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On the rank of a topological convexity
{ by
M. van de Vel (Amsterdam)

Abstract. The rank of a convexity is an invariant which describes the degree of variation that
convex scts arc allowed to have. It relates to dimension, and finiteness of the rank has some strong
consequences on the behaviour of the topological convexity structure. Rank can also be used to give
some simple counterexamples concerning embeddability in finite products of trees, or in cubes.

0. Introduction

The present paper is partially of a preparatory nature. Our subject of
investigation is a notion of rank of a (topological) convex structure, due
originally to Jamison (cf. [J,, p. 10]), and which appears to be closely related to
the dimension of a certain convex hyperspace: see the main theorem in our
subsequent paper [V,].

The rank of a convex structure is defined as the supremum in {0, 1, ..., oo}
of all n < oo such that there exists a free subset with n points. A set is called free
if no one of its points is in the convex hull of the other ones. Some set-theoretic
results and some relevant examples will be presented in section 2 below.

Section 3 is entirely concerned with the computation of the rank for two
classes of topological convexities: the natural convexity on a tree-like space, and
“linear-like” convexities, which are required to fullfill a condition due to
Fuchssteiner (cf. [F, p. 152]). In the first case we found out that the rank equals
the number of endpoints of (a suitable compactification of) the tree-like space,
and in the second case that the convexity either has infinite rank, or.the
underlying space is tree-like with the natural convexity.

In section 4 we investigate some topological aspects of rank. Restricting to
convexities with connected convex sets and with some separation property, we
have obtained the following results: )

(1) the rank of an n-dimensional convexity is at least 2n;

(2) in a convexity of finite rank, the interior of a dense convex subset is
(weakly) dense, and every compact convex set is a polytope;

(3) in a convexity of finite rank on a separable metric space, every convex set
is the hull of a countable subset.

The results in (2) and (3) remain valid.for convexities of weakly infinite rank
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(that is: the rank is infinite, but no infinite set is free), provided that the
convexity is finite-dimensional. Note that in case the rank is finite, the latter
condition also holds: see (1). Unfortunately, all known examples of convexities
with weakly infinite rank are (weakly) infinite-dimensional. Also, it follows from
our results in section 3 that no 1-dimensional or “linear-like” convexity can
have weakly infinite rank. This leaves us with the rather intriguing question
whether or not there exist finite-dimensional convexities with weakly infinite
rank.

Weakly infinite rank is related to weak infinite dimensionality of convex
hyperspaces by the main result of [V,]. It is also related with non-embeddability
in finite products of tree-like spaces, as will be shown in section 5. We also use
the rank to give examples of

(1) a two-dimensional convexity which cannot be embedded in a product of
finitely many tree-like spaces;

(2) a sequence of two-dimensional convexities of increasing finite rank such
that there is no upper bound for the number of tree-like factors needed for an
embedding.

Some open problems concerning embeddings in cubes or in finite products
of tree-like spaces are also mentioned in section 5.

1. Preliminaries

1.1. Set-theoretic convexity. A convexity on a set X is & collection € of
subsets of X such that (1) ¢, Xe%; (2) ¢ is closed under formation of
intersections; and (3) % is closed under formation of upward filtered unions. The
members of % are called convex sets, and the pair (X, %) is called a convex
structure. It will be assumed throughout that singletons are convex.

Associated to a convexity % on X there is a hull operator h = h, defined on
A < X as follows:

h(4) = {C| 4 = Ce¥).

‘ The set h(A) is called the (convex) hull of A, and the hull of a finite set is called a
polytope. From the third axiom of convexity it follows that a set C = X is
convex iff A(F) < C for each finite F < C. This property is called domain
finiteness. ‘

. A co!lection & of subsets of X is said to generate the convexity ¥ — and &
is then §a1d to be a subbase for 4 — if % is the smallest convexity including &,
According to [T, p. 8, 9] & is a subbase for ¥ iff every nonempty polytope can
be obtained as the intersection of a subfamily of ..
Two set-theoretic separation properties will be of interest. A convexity % on

X is said to be: o

_an S3-convexity,.if for each Ce % and for each xe X \C there is a half-space
(ie. a convex set with a convex complement) including C and missing x;
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an S,-convexity, if for each pair of disjoint convex sets C, D there is a half-
space including C and missing D.
See [J;], [V,] for further details.

1.2. Topological convexity. If, in addition to a convexity %, the set X also
carries a topology (which will henceforth be implicit in the set symbol X), then
(X, €) is called a topological convex structure provided all polytopes are closed.
Equivalently, % has a subbase of closed sets. In the sequel, ¥* will denote the
collection of all (nonempty) closed convex sets of (X, %).

The convex closure operator h* of (X, %) is defined as follows:

B (4) = N{C| A = Ce%*} (4 cX).

In general, h* (4) need not be the closure of h(A). However, if (X, %) is closure-
stable, that is: if the closure of each convex set is convex again, then h*(4)
= Clh(A).

If (X,9¥), (X', ¥") are (set-theoretic) convex structures, then a function
f: X — X' is said to be convexity preserving (C.P.) relative to ¢ and €' if
fHC)e % for each C'e%’. A continuous function is called a map. This gives
rise to a category of set-theoretic (resp. topological) convex structures, the
morphisms of which are the C.P. functions (resp. C.P. maps). The notion of
“isomorphism” should be understood in this setting.

A function f: X — [0, 1] is said to separate the sets 4,B = X if

Acf'@, Bcf Q).

Let the unit interval be equipped with the linear comvexity, that is, the
topological convexity generated by the sets of type [0, ] or [t,1]te[0,1]. A
topological convexity ¥ on X is said to be:

semi-regular, if for each Ce ¢* ardfor each x€ X \C there is a C.P. map X
- [0, 1] separating C and {x};

regular, if for each C e €* and for each polytope P = X \C there is a C.P.
map X — [0, 1] separating C and P. ‘

See [V,, 1.5] for an alternative description not involving C.P. maps.

As follows from observations in [J;, p. 24, 26], a semi-regular convexity is
S; and a regular convexity is S,. See [V, 2.2] for a different proof.

It was shown in [V,, 2.4] that a regular closure-stable convexity on a
compact space is even normal, that is: every two disjoint convex closed sets can
be separated with a CP map into the unit interval. On non-compact spaces,
normal convexities are rather exceptional.

1.3. Convex dimension. Let ¥ be a convexity on the set X. If Yis a subset
of X, then the trace of ¥ on Y is the convexity

%1Y={CnY| Ce¥).
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Two subsets A4;, A, of X are said to be screened by the sets Sy, S, if
A; =851\, Ay =8\, S 08 =X

Let (X, %) now be a topological convex structure. The (small inductive)
dimension of (X, %) is the number ind (X, %)e{—1,0,1,2,..., oo} satisfying
the following rules (n < o0)

1) ind(X,%) = —1iff X =0,

(2) ind (X, %) < n+1 iff for each Ce%* and for each xe X \C there exist
Sy, S,€%* screening C and {x}, and such that ind (S; NS5, %1 S; " Sy) < n.

As convexities on non-compact spaces mostly fail to be normal, it makes

" little sense to consider a ,Jarge inductive” dimension function for convexities.

Instead, one may consider various ,reasonable” dimension functions (as
described in [V,, 3.1]) which are based on screening other types of pairs of
convex closed disjoint sets. For semi-regular closure-stable convexities with
connected convex sets all these dimension functions coincide with the above
ind: see [V,, 3.2].
) To shorten lengthly expressions as in (2) above we will often omit reference
to the convexity, writing X instead of (X, ¥). We hereby agree that ind stands
for convex dimension. Topological dimension will be considered only in our
subsequent paper [V,].

1.4. The continuity property. Let (X, %) be a topological convex structure. A
subset Yof X is'said to be in continuous position relative to % provided that for
e_ach convex open set O < X meeting Y,

0NY=Cl(0nY).
The convex structure (X, %) is said to have the continuity property if each of its

convex sets is in continuous position relative to %. As was observed in [V, 4.3]

the continuity property is not inherited by convex subsets, equipped with the
trace convexity.

In the sequel, the boundary 0\O of an open set will also be denoted by 0,
and a set with more than one point will be called nontrivial. We also agree (for
convenience) that the intersection of the empty family of subsets of a given set X
equals X.

2, Rank of a convexity

2..1. Derintmions. Let (X, %) be a (set-theoretic) convex structure. A subset F
of X is said to be free(') (relative to %) if for each xeF R

x¢h(F\{x}).

(') In [J5] the term “independent” is being used.
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We note that F need not be finite. However, it follows directly from domain
finiteness (cf. 1.1) that a set is free iff each of its finite subsets is free.

From an informal point of view, each pojint of a free set F contributes
essentially to the size and shape of the convex ‘set h(F). As every convex set can
be approximated by polytopes (domain finiteness) the following seems to
provide an adequate measure for the degree of variation that convex sets are
allowed to have.

The rank of a convex structure (X, %) is the number

; d(X,%)ef0,1,..., o0}
such that d(X, %) < n iff no finite set in X with more than n points is free, n
< oo. Equivalently, d(X, %) > n iff there exists a free set in X with exactly n
points. This invariant has already been considered in [J,].

The convex structure (X, %) is said to have finite rank if d(X, ) < co, and
to have infinite rank otherwise. We want to distinguish the following cases. If
d(X, %) = co but no infinite set is free in X, then (X, %) is said to have weakly
infinite rank. If there exists an infinite free collection in X, then (X, %) is said to
have strongly infinite rank.

If no confusion can arise we simply write d (X) instead of d(X, ). The term
“number” will henceforth refer to a member of the set {0,1,2,...,00}.

The following auxilliary invariant will be of use in determining the rank of
a convexity in many concrete cases. Let (X, %) be a convex structure. The
generating degree of (X,%) is the number gen(X, %) determined by the
following rule: gen (X, %) < n(n < oo) iff there exists a subbase & for ¢ and a
decomposition

=L uvFu... L,
of & consisting of totally ordered subfamilies &, ..., &,. In the latter case we
also say that the degree of &% is (at most) n.

The generating degree is a useful device to estimate the rank from above, as
is shown in our next result:

2.2. THEOREM. Let % be a convexity on the nontrivial set X. Then
d(X,%) < gen(X, ¥). :

Note that a one-point space has rank 1, whereas the empty family is
a subbase.

Proof. We may assume that gen(X, %) = n < co.Let £ bea subbase for
% of degree n. If n = 0 then & = @, and ¥ = {@D, X}. As singletons are
assumed to be convex, X consists of only one point. Therefore, n > 0.

Suppose that d(X,%) = n+1. Then there exists a free subset
F = {xy,..., X,+,} of X with exactly n+1 points. As every nonempty polytope
in X is the intersection of subbasic sets (cf. 1.1) there exist Sy, ..., S,+1 € % with

MEx) € S, xS (i =1,...,n+1),
It follows that S,,...,S,., are pairwise incomparable, contradiction. m
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We note that d(X, %) and gen(X, %) need not be equal in general (though,
as a rule, they seem to be equal for “sufficiently nice” convexities): let X
= {0, 1}? be equipped with the convexity € consisting of all subsets of X of type
A x B.Then clearly d(X, %) = 2, but every subbase for ¥ must contain the four
sets

{i}x{0,1}, {0,1}x{i}, i=0,1,
which are mutually incomparable.

When dealing with more complicated convexities, it may be difficult to
keep an eye on every possible subbase. The following result is therefore of
practical interest. Recall that the Helly number h of a convexity % on X is the
infimum of all n < oo such that for each finite collection 2 = ¥, (| 2 # @

whenever the members of 2 meet n by n (cf. [KW]).

2.3. THEOREM. Let € be an S;-convexity on X. Then there exists a subbase
H for € ‘such that

(1) all members of # are half-spaces of X;

(2) the degree of # equals gen(X, €);

(3) if his the Helly number of (X, €), then every nonempty half-space of X is
the intersection of at most h—1 members of H#.

Consequently, if (X, €) is binary (that is, if h < 2), then gen(X, ) equals the
degree of the subbase, consisting of ALL nonempty half-spaces of X.

Proof. We first recall an elegant and useful construction from [J,, p. 16].
Let 2% be the Cantor space obtained as the X-fold product of the discrete space
{0, 1}. A set 4 = X corresponds to a point in 2¥ whose x-coordinate (x & X)is 0
if xe A and 1 otherwise. Expressed directly in terms of the power set of X, 2¥ has
a base of open sets of type

I(F,G)={A| Fc 4,Gn A = @),

where F, G are finite subsets of X. Note that these basic sets are also closed.
Jamison observed that a convexity € is always a compact subset of 2% (cf. [J,,
1.6]). Hence, as the formation of complements is a continuous operation 2*
— 2%, the collection of all half-space of (X, %) is also compact.

Let & be any subbase for . Its closure & in 2X satisfies & < %, and it is
easy to see that & and & have the same degree. Let C = X be nonempty
convex, and let xe X \C. For each nonempty finite F = C we have x ¢ h(F), and
as # is a subbase, x¢§ = h(F) for some S e &. Therefore the set & A I (F, {x})
is nonempty. Also, if F, and F, are subsets of X then

I(Fy, {x}ynI(F,, {x}) =I(F,UF,, {x}).
Hence

{F#NIF,{x})}} F = C nonempty finite}
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is a downward filtered collection of compact sets, and there exists an element T
common to all these sets. Clearly, C < T, x¢ T, showing that every nonempty
convex set is the intersection of a subfamily of &.

Let C be nonempty convex again, and let xe X \C. By the third axiom of
convexity there exists a maximal convex set C' with the properties

CcC; x¢C.
Then C' is a half-space since by the axiom S, there exists a half-space H of X
with
C'<c H;, x¢H.
Also, C' is in & since by the above argument there is a Te.? with

C'cT x¢T.

This shows that & includes the subbase s#” of all half-spaces H of X such
that for some xe X, H is maximal with the property that x¢ H. Then # = #*
consists of half-spaces of X, and the degree of 5# is not larger than the degree of
S (P). As # does not-depend on ¥, we find that gen (X, %) equals the degree
of #, thus establishing (1) and (2).

Proof of (3). First, note that by an argument given above, every nonempty
convex set is the intersection of a subfamily of .#". Hence (3) is valid for h = oo

" (no cardinal distinction is made at infinity). Note that X = @ ifh = 0, and X is

a singleton if & = 1. In both cases, statement (3) is trivially fullfilled. So we may
assume 2 < h < co. ' :

Let H < X be a nonempty half-space. For each xe X \H there is a half-
space H, of X maximal with the properties

Hc K, x¢K.
The subcollection 4 of #°, defined by
' A ={K: KeA# Hc K}
is easily seen to be compact in 2%, and the above argument shows that
NANX\H=0.

By [J,, prop. (B)], there exist already h or less sets among the members of
AU {X\H} which have an empty intersection. Note that (\.# = H % @.
Hence there exist K,, ..., K,,e# with m < h—1 such that

m
Hc () K, < H,
i=1

proving (3). The final part of the theorem easily follows. m

By definition, a convexity % on a space X is a topological convexity iff it
admits a subbase consisting of closed convex sets. It is then natural to ask
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whether or not gen(X, %) can be obtained as the degree of some subbase of
closed convex sets. We only have an affirmative answer in case (X, %) is semi-
regular and binary: it follows from semi-regularity that (X, %) is S; (cf. (1.2)) and
that the collection of all closed nonempty half-spaces of X is a subbase for .
Hence by Theorem 2.3, the generating degree of a semi-regular binary convexity
equals the degree of its subbase of all nonempty closed half-spaces.

Let us consider some concrete examples now.

24. EXAMPLES.

(24; 1). Let 0 < n < oo, and let the n-cube I" be equipped with the
“cubical” convexity ¥,, that is, the topological convexity generated by the
subbase &, consisting of all sets of type

n71[0,1] or w7 [1,1], te[0,1], i=1,...,n,

where 7;: I" — I denotes the ith projection. Then d(I",%,) = 2.n (we hereby
agree that 2.c0 = co+1 = o0), and in particular, (I”, € ,) has strongly infinite
rank. ‘

Indeed, a (standard) free collection F may consist of all x e I" with 7 (x) = }
for all but one i, in which case m;(x)& {0, 1} (for n = 1, F equals the endpoint set
of I. For n > 1, we note that the set of corner points of I" is not free relative to
%.. Hence d(I",%,) > 2n, and (I, ¥,) has strongly infinite rank. As the
above subbase %, is built up by 2n totally ordered collections, we find that

d(I',%,) < gen(X, %) < 2n,

whence both number are equal to'2n (as (I”, %,) is semi-regular and binary, this
agrees with the above conclusion that gen(I", %,) is determined by a subbase of
closed half-spaces).

(24; 2). Let the square I? now be equipped with the (trace of the) linear
convexity. Then I* has strongly infinite rank since every circle in I? is a free set.
A similar argument applies on any linearly convex set C in a vector space, such
that C is not a point or a line (segment). See 3.2 below for a generalization to
convexities with a property of Fuchssteiner. :

(24; 3). With the notation of (2.4; 1) we put for each finite n
Xp={xel” 27" < m () S 27" if k< m,mp (%) = 27+ otherwise}.
Note that X, is an n-dimensional subcube of I, Let o denote the origin. Then

we put
X=U X,u{e}.
n=1

X is equipped with‘ the trace % of the cubical convexity %, of I*. This convex
§tructure was _cons1dered previously in [V,, 4.12] where it was observed that @
is a normal binary convexity on the continuum X, and that if xe X m YEX,,
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ze X, with m < n < p, then m,(x) > m(y) = m,(x) for all k. In particular, y is
then in the convex hull of x and z. Therefore, a free subcollection of X can meet
at most two of the cubes X,, n=1,2,..., and its intersection with X,
corresponds to a free subset of (I", %,) under any isomorphism X, =~ I". Hence
no free set in X is infinite, whereas there exist free sets in X, = X with 2x points,
n < oo, showing that (X, %) has weakly infinite rank.

(2.4; 4). n-folded squares. With the notation of (2.4; 1), let
(n = 0).

X, is equipped with the trace of the cubical convexity of I"*2. This space can
informally be described as the union of n+ 1 squares, each spanned between two
successive axes. X, is topologically equivalent to the square itself, and the axes
numbered by 2,3,...,n+1 can be regarded as n “foldings” in X,. v

Each X, is a normal binary convex structure as can be seen from the
external characterization theorem [vMW, 34]. Note that X, is the ordinary
square convex structure, and that X, is isomorphic to X,. X, is isomorphic to a
subspace of X, obtained by cutting out a rectangle at one corner point. Hence
for n < 2,

X, = {xel™ i< n+l: Vjs#i i+l mix) =0

For n > 2 we have d(X,) = gen(X,) = 4.

d(X,) = gen(X,) = n+2.

Indeed, a free collection in X, is obtained by choosing a point different from the
origin on each axis of I"*2, showing that n+2 < d(X,). In view of 2.2 it suffices
to show that gen(X,) < n+2. To this end, let ‘

A, ={HnX, HcI"? aclosed halfspace}.

As gen(X,) = n+2 for n = 2, it follows from the remarks after 2.3 that the
subbase of all closed half-spaces of X, has degree n+ 2, whence the degree of #",
is also n-+2 in case n = 2. Assume by induction that s, has degree m+ 2 for
2 < m < n, and suppose that Hy, ..., H,. are closed half-spaces of I"*2 such
that H, n X,, ..., H,43 N X, are pairwise incomparable. It is easy to see that a

closed half-space of I"*? is of type '
7 t[0, 1] or m7 [, 1] (i=1,...,n+2,1e[0,1]).
As Hy,...,H,.; must be incomparable in ["*2 there exist k # I in

{1,...,n+3} with

HnH =0 or HUH=I"

Hence H, and H, are “perpendicular” to the same ith axis. Reserving the
counting of the axes if necessary, we may assume that i < n. If some H,, were
perpendicular to the (n+2)nd axis, then clearly H, 0 X were comparable with
H, N X or with H,~ X. This shows that the (n+2)nd axis is not essentially
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invol'\{ed. If m: I"*2 > "*! is the projection annmihilating the (n+2)nd
coordinate, then n(X,) = X,_, and by inductive assumptio\n two members of

T(H) N Xy, ooy B(Hpy3) 0 X,y

are comparable. As each H,, is orthogonal to one of the axes 1, 2, ..., n+1, we
find that

n..l (n(Hm)an-—l) = I{mh Xu:

and hence that some two members of the original collection are comparable, a
contradiction. As no n+3 members of J#, are pairwise incomparable, it follows
from [D, 1.1] that #, can be decomposed as a ynion of at most n+2 totally
ordered families. .

We conclude with two simple results which will be of use below.

2.5. THeoreM. Let X, Y be convex structures, and let fi X > YbeaC.P.
Junction onto. Then d(X) = d(Y), and if X has weakly infinite rank, then Y has
finite or weakly infinite rank.

2.6. THEOREM. Let X be a convex structure, Y < X. Then d(X) > d(Y).

The proofs are left to the reader. :

3. Tree-like spaces and linear-like convexities

R;qall that a tree-like space is a connected Hausdorff space in which every
two distinct points can be separated by a third one. A non-cutpoint is usually
called an endpoint. If x is a point of a tree-like space X then the order of x
ord(x), is defined to be the number of components of X \{x}. Then x is called ;
ramification point if ord(x) > 2. See [N, p. 143]. :

It was shown in [V, 2.10] that if X is a locally connected tree-like space
then thfa collection % of all connected subsets of X constitutes a normal binar);
Fonvexny with compact polytopes. % is obviously closure stable, and
ind(X, %) < 1 by [V,, (2.6; 2)]. Conversely, if (X, ®)is a l-dimensional’ semi-
regular clpsure-stable convexity with connected convex sets, then X is a tree-like
space. With some more efforts, it can even be shown that & then consists exactly
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of all connected subsets of X. This correspondence between tree-like spaces and
1-dimensional convexities is illustrated by the proof of Theorem 3.1 below.

The above described convexity on a tree-like space will henceforth be
referred to as the natural convexity.

3.1. THEOREM. Let X be a locally connected nontrivial tree-like space,
equipped with its natural convexity €. Then the following numbers are equal:

(a) the rank of (X, %¥);

(b) the sum of the number of endpoints of X and the number of free €*-
ultrafilters on X; :

(c) the generating degree of (X, %);

(d) 2+ X (ord(x)—2), summation being taken over the ramification points
o X.

Proof that(a) = (b). We first consider the case where X is compact (then
the condition of local connectivity is redundant by [W, Lemma 4]). Let E be the
set of all endpoints of X. For each xeE, X \{x} is a connected set including
E\{x}, whence x¢h(E\{x}) and E is free. It follows that (a) > (b).

Let n be the number of elements of E. In order to show that (a) < (b), we
may assume that n < oo. Suppose that there exists a free collection F
= {J1s+.+» Ym} in X with exactly m points, n < m < c0.By semi-regularity and
by the third axiom of convexity, we can find for eachi =1,..., m a maximal
open half-space O; of X with

(1 F\{yi} < O, »¢0:.
Note that y,e0;, for otherwise another application of semi-regularity would

provide us with a strictly larger open half-space with property (1). Asind (X, %)
= 1, we find from [V, 2.7] that 0, = 0,\0; is O-dimensional, and hence that

0; = .

V{Vyel}now apply some techniques from binary convexities. If (X, %) is a
normal binary convex structure with compact X, and if C €%*, then by [VMV,,
3.4] there is a so-called nearest point mapp: X - C with the following property.
For each x&X, p(x) is the unique point in C with the property that

h{x, p(x)} nC = {p(x)}.
Returning to the original situation, take C = h(F). Then

I’_:l ) = X\0

Indeed, if x€0; then

i=1,..,m

h({x} UF\{y}) = Os,
and by the regularity of (X,%) there is an open half-space O’ of X with
h({x}UF\{y}) = 0' = 0 <o,
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Then O’ separates each of x and F\{y;} from y; and it follows from the
connectedness of convex sets that

h{x,yp}n0" # B # h(F)n 0.
Also, h{x, y;} meets h(F), whence by binarity there is a point
ueh{x,y;} nh(F)n 0"

Note that u # y;, whence p(x) # y;.
If, on the other hand, x¢0;, then

G # hix,y} 0 h(F) < (X\O)n O; = {y;},

whence p(x) = y;. )

By [Vy, 3.5, 3.2] every nonempty closed half-space of X must include an
endpoint of X. Hence we find an endpoint x; in p~*(y;) for each i = 1,...,m
contradicting with our assumption on the total number of endpoints.

We now deal with the general case. Let X,, denote X with the weak %-
topology, that is, the topology generated by %* (terminology of [V,]). This
passage from X to X,, does not effect most topo-convex properties of (X, 4): X
and X,, have the same convex closed sets and hence they also have the same
separation properties; convex sets are connected in X, if they.are in X, and
ind(X, 6) = ind(X,, %) (see [V,, (2.6; 4)]). In the present circumstances, we
may conclude that X, is a tree-like space with exactly the same endpoints as X
(an endpoint is, in convex terms, a singleton half-space).

In general, if & is a closed subbase for a space Y, then the superextension
(Y, &) of Yrelative to & is the set of all maximal linked systems in &, equipped
with a’ Wallman-like topology generated by the closed subbase &+
= {8*| Se}, where S* is the collection of all .4 € (Y, &) with S e .#. The
interested reader is referred to [Ve] or [vM] for detailed information
concerning superextensions. We will only need the following facts: A(Y, SL)isa
compact T;-space, and if & is a normal subbase, then the convexity of 1(X, &)
generated by & is normal and binary, and its trace on the subspace Y (up to
canonical embedding) is precisely the convexity generated by &. We also note
that normal binary convexities are closure-stable by [V, 29].

We now apply this construction on the space X,, with its closed subbase
%*. As % is binary, we find that every maximal linked system .# < %* is in fact
an ultrafilter, whence A(X,,, 6*) is a compactification of X,,. In particular,
A(X,, #*) is connected, and by the continuity of the nearest point map, it
follows that all convex (closed) sets are connected. As polytopes are compact in
X and hence in X,,, we find by domain-finiteness of the convexity.on 1(X,,, ©*)
that X, is a dense convex subset of 1(X,,; ¥*). In semi-regular closure-stable
convexities with connected convex sets, convex dimension is not affected by the
passage from a convex set to its closure (cf. [V,, 2.97). Hence

indA(X,,, 6% = ind(X,, %) = ind (X, ¢) = 1,
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and in particular, A(X,,, %*) is a compact tree-like space. By [YMV,, 1.7] such a
space admits but one normal binary convexity, and hence the above convexity
on A(X,,, #*) is the natural one for a tree-like space. Finally, the rank of a dense
convex subspace is easily seen to be equal to the rank of the whole space by
semi-regularity. Hence

d(X, %) = d(X,,6) = d(A(X,, 6*) = number of endpoints of A(X,,, #*).

One easily sees that the endpoints of A(X,,, %*) consist exactly of the end-points
of X (X,) and of the free ultrafilters of convex closed sets of X (X,,). This
establishes the equality (a) = (b) in full ‘generality.

Proof of(b) = (d). In case of compact tree-like spaces, this is well-known
and easy to prove. If the tree-like space X is not compact, then we pass to
A(X,, €*) as above: no remainder point of A(X,, €*) is a cutpoint (and 4
fortiori, a ramification point) whence the number (d) is not affected by the
passage from X to A(X,, %*), and the equality (b) = (d) follows from the
compact case.

Proof of (b) = (c). We have (a) < (c) by Theorem 2.2, and hence that
(b) € (c). In order to obtain that (c) < (b), we will prove the following
statements for 1 < n < co:

(I—n): if X is a locally connected tree-like space with d(X, ’6) < n,
then there are no (n-1) incomparable half-spaces in X.

Note that by semi-regularity of (X, %), the collection of all (closed) half-spaces
forms a subbase for %. By [D, 1.1], it follows from the conclusion of (I —n) that
gen(X, %) < n. (I—1) being a triviality, we proceed by induction, assun}ing
(I—m) to hold for m < n, where n > 1. Let d(X,%) <n, where X is a
nontrivial locally connected tree-like space, and let Hy, ..., H,, 4 be haH~Spgces
of X. It is clear that Hj,..., H,+, are mutually incomparable iff there is. a
polytope P of X such that the relative half-spaces PnH,,..,PnH,. are
mutually incomparable, Note that P is compact. We may therefore assume that
X is compact. As d(X, %) < n, we find from () = (b) that the <.3ndpomt' set E of
X has at most » members. It is casily seen that X = h(E). Pick a pqmt xekE
(which will be specified later). Then C = h(E\{x}) is a compact trec-like space
with endpoint set equal to E\{x} and hence with d(C) < n—1. Let y = p(x),
where p: X — C is the nearest point map (cf. above). Then

(1) YeeC: yeh{c, x};

(2 X =Cuhix,y};

(3)  hix,y}is a totally ordered continuum and % 1 h»{x, y} is the natural
convexity.

(1) is a direct consequence of binarity, and (2) follows from the fact that
C Uhix, y}is a connected set including E. (3) is well-known and easy to prove.
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A proof . of (I—n) consists of the following analysis of possible situations.
Assume first that there exist i #j in {1,...,n+1} such that C = H; and
C < H;: then H; and H; are comparable by (2) and (3).

Note that if each H; misses at most one endpoint of X, then two of them —
say H; and H; — include E \{u} for some ucE. By the above argument (with x
equal to ), H; and H; are comparable. We henceforth assume that e.g. H, .4
mises at least two endpoints of X, one of them being chosen as our point x. Note
that then H,,,; < C: let ue C be another endpoint of X with u¢ H, .. Then by
),

4 yeh{u,x} « X\H,y4,

and H,,, = C by (2).

Now let F < {1,...,n+1} be the set of all i with H;nC # . If |F| < n,
then e.g. H; and H; (i # j) miss C, and then H; and H; are comparable by (3). So
assume |F| = n. By inductive hypothesis, there exist k # [ in F with

(%) H,nACc HnC.

Note that if C = H;, then | # n+1 (since yeC < H), y¢ H,,, by (4)), and the
sets H;, H,, , are comparable. So assume C & H,. If y¢ H|, then take a point
ceCn H,. We find that x¢ H,, for otherwise, yeh{c, x} = H, by (1). Hence
h{x,y} = X\H,, and H, = C by (3). Note that yeC, whence y ¢ H,. A similar
argument then shows that also H, < C.Thesets H,, H, are then comparable by
(). If on the other hand ye H,, and if x ¢ H), then take a point ce C\H,. We find
by (1) that

yeh{c,x} = X\H,,

contradictory to our assumption. Hence xe H,, and h{y, x} = H,. Now note
that also C ¢ H,. Hence the above argument applies equally well on H,: if
y¢ H,, then H, = C, and the sets H,, H, are then comparable. If y e H,, then
h h{ ¥, x} < H,.Filling in the remaining possibility for H, and H, in (5), we obtain
that ‘

Hk =(HknC)Uh{y,x} < (H,ﬁC)Uh{y,X} =Hh

completing the inductive proof of (I—n). w

It is implicit in the proof of (a) = (b) that a tree-like convexity never has
weakly infinite rank. Hence, for semi-regular closure-stable convexities with
connected convex sets and with compact polytopes, the phenomenon of having
weakly infinite rank occurs at earliest in dimension 2. We have not yet found
such examples in finite dimensions (%).

(!) In a forthcoming paper of the author it will be shown that such examples do not exist for
binary convexities. Our proof involves Theorem 4.7 below and some properties of other invariants.
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The fact that for tree-like spaces (i.e. for 1-dimensional convexities) rank
and generating degree coincide leads us to the question under which
circumstances these invariants have to be equal. Some restriction seems
necessary: see the example after Theorem 2.2. No counter-example is known in
case the convexity is required to have connected convex sets and to have some
separation property (the underlying set should be nontrivial).

We next discuss a class of convexities which share an important property
with linear convexities on topological vector spaces. Let X be a topological
convex structure. Then X has Fuchssteiner’s property if for each convex open set
0 = X and for each finite set F < O,

(% h(F)n.0 < h(F\0).
If the convexity on X'is regular and closure-stable, then it suffices to have () for

open half-spaces of X, as the reader can easily verify. Note that if X is closure-
stable, and if O is an open half-space, then O\O is convex and (x) becomes

h(F)n O = h(F\0).
This gives us a fairly adequate picture of Fuchssteiner’s property, namely that
polytopes “sharply bend away” at their “corner” points.

1t is clear that linear spaces satisfy Fuchssteiner’s property with respect to
linear convexity. We leave it to the reader to check that the natural convexity on
a locally connected tree-like space also has Fuchssteiner’s property. In general,
the property is not inherited by convex subspaces.

The above condition (x) was first considered in [F] for the purpose of
obtaining a Krein-Milman theorem. The continuity property (see 1.4) was
originally designed for the same purpose. For convexities with connected
convex sets, Fuchssteiner’s condition implies the continuity property, as was
observed in [V, 4.3]. '

3.2. THEOREM. Let X a semi-regular closure-stable convexity structure with
connected convex sets, and having Fuchssteiner’s property. Let C = X be convex.
Then either C is a tree-like space, or C has strongly infinite rank.

Note that even in the latter case, C may be a tree-like space. Also, the rank
of C is never weakly infinite. Before starting with a proof, we present two
auxilliary results. ‘ N :

3.3. LEMMA. Let X be a closure-stable convexity with the continuity property,

. n
and let Oy, ..., 0, be convex open sets with () O; # @. Then
i=1

m(i\1 0) = l_rjl 0,

For n = 1, this is trivial. Next, let n = 2. As 0; N 0, # @, it follows from
purely topological considerations on the openness of 0, and O, that

‘ Cl(0, " 0,) = C1(0, N 0)).
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By the continuity property,

Cly(0; 1 0) = Clg, (0, " 0y) = 0, " 0,.

Let n > 2 now be arbitrary. Then by the previous argument,

ol

i

1=

0) =Cl( N 0))n 0,

1 i=
and the lemma follows from a straightforward inductive procedure. m

3.4. LEMMA. Let X be a semi-regular closure-stable convexity with connected
convex sets, having the continuity property. Let C < X be convex, and let Vhe a
convex C-neighbourhood of xe C. If x is a cutpoint of V, then x is also a cutpoint
of C.

Indeed, let .# be the collection of all components of V\{x}. For each
ueC\{x} we fix an open half-space O(u) of X with

uelO), xeO(u
(see the “standard” argument at the beginning of 3.1). For each Ke.#" we put
P(K) = {u O(u)yn K # G}.
Note that by the continuity property

O~ C =Cle(0mnC).
Hence, as Vis a C-neighbourhood of x, we find that O(u) meets V'\|x}, and
hence it meets some Ke.#', showing that

U P(K) = C\(x}.

Kex

IfueP(K,)n P(K,), then O(u) meets both K; and K,. As O(u) ™ Vis convex
and hence connected, we find that K, = K,.

We finally show that P(K) is open in C for each Ke.#". Let ue P(K), and
let veO(u) N C. Then as O(u)n O(v) meets C, we find by the continuity
property and by Lemma 3.3 that '

() Cl(OWuOWNC)=Cl(OWNOW)NC =0wn0@LNC.

Hence x is in the left hand set of the expression (1), and consequently
Vo) nO@ #d.

The latter set is connected (being convex). Hence there is a K'e.#  with
OwWnOoO@WnVec K.

It follows that K = K’ and hence that veP(K). This shows that
O(u)nC = P(K)for each ue P(K), and P(K)is openin C. The point x being a

icm

The runk of a topological convexity 117

cutpoint of ¥, we find that .#" has more than one member, and as K < P(K) for
each Ke.#', {P(K), Ke.#'} is a proper decomposition of C\{x] into open
sets. w

We now proceed with a proof of Theorem 3.2. First, note that if the rank of
Cis O, then C = @, and if the rank of C is 1, then C is a singleton. So assume
that the rank of C is at least two, and that it is either finite or weakly infinite. We
will derive that C is a tree-like space.

CLamM. Let D < C be a nontrivial convex subset. Then the space D has a
cutpoint.

Indeed, as D is nontrivial, there exists a proper, nonempty, and relatively
open convex subset O of D. Note that the rank of the convexity subspace O is
again finite or weakly infinite. In either case there exists a maximal finite free
subset F < O, say:

F={y,ee0nyu} (m>1).

As h(F) < O is closed in X, we find that h(F) is a proper subset of O
(connectedness of D). For each i = 1,...,n we fix an open half-space 0; of X
with :

F\ly;} = 0, .
Then h(F) < 0;, and O; meets h(F) (since n > 1), whence by the continuity
property of X, 0;h(F) is relatively dense in h(F). Hence

y;€0;.

2 A 0;~h(F) is dense in h(F).
i=1

Assume that
N 0; " O\W(F) # 3.
i=1

If y is in this set, then for eachi=1,...,n
y:¢0; = h({y} UF\{y:})s

and as y¢h(F), we find that FU{y} = Ois a free set, larger than F. This
contradicts with our maximality assumption on F, and we may conclude that

o) A 0,n0 < h(F).
i=1

It follows from (3), and from the fact that O \h(F) # @, that R\ O;is a
i=1

(nonempty) separator of the space O. Now h(F) = O;, and hence by
Fuchssteiner’s property

h(F)\ ‘él 0, = ;Ql h(F)AO; = ,-91 h(F\0) = F.

3 — Fundamenta Mathematicae CXIX.2
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For each i =1,...,n let ¥, < O be a convex D-neighbourhood of y; with
VinF\ly;} = @.
Note that

h(F)uE)l 7 =(é1 0.n0)u 1) ¥

i=1

is open in O, and hence it property includes h(F). Then for some i, ¥, meets

O\h(F), whereas ¥ meets () O;n O by (2) and (3). This shows that y, is a
i=1

cutpoint of ¥, and hence of D in view of Lemma 3.4.

Now assume that C is not a tree-like space. Then relative to the weak
topology, C is not a tree-like space neither. We note that the assumptions on X
remain valid with respect to the weak topology on (convex subspaces of) X, and
in particular the above results apply equally well on this new topology, which
has one additional feature, essential for the proof below: it is locally convex (and
hence locally connected) by semi-regularity.

By assumption, there exists u % v in C which cannot be separated by a
third point, i.e. u and v are conjugate in the terminology of Whyburn, [Wh, p.
381]. Let D = C be the corresponding cyclic element, that is:

D = {y| y is conjugate to both u and v}.

For each xe C\{u, v} we let C, denote the set consisting of x, together with the
points of the component of C\{x} which contains u and v. Note that either C,
= C, or {x} is a (convex) separator of C, in which case C,isconvex by [V,, 54].
By definition,

D =N {CJ xeC\[u,v}],
whence D is convex. It therefore admits a cutpoint. However, cyclic elements in

a connected and locally connected T,-space have no cutpoints by [Wh,
Theorem 62]. m

4. Topological behaviour of rank
Let (X;, %)), ie! be a family of (set-theoretic) convexities. Its product is
defined to be the convexity (X, %), with X = H X;, and where % is generated
by the subbase *
U {77 1(Cy Cie%),

isl

where m: X — X; denotes the ith projection. If there are but finitely many
factors, then the members of % are of type

T1C  (Ce%,ien,

iel
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(cf. [J,, p. 20, [V,, 1.8]). If each factor is topological, and if X =[] X; is
ief

equipped with the product topology, then (X, %) is again a topologic{a] convex
structure. If there are but finitely many factors, then (X, %) is (semi-) regular
provided each factor is. .

4.1. THEOREM. Let X1, X, be semi-regular closure-stable convexities of which
the underlying space is nontrivial and connected. If X is the product of X and X 5,
then

d(X) =d(X,)+d(X3,).
Informally, rank behaves additively under the formation of products.
Proof of 4.1. Let
Fy={x}, ..., xL}, F,=1{x% ..., x2

be free subsets of X; and X, respectively. A both X, and X , have more than
one point, a standard maximality argument gives us open half-spaces 0} of X,
and O} of X;, i < m, j < n, such that

F\{x{} = 0f;-

2
F\[x}} < 0F.

x}eO};
x}e0%;
Note that () Of is a neighbourhood of x{, and hence that -ﬂ1 ol # 0.
k#1 i=
Similarly, ﬁ O} # @ (remark: the intersection of the “empty family” equals X
j=1

by convention).
Then choose

WEOE XX, n(NO)xX0 X x(N 0F) (k=1,...,m),

i j=1

3 E

Yurt€X 1 X0 (N O)x X, X, x( N O})

(l=1,....n.

W
L

We find that for p < m,
(vl a# p} = 05 xX,
and for m < p < m+n (say: p = m+1)) that
(vl 4 # p} = X, xOF.
Hence the collection {y,| p=1,...,m+n} is free in X and d(X) = d(X,)+
+d(X,).
The opposite inequality is a direct consequence of the fact that the (open)

half-space of X are of type 0, x X, or X; x0,, where 0, is an (open) half-space
of Xj, i=1,2.m
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It is clear that 4.1 is not valid if one of the factors is empty or has only one
point. Although the above argumentcan slightly be improved such that it also
works for certain non-connected spaces, some restriction close to connectedness
seems necessary: see the example in 2.2 (equipped with the discrete topology).

4.2. THEOREM. Let X be a semi-regular closure-stable convexity with
connected convex sets. Then 2.ind(X) < d(X).

Proof. The theorem is trivial for indX = —1. If indX <n,
where 0 < n < oo, then by [V,, 4.4] there exists a C.P. map
frXx-10, 17

(the latter being equipped with the subcube convexity, ¢f. (2.4; 1)) which is onto.

Hence by (2.4; 1) and Theorem 2.5,
d(X)=d([0,1])=2n. =

We note that convex dimension behaves additively under the formation of
products (cf. [V, 2.6]). Hence Theorems 4.1 and 4.2 are in good agreement. It is
also clear form the examples in (2.4; 2) and (2.4; 4) that no other relationship
between rank and dimension can be expected.

As a particular consequence of 4.2, a semi-regular closure-stable convexity
with connected convex sets and of finite rank must be finite dimensional. One
other application of rank is concerned with the following. It was shown in [V,
3.7] that if X is as in 4.2, and if X is finite-dimensional, then each dense half-
space of X has nonempty interior. Also, an example was given, showing that this
statement is false if “half-space” is replaced by “convex set”. The convex
structure in this example was a tree-like space with a dense (and hence infinite)
collection of endpoints. By Theorem 3.1, this space has strongly infinite rank.

4.3. THEOREM. Let X be a semi-regular closure-stable convexity with
connected convex sets. If X has finite or weakly infinite rank, than the interior of a
dense convex set meets every nonempty convex open set of X.

Proof. Let C = X be dense and convex, and let O = X be a nonempty
convex open set. Then C O is dense in O, and

(intC) N0 = inty (Cn 0).
As the rank of C n O is also finite or weakly infinite, there exists a maximal free
subset F of Cn O which is finite, say:

= Y
F={x,...,%,}.

Let O; = X be a convex open set with

x€0;, h(F\(x) <0, i=1,..,n.
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Then () 0;~ 0 is a neighbourhood of x,c0,, whence
i=2 .

Non0o#a.
i=1
Hence if inty(C N O) = @, then

N 0,n0 ¢ h(Fyc CrO,

i=1

and by density of Cn O in O, there is a point
Xp4 1€ O, (OVK(F)NC.
i=1

Then F U {x,.,] is a free subcollection of Cn O, a contradiction. w

The following is a somewhat surprising result:

4.4, TueoreM. Let X be a semi-regular closure-stable convexity with
connected convex sets and with compact polytopes. If gen(X) < oo, then X has
the weak topology, and a set A = X is closed iff A~ P is closed in P for each
polytope P of X. In particular, the topology of X is compactly generated.

We note that the theorem applies for 1-dimensional X of finite rank: then X
is tree-like and its rank equals its generating degree by Theorem 3.1. For
convexity structures X as in the hypothesis of 4.4, there is no counterexample to
the statement d(X) = gen(X). It were therefore a good testcase to try to
“extend” the above theorem to convexities of finite rank.

Proof of 44. First note that

1) 2ind (X) < d(X) < gen(X)

by 4.2 and 2.2. Hence X is finite dimensional, say: ind X = n. The theorem is.
obvious in dimensions —1, 0, and we proceed by induction, assuming the
theorem to hold in dimensions < n, where n > 0. Let A = X be such that
P A is closed for each polytope P of X, and let xe X\A. We distinghuish
between the following two cases.

Case 1. x¢({H| H = X a dense half-space} (we note that the latter
collection is nonempty, and even dense in X by [V,, 6.12]).

Let H = X be a dense half-space with x¢ H, and let F < H be a maximal
subset with the property that F U {x} is free in X. Note that F must be finite by
(1), say:

F={x{,...,%,}.

For each i = 1,..., p there exists an open half-space O; of X with
h(F o {x}\{x)) = 0;,  x¢0,.
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Then

.(p\l 0;~nH < h(Fu [x}),
for otherwise we can pick a point

ye -61 0, H\h(F U {x}),

and we obtain another free set F U {x, y}, with Fu {y} = H, contradicting with
the maximality of F. Hence '

V)] X\(Fu {x}) € (X\0))u...u(X\0)u H\H.

By [V,, 3.4), ind A\H < n. By inductive assumption, 4 n (H\H) is closed in
H\H, and there exist convex relatively closed sets Cy, ..., C, = H\H such that

3) AnH\H e Cju...uC,; x¢Ciu...uC,.

Note that for each i = 1,...,q, x¢C, since C; = H\H is relatively closed,
xeA\H. On the other hand, A~ h(Fu {x}) is compact (compactness of
polytopes). Hence for each ae A n h(F U {x}) we can fix a closed convex set D,
with ‘

acintD,, x¢D,,
and a finite number of these sets, say: Da;""’Dar’ suffices to cover
A h(Fu [x}]). Combining this with (2) and (3), we find
Ac(X\0)u...uX\0)uCiu...uCuD, V...uD,

and x is not in the right hand set.:

Case 2. xe(){H| H = X a depse half-space}.
Let .# be the collection of all maximal half-spaces H — X with the
property that x¢ H. Note that (with the notation of 2.3),

M H < H,
and that the members of .# are pairwise incomparable. By Theorem 2.3,
degree of #" = gen(X) < o0,

and hence the collection . is finite.

For each Me.# we find by assumption on x that there exists a point
xpy€X\M. Let

F < {xy| Me#}
be minimal with the property that
h(F') = hi{xy| Me#}.

The rank of a topological convexity 123

Then F' is free in X, and it extends to a maximal free set F < X, which of
necessity is finite again. We put

P=h(F), F=1{x,...,%).
F being free, we obtain open half-spaces 0; of X with
F\x) =0, xe0, (i=1,..p.
Again,

i

@ N 0: < h(P)

(otherwise F would extend to a larger free set). We claim that for each i, x€ O;.
For, suppose x¢0;. Then O; extends to a maximal half-space M with x¢ M.
Consequently, Me #, and

xyeP\M, P=hF)=0;,=M,
a contradiction. .
It follows from (4) that
%) X\h(F) = X\O,u...uX\0,; x¢ X\0, U...uX\O,.

On the other hand, 4 nh(F) is compact and exactly as in case 1 we obtain
convex closed sets D,,...,D, of X with

(6) Anh(Fye Dyu...uD,, x¢D,u..uD,.

Then (5) and (6) yield the desired result. m

Theorems 4.3 and 4.4 combine to obtain the following “Baire-type”
theorem. '

4.5. CorOLLARY. Let X be a semi-regular closure-stable convexity with
connected convex sets and with compact polytopes, such that gen(X) < co. Let
(C)ier be a collection of convex sets, the closures of which cover X.

(1) If I is finite, then intC; # @ for some iel;

(2) If X is a Baire (topological) space, and if I is countable, then int C; # &
for some iel.

Proof. We have that {J C; = X, and in either case we obtain an ie I with

iel
intC; # &. As X is semi-regular and has the weak topology by 4.5, we obtain a
convex open set O of X with

@ +#0cintC,.
Then C;n O is a dense convex subset of 0, and by Theorem 4.3,

@ + inty(C,n 0) = int(C;n 0) < intC;. m
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We note that 4.4 is used only to obtain neighbourhood bases of convex
open sets at each point of X. Having the weak topology is not a necessity for
this: by [V, 2.3], “uniformizable” convexities also have this property. In such
circumstances, Theorem 4.4 can be avoided, and 4.5 works already for
convexities of finite or weakly infinite rank.

We now pay some attention to “spanning” properties of convex sets.

4.6. THEOREM. Let X be a semi-reqular topological convexity of finite rank.
Then every compact convex subset of X is a polytope.

Proof. Let C = X be compact convex, let d be the rank of X, and let x be
the cardinal number of C. We may assume that » is infinite. We fix a -1
correspondence x — C; a — x, for notational convenience. By transfinite
induction we will construct for each ordinal « < x a set F, « C such that

(1) F, has at most d points, and x,eh(F,) if a < x;

(2) if B < a, then h(Fy) < h(F,).

Put F, = {x,! (we note that d > 1 since C is infinite). Having obtained F/, for
B <o < x, then F, is constructed as follows. If « has a direct predecessor f,
and if Fy U {x,) has no more than d points, then put

F,=Fyuix,].
If Fyu{x,} has more than 4 points, then there is an xeFpu {x,] with
xeh(Fgu {x,}\(x}),
and we put
F, = Fyu [x}\{x}.
Note that h(F,) = h(Fgu {x,}), and hence that
X, €h(F,) = h(Fyu (x,}) = h(Fp).

If & is a limit ordinal, then we use compactness of C to obtain a cluster point F,

oAf1 the net (Fpg); <, in the hyperspace of C. Clearly F, has no more than d points.
s0,

ﬁL<) h(Fp) = h(F}).
Indeed, if x¢ h(F;) then there exists a convex open set O = h(F,) with x¢ Q.

Hence there is a cofinal collection A < (+,a) with Fy < O for all feA.
Consequently,

x¢0 = | h(Fp) = | h(Fp)
Pen p<a

by-(2). Proceeding as above, we then obtain a set F, = F, U {x,} with at most d
points, such that h(F,) = h(F, U {x,}). If & = % (which is a limit ordinal since %
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is infinite), we apply the second procedure and put F,, = F,,. Having completed
the induction, we note that
Cc | WF)<ch(F,)=C
as<x
by (1) and (2), establishing the theorem. m

The above argument fails to work for convexities having weakly infinite
rank. Rather surprisingly, the theorem still holds for a “usual” class of
convexities: .

47. TuroreM. Let X be a semi-regular, closure-stable convexity with
connected convex sets, and of finite dimension. If X has weakly infinite rank, then
every compact convex subset is a polytope.

The proof of 4.7 requires the following simple result:

LemMa. Let (Y, <) be a rotally ordered set, and for each y & Ylet K(y) be a
subset of [y, =) with yeK(y). If for each sequence

Vo <Y1 < oer < Yp < Yurt < oo
in Y there exist n < m with y,€ K (v,), then there is a cofinal Y’ = Y such that

VyeY': K(y)nY includes an endsegment of Y.

Indeed: put L(y) = [y, =)\K(y). Then y¢L{y) and if yeY’ < Y then
K (y) ~ Y includes an endsegment of Y"iff L(y) » Y’ is not cofinal in Y’. Assume
there is no cofinal Y’ = Y as required above. For each cofinal Y’ = Y we then
obtain a point y'€ Y’ with L(y') » Y" cofinal in Y, and hence also in Y. Applying
this argument inductively, we obtain sequences (Y.)Z= 0, Wu)i= o, such that y, € Y,
Y, = Y, and such that ¥,,, = Y, n L(y,) is cofinal in ¥, and hence in Y. We
then find that

Yo <y1 <o <Yn < Vutrooos

and for all n < m, y.¢K(y,), contradictory to the assumption.

Let C X be compact convex. We first note that ind C < ind X, and that
the theorem is obvious if ind X = —1 or 0 (in fact, also for n = 1: then Cis a
compact tree-like space, its convexity must be the natural one by [VMV,, 1.7],
and the rank of C cannot be weakly infinite then, as was observed after 3.1.
Hence C is of finite rank and 4.6 applies).

Assume the theorem to hold if X is of dimension < n, where n 2 1 (or n
> 2if the reader wishes). Let ind X now be equal to n, and assume that C is not
a polytope. Then by [J;, 1.12] there exists an increasing transfinite sequence
(C)eere OF convex sets of X with

1) Vaex: C, is properly included in C;

@ UC=C¢C

aEx
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(in the case of vector spaces this result on non-polytopes was discovered as late
as 1972, cf. [K, Theorem 1], and it was extended soon afterwards by Jamison to
abstract convexities).

Case 1. No C, is dense in C. Restricting to a cofinal subsequence if
necessary, we may assume that for each aex there exists a point

x,€C\CI( U Cp).
‘ B<a
By semi-regularity there exists an open half-space O, of X with

Q) Ci( U C,) =0,

B<a

X £0,.
Then put
K@ = (>0 x,¢0,}.

fog <oy <...<a, <ty <...areinx, then a,, € K (a,) for some n < m; if
not, then x, €0, for all n < m. For m < n, we find by (3) that

x"‘me C"m < O/x,,a

. n '
is free, a contradiction.

" We are now in a position to apply the lemmas: there is a cofinal subset
A = wsuch that for each a e A thereis a § > « in A with the following property:

if y>pfisin 4, then x,¢0,.
This directly leads us to another cofinal set © < A such that for each o, e,
4 a<f = x¢0,.
As Q is cofinal in », we have by (2) and (3) that

and finally x, ¢0, . This shows that the infinite collection x, | n=0,1,2, .

Jo,>C.

ae

For each aeQ we put

D, = h*{x5| feQ, B > a} (notation of 1.2).
Then D, = C\O, by (4), and hence
N D, = C\O, =@.
as? aeR

Howeve_r, (Da),eg is a decreasing sequence of closed subsets of the compact C, a
contradiction. So we are lead to consider the rermaining ’

Case IL. Some C, is dense in C. We may as well assume then that all C, are
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dense in C by the monotony of the sequence (C,),,. Restricting to a cofinal
subset if necessary, we may also assume that for each aex there exists a point

x,eC\ U Cp.
f<a

X being a semi-regular convexity space, it follows from [J, p.26] that X is also
an S;-convexity. Hence for each a ex there exists a half-space H, of X with

xa¢Has U CB < Hm'
B<a

By the same argument as in case I, we obtain a cofinal subset 2 < % such
that for each o < fin @, x,¢ H,. Let u be the first member of Q. For eacha > u
in 2 we have

x,e€C,\ U Cp; x,eC\H, = CH(C\H)),
B<a

and hence the transfinite sequence of sets (C, N Cl(C\H )hen,a», is properly
increasing. Also, its union equals CI(C\H,), and by [J,, 1.12] again, the latter
cannot be a polytope. However, H, n C is a dense half-space in C, whence by
[V,, Theorems 2.7 and 2.9],

indCI(C\H,) = ind(C\H,) < indC < n,
contradictory to our inductive assumption. =

We do not know whether the restriction to finite-dimensional convexities is
essential for the conclusion of 4.7. The situation is even more complicated by the
fact that we have not found examples of (sufficiently nice) convexities of finite
dimension and of weakly infinite rank.

The above results 4.6, 4.7 deal with compact convex sets. In the case of
separable metrizable spaces some conclusions can be drawn concerning
arbitrary convex sets as well:

4.8. THEOREM. Let X be a separable metrizable space equipped with a semi-
regular closure-stable convexity all convex sets of which are connected. If X has
finite rank, or, if X is finite-dimensional and of weakly infinite rank, then every
convex set in X is the convex hull of a countable subset.

We note that some countability condition on X is indispensible: let X be a
totally ordered continuum with its natural convexity. If X is not first countable
at an endpoint x, then X \{x} is a convex set which cannot be the hull of a
countable set, in spite of the fact that this convexity space is 1-dimensional and
of rank 2.

Polytopes of a convexity are often required to be compact (see, for instance,
Theorem 4.4, and certain results in [V,], [V3], [V,])- In these circumstances, it
follows from 4.8 that every convex set in X is o-compact. In many concrete
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situations this gives a simple way to see that a convexity does not have finite or
weakly infinite rank. '

Again, we do not know whether or not finite-dimensionality is an essential
condition for the above thereom.

Proof of Theorem 4.8. With wither assumption on X" we have ind X
< . We proceed by induction on n = ind X, leaving the cases n = —1, 0 as
trivialities: assume the theorem to hold in dimensions < n, and let C < X be a
convex set which is not the hull of a countable subset. By an inductive procedure
we construct a sequence (4,)~, of countable subsets of C such that

(1) h(4;) is a nonempty half-space for
2 h(A)Nh(AgU...U4;_) =0 for
Let 4, = C be a countable dense subset. Having constructed the sequence up

to i >0, we find that there exists a ‘point
xeC\h(Agu...U4)

by assumption on C. As X is S, there exists a half-space H of C such that
xeH, Hnh(4pu...U4) = 0.

Note that intc H = @. Hence by [V,, 2.7], ind H < ind X and by inductive
assumption there exists a countable set A;,, = H with h(4;,,) = H.

i

Having completed the induction, we fix a point x; e h(4,) for eachi > 1.
Then {x;] i > 1} is a free subset of C since for each i # j we have by (2)

xeh(4), x;¢h(4)
whence by the convexity of C\h(4,),
x¢C\h(4) = hix)| j#i}.

The desired result follows from this contradiction. m

izl
iz1.

5. Embedding in cubes or products of tree-like spaces

_ Let X,Y be topological convex structures. An embedding of X in
Yisa C.P. mapf: X — Ywithis an isomorphism between X and f(X) (where
the latter is equipped with the trace convexity).

5.1. ExamPLE. A two-dimensional, normal, closure-stable convexity with
connected convex sets which cannot be embedded in a finite product of tree-like
spaces.

Let X be the square, equipped with the (trace of the} linear convexity. The
following geometrically obvious fact is used without proof: if C = X is a convex
closed set then X \C has at most 4 components. If Cy, C, are disjoint convex closed
sets each dividing X into at least three components, then X \C, and X\C, have
exactly three components, and no convex closed D = X \C, U C,, divides the
square into more than two components.
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This situation leads to the following consequence. Let f: X — T be a C.P,
map onto the tree-like space T. Then T'must be of the following type (Fig. 2):
Indeed, if x & T'is a ramification point, then f 7! (x) is a convex closed set of X

x
x

,or ,or = ,or
x!

interval letter “7°” “cross™ “double Y

Fig. 2

such that X \ /™ '(x) has at least 3 components. Hence, ord (x) < 4 and if there is
a second ramification point x’, then

ord(x) = ord(x') = 3,

and there cannot exist a third ramification point. We note that C.P. maps of X
onto each of the above trees can easily be constructed. The above argument is
therefore sharp.

n

Iff: X - [] T;is a C.P. map into a finite product of tree-like spaces, and if

i=1
n; denotes the ith projection, then m; 0 f may be assumed to be onto. As 7; is also
C.P, we find from the above argument and from Theorem 3.1 that d(T)) < 4. By

the product Theorem 4.1, we find that d( [] T;) < 4n < oo. Hence by
i=1
Theorem 2.6, f cannot be an embedding. =

Even in case the rank is finite, it is not possible in general to embed a
(sufficiently nice) n-dimensional convexity into a product of m = m(n) < oo
many tree-like spaces (the number of factors cannot depend exclusively on the
dimension n):

5.2. ExampLE. There exists a sequence (X,),-, of 2-dimensional, normal,
closure-stable convexities with connected convex sets and of finite rank, such
that X, is not embeddable in a product of less than p/2 many tree-like spaces.

Proof. Let X, be the unit square again. In R* we fix p distinct directions
(p = 2), and we let the convexity of X, be generated by the sets of type H n X,
where H is a closed half-space of the vector space R? with bounding hyperplane
parallel to one of the chosen directions.

As p = 2, it follows that singletons are convex. As the linear convexity on
R? has Helly number 3, the same holds for X, (except for p = 2, where the Helly
number will be 2). The collection 2, of all nonempty intersections of subbasic
sets is obviously compact in the hyperspace of X, (such sets are exactly the ones
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determined by certain linear inequalities). Hence by [J,, 111.2], &, is exactly the
collection of all convex closed sets in X,,. If D, D’'e 9, are disjoint, and as the
Helly number of X, is at most 3, we find (at most) three subbdsnc sets
H,,H,, Hy each mcludlng either D or D', and such that

HinH,nHy = @,

say:D < H;,D' © H, H,. The linear map, determined by H, then separates
D from D’ and it is obviously C.P.

This shows that X, is a normal convex structure. As its collection of closed
convex sets is compact, it follows from [J,, IIL.2] that X, is also closure-stable.
Finally,

d(X,) < gen(X,) <2
as one can easily check (as for the first inequality, construct a 2p-gon in X, with
edges parallel to the selected directions, and pick a point on the inside of each
boundary segment. The resulting collection is free). If
k

X117
i=1
is a C.P. map into a product of k tree-like spaces and (notation of 5.1) with 7,0 f
onto, we find again that the rank of T, is at most 4 (the argument of 5.1 is now
applied on a more restrictive collection of linearly convex sets). Hence

.:1*

d( D) < 4k,

it

i=1

and if f has to be an embedding, we must have 2p < 4k. m
We note that an embedding of X, in a p-cube can easily been constructed.
Our interest in finite-dimensional convexities of weakly infinite rank is
partially motivated by the following result.
5.3. Tueorem. Let X a comvex structure of weakly infinite rank, and with

a connected underlying space. Then X is not embeddable in a product of finitely
many trees.

k
Proof. Letf: X — [] T, be a C.P. map into a product of k < co tree-like
i=1
spaces. X being connected, we find that m;0f (X) is also a tree, and hence we
may assume ;0 to be onto for each i. By Theorem 2.5, each T; can have at
most weakly infinite rank, whence by a remark following 3.1, d (T) < c0.Hence
by 4.1,

:a-

d(

T)<

>

It

1
and by Theorem 2.6, f cannot be an embedding. w
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From the above results one might draw the rather superficial conclusion
that tree-like spaces and their finite products are too “simple” to include
complicated substructures. This is not true. In fact, measuring “complication” in
terms of rank, there exist tree-like spaces of the largest possible “degree of
complication”, namely strongly infinite rank. The leitmotive in the above
arguments is rather that certain special circumstances force the tree-like factors
to stay far below their maximal complexity.

As a general conclusion it appears that finite-dimensional convexities need
not be embeddable in products of finitely many 1-dimensional convex structures
and if it is possible to do so, then the number of factors may depend not only on
the dimension, but also on the rank.

In a sense, the situation is less complicated if one restricts attention to
cubes (with cubical convexity). In view of Theorem 2.6, a convexity of infinite
rank cannot be embedded in a finite-dimensional cube. From various concrete
examples we got the impression that. the following problem might have a
positive solution. Let X be a semi-regular closure-stable convexity with
connected convex sets. If the rank d of X is finite, it is then possible to embed X
in an n-cube, where n is in between d/2 and d? Of course, X should be at least
separable and metrizable for this.

We note that if X is a convex structure of finite rank and with the usual

propertles and if f* X — H T; is an embedding in a finite product of trees (in
i=1
particular, in a cube), then each factor T, may be assumed to have finite rank.
k

Consequently, []
i=1
subspace also has the weak topology. Hence, for an affirmative answer to the
above embedding problems, one must obtain an extension of 4.4 to convexities
of finite rank.
Let us end with the mentioning of a weaker “embedding” problem. Let X
be a (sufficiently nice) convex structure of finite dimension. Does there exist a
topological embedding f of X into a finite product of tree-like spaces such that fis
C.P? We note that a C.P. homeomorphism need not be a convexity
isomorphism, unless the convexities in consideration are binary: see for instance
[vMYV,, 1.5]. In this case the weaker embedding problem reduces to the original
one, and for binary convexities we know of no counterexample.

T; has the weak topology by Theorem 4.4, and then every
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. THEOREM. If an hereditarily indecomposable continuum X is the limit of an
inverse sequence of locally connected and unicoherent continua, then X is tree-like.
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Proof. Let X = lim{X,, gnm}, where X,’s are locally connected and

unicoherent continua, and let /2 X — Y be a mapping into a 1-dimensional
polyhedron. We shall show that f'is nullhomotopic. Since Ye ANR, there are an
index n > 1 and a mapping f,: X, — Y such that f ~ f,0g,, where g, is the
projection from X into X,. Hence it suffices to show that f, ~ 0. By the
Whyburn factorization theorem there exists a continuum Z, a monotone
surjection k: X, — Z and a O-dimensional map I: Z — Ysuchthatf, = lok.It
follows that Z is a locally connected and unicoherent continuum. Since [ is 0-
dimensional and dim Y = 1, by the Hurewicz theorem [4, p. 114, Th. 1] we infer
that Z is a curve. It follows that Z is a dendrite [4, p. 442, Cor. 8], hence an
absolute retract. This proves that f, ~ 0 because k (and also /) is nullhomotopic.
Thus we have proved that X is contractible relatively any graph. By [3, Cor. 4]
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