

132

- [J₂] R. E. Jamison, Some intersection and generation properties of convex sets, Comp. Math. 35
 (2) (1977), pp. 147–161.
- [J₃] Partition numbers for trees and ordered sets, Pacific J. Math. 96 (1) (1981), pp. 115-140.
- [K] V. Klee, Unions of increasing and intersections of decreasing sequences of convex sets, Israel J. Math. 12 (1972), pp. 70-78.
- [KW] D. C. Kay and E. W. Womble, Axiomatic convexity theory and relationships between the Carathéodory, Helly and Radon numbers, Pacific J. Math. 38 (2) (1971), pp. 471-485.
- [vM] J. van Mill, Supercompactness and Wallman spaces, M.C. tract 85, Amsterdam 1977.
- [vMV₁] and M. van de Vel, Subbases, convex sets, and hyperspaces, Pacific J. Math. 92 (2) (1981), pp. 385-402.
- [vMV₂] Convexity preserving maps in subbase convexity theory, Proc. Kon. Ned. Acad. Wet. 81 (1) (1978), pp. 76-90.
- [vMW] and E. Wattel, An external characterization of spaces which admit binary normal subbases, Amer. J. Math. 100 (1978), pp. 987-994.
- [N] S. B. Nadler, Jr., Hyperspaces of Sets, Marcel Dekker, New York 1978.
- [V₁] M. van de Vel, Pseudo-boundaries and pseudo-interiors for topological convexities,
 Dissertationes Math. 210 (1983), pp. 1-76.
- [V₂] Finite dimensional convexity structures 1: general results, Top. and Appl. 14 (1982), pp. 201–225.
- [V₃] A selection theorem for topological convexity structures, to appear.
- [V₄] Dimension of convex hyperspaces, to appear in Fund Math.
- [Ve] A. Verbeek, Superextensions of topological spaces, M.C. tract 41, Amsterdam 1972.
- [W] L. E. Ward, Jr., A note on dentrites and trees, Proc. Amer. Math. Soc. 5 (1954), pp. 992-994.
- [Wh] G. T. Whyburn, Cut points in general topological spaces, Proc. Nat. Akad. Sc. 61 (1968), 380-387.

SUBFACULTEIT WISKUNDE VRIJE UNIVERSITEIT

Accepté par la Rédaction le 13. 7. 1981

Hereditarily indecomposable continua with trivial shape

by

J. Krasinkiewicz (Warszawa) and M. Smith (Auburn, Ala.)

The result presented in this paper, in a slightly weaker form, was discovered by the second author. The proof was complicated. Later the first author found simpler proof and it was decided to write a joint paper with the simpler proof.

Morton Brown [1] has proved that the limit X of an inverse sequence of n-spheres S^n , $n \ge 2$, is not hereditarily indecomposable provided each bonding map is essential, i.e. not homotopic to a constant. In this situation we have: (1) X is the limit of an inverse sequence of locally connected unicoherent continua, and (2) $\check{H}^n(X) \ne 0$. We shall prove more: any h.i. continuum satisfying (1) must be acyclic (even tree-like).

A space X is said to be contractible relatively another space Y provided any mapping from X into Y is nullhomotopic. If a mapping f is nullhomotopic, we write $f \simeq 0$.

THEOREM. If an hereditarily indecomposable continuum X is the limit of an inverse sequence of locally connected and unicoherent continua, then X is tree-like.

Proof. Let $X = \lim \{X_n, g_{nm}\}$, where X_n 's are locally connected and unicoherent continua, and let $f: X \to Y$ be a mapping into a 1-dimensional polyhedron. We shall show that f is nullhomotopic. Since $Y \in ANR$, there are an index $n \ge 1$ and a mapping $f_n: X_n \to Y$ such that $f \simeq f_n \circ g_n$, where g_n is the projection from X into X_n . Hence it suffices to show that $f_n \simeq 0$. By the Whyburn factorization theorem there exists a continuum Z, a monotone surjection $k: X_n \to Z$ and a 0-dimensional map $l: Z \to Y$ such that $f_n = l \circ k$. It follows that Z is a locally connected and unicoherent continuum. Since l is 0-dimensional and dim Y = 1, by the Hurewicz theorem [4, p. 114, Th. 1] we infer that Z is a curve. It follows that Z is a dendrite [4, p. 442, Cor. 8], hence an absolute retract. This proves that $f_n \simeq 0$ because k (and also l) is nullhomotopic. Thus we have proved that X is contractible relatively any graph. By [3, Cor. 4]

134

we infer that dim $X \le 1$. Applying the characterization of tree-like continua from [2] we conclude that X is tree-like. This completes the proof.

It follows from the theorem that h.i. continua with trivial shape must be tree-like. In this form the theorem was discovered by the second author. Continua with trivial shape may be characterized as those which are the limits of inverse sequences of absolute retracts.

References

- [1] M. Brown, On the inverse limit of euclidean n-spheres, Trans. Amer. Math. Soc. 96 (1960), pp. 129-134
- [2] J. H. Case and R. E. Chamberlin, Characterizations of tree-like continua, Pacific J. Math. 10 (1960), pp. 73-84.
- [3] J. Krasinkiewicz, Mapping properties of hereditarily indecomposable continua, Houston J. Math. (to appear).
- [4] K. Kuratowski, Topology, vol. 2, New York-London-Warszawa 1968.

INSTITUTE OF MATHEMATICS

AUBURN UNIVERSITY

POLISH ACADEMY OF SCIENCES

Auburn, Alabama 36849

00-950 Warszawa

Accepté par la Rédaction le 17, 7, 1981

The L^t -theory of profinite abelian groups

b

Peter H. Schmitt (Heidelberg)

Abstract. The concept of an algebraically complete topological abelian (ACTA-) group was introduced by J. Flum and M. Ziegler in their monograph on the topological first-order language $\mathcal L$ ([5] below). We determine the structure of saturated ACTA-groups and give cardinal invariants for their $\mathcal L$ -equivalence. We show that the profinite abelian (PFA-) groups constitute a subclass of the ACTA-groups. We axiomatize the $\mathcal L$ -theory of PFA-groups and show its decidability.

The topological logic \mathcal{L} , recently introduced by Sgro, turned out to be a surprisingly good analog of first-order logic in the context of topological structures. A detailed description of \mathcal{L} will be presented in §1 below.

In [5] Flum and Ziegler introduced the concept of an algebraically complete topological group. They proved that a topological abelian group is algebraically complete if and only if it is *E*-equivalent to a direct sum of abelian groups with discrete topologies. From this they inferred decidability of the *E*-theory of this class of groups. In §2 we will determine the structure of saturated algebraically complete topological abelian groups and give cardinal invariants for *E*-equivalence. In §3 we show that profinite abelian groups are in fact algebraically complete and we give axioms for the *E*-theory of this class of topological groups and prove its decidability. Our approach also yields a new proof of the decidability and axiomatizability results contained in [1].

We should like to thank Martin Ziegler for pointing out a mistake in the original proof of Corollary 3.6.

§1. Prerequisites

A. The topological logic L. We will present the first-order topological logic L in a form specifically adapted to the discussion of first-order properties of topological groups.

Let LG be the usual first-order language of group theory (written additively) and let LG^{II} be the extension of LG to the following weak second-order logic:

1. Syntax: Conventional second-order logic with second-order variables X, Y, \ldots , second-order constants and the binary relation symbol \in . The class of formulas is closed under second-order quantification.