension <, there is a unique CG-shape map H: (Z, zg) — (X, xq) with
f*H = G. Here f*: (X, xq) = (Y, yo) denotes the CG-shape map induced by f.

The first of the following corollaries is immediate, the second follows
using the Whitehead theorem in CG-shape.

(5.2) CoroLLARY. Suppose X and Y are metrizable spaces and dim Y < n.
If f: (X, xo) = (Y, yo) is a proper surjective map such that f~*(y)e AC" for
each yeY, then f*: (X, xo)—(Y,yo) is a CG-shape domination and
Sheg (X, xo) 2 Sheg (Y, yo).

(5.3) CoroLLary. If X and Y are o-compact (locally compact) metrizable
spaces connected and finite dimensional and f: (X, x) = (Y, yo) is a proper
surjective map such that f~1(y)e AC" for each yeY where dim Y < n, then
f* (X, xo) = (Y, y0) is a CG-shape equivalence and Sheg(X, Xo)
= Sheg (Y, yo)-

(5.4) Note. According to [S-3], one can replace CG-shape with weak
shape in (5.3) and also in (5.2) and (5.1) whenever the spaces are locally
compact metrizable spaces.

Proof of 51. Let G = [g, ¢°1: (Z, zo)* = (Y, po)* be a CS-morphism
[R-S] representative of the CG-shape map G. Then for each compact subset
C of Z, zyeC, g% (C,zg)=(g(C). yo) is a compact shape map. Let
h(C) = f~'(9(C)) and note that h(C) is a compact subset of X, fluc): h(C)
- g(C) is a closed surjective map, and if yeg(C), then (flyg) *(»)

‘= f"1(y)e AC". By Theorem 8.13 of [Dyd], there i 15 a unique compact shape

map K: (C, zg) = (R(C), xo) with f"O =k =4C. Here f"O: (h(C), xo)
- (g(C yo) denotes the compact shape map induced by fluc, An appli-
cation of part 2 of Lemma 8.12 of [Dyd] verifies that H = [h, h°]: (Z, zo)*
—(X, xo)* is a well defined CS-morphism such that f*H = G. The uni-
queness follows from a similar application of Lemma 8.12 of [Dyd]}.
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