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be acyclic (even tree-like).

A space X is said to be contractible relatively another space Y provided any
mapping from X into Yis nullhomotopic. If a mapping fis nullhomotopic, we
write f~ 0. :

. THEOREM. If an hereditarily indecomposable continuum X is the limit of an
inverse sequence of locally connected and unicoherent continua, then X is tree-like.
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Proof. Let X = lim{X,, gnm}, where X,’s are locally connected and

unicoherent continua, and let /2 X — Y be a mapping into a 1-dimensional
polyhedron. We shall show that f'is nullhomotopic. Since Ye ANR, there are an
index n > 1 and a mapping f,: X, — Y such that f ~ f,0g,, where g, is the
projection from X into X,. Hence it suffices to show that f, ~ 0. By the
Whyburn factorization theorem there exists a continuum Z, a monotone
surjection k: X, — Z and a O-dimensional map I: Z — Ysuchthatf, = lok.It
follows that Z is a locally connected and unicoherent continuum. Since [ is 0-
dimensional and dim Y = 1, by the Hurewicz theorem [4, p. 114, Th. 1] we infer
that Z is a curve. It follows that Z is a dendrite [4, p. 442, Cor. 8], hence an
absolute retract. This proves that f, ~ 0 because k (and also /) is nullhomotopic.
Thus we have proved that X is contractible relatively any graph. By [3, Cor. 4]
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we infer that dim X < 1. Applying the characterization of tree-like continua
from [2] we conclude that X is tree-like. This completes the proof.

It foliows from the theorem that h.i. continua with trivial shape must be
tree-like. In this form the theorem was discovered by the second author.
Continua with trivial shape may be characterized as those which are the limits
of inverse sequences of absolute retracts.
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The I!-theory of profinite abelian groups
by

Peter H. Schmitt (Heidelberg)

Abstract. The concept of an algebraically complete topological abelian (ACTA-) group was
introduced by J. Flum and M. Ziegler in their monograph on the topological first- order language L
([5] below). We determine the structure of saturated ACTA-groups and give cardinal invariants for
their I-equivalence. We show that the profinite abelian (PFA-) groups constitute a subclass of the
ACTA-groups. We axiomatize the I'-theory of PFA-groups and show its decidability.

The topological logic I, recently introduced by Sgro, turned out to be a
surprisingly good analog of first-order logic in the context of topological
structures. A detailed description of I! will be presented in §1 below.

In [5] Flum and Ziegler introduced the concept of an algebraically
complete topological group. They proved that a topological abelian group is
algebraically complete if and only if it is L-equivalent to a direct sum of abelian
groups with discrete topologies. From this they inferred decidability of the L-
theory of this class of groups. In § 2 we will determine the structure of saturated
algebraically complete topological abelian groups and give cardinal invariants
for I-equivalence. In §3 we show that profinite abelian groups are in fact al-
gebraically complete and we give axioms for the L-theory of this class of
topological groups and prove its decidability. Our approach also yields a new
proof of the decidability and axiomatizability results contained in [1].

We should like to thank Martin Ziegler for pointing out a mistake in the
original proof of Corollary 3.6.

§1. Prerequisites

A. The topological logic I'. We will present the first-order topological logic
I in a form specifically adapted to the discussion of first-order properties of
topological groups.

Let LG be the usual first-order language of group theory (written
additively) and let LG" be the extension of LG to the following weak second-
order logic:

1. Syntax: Conventional second-order logic with second-order variables
X, Y, ..., second-order constants and the binary relation symbol €. The class of
formulas is closed under second-order quantification.
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