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already a model A* where A = @ ® Z(p")?" @ Z(p®)” is determined by the

peP n€N peP
finite tupel of numbers a,,, and y,, it is possible to enumerate recursively all
L'-sentences which are consitent with T,.. This implies decidability.
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On the span of weakly-chainable continua
by

Lex G. Oversteegen (Birmingham, Ala.)
and E.D. Tymchatyn* (Saskatoon, Sas.)

Abstract. A continuum is weakly chainable provided it is the continuous image of the pseudo-
arc. It is an open problem to classify weakly chainable atriodic tree-like continua. In particular, the
following problem, due to Mohler, is open: Suppose X is a weakly-chainable atriodic tree-like
continuum, is X chainable? In this paper we will give a necessary condition for weak-chainability of
certain continua by proving the following theorem: Suppose X is a weakly-chainable (atriodic) tree-
like continuum such that every proper subcontinuum is chainable, then the span of X is zero. This
answers a question of Ingram. We will also investigate some related problems.

1. Introduction and preliminaries. By a mapping we mean a continuous
function and by a continuum a compact, connected metric space. A tree is a
finite, connected and simply connected graph. A continuum is tree-like (arc-like)
if it is an inverse limit of trees (arcs, respectively). A continuum X is atriodic,
provided for every pair Y;, Y, (¥, = Y;) of subcontinua of X, Y; \Y, has at most
two components.

Let (X, d) be a connected metric space. Fori = 1,2 let n;: Xx X — X be
the ith coordinate projection. We define the surjective span o* (X) (respectively
the surjective semi-span o (X)) (see [6], [7]), of X to be the least upper bound of
the set of real numbers a > 0 with the following property: there exists a
connected set C, = X x ¥ such that d(x, y) > afor (x,y)eC,andn, C,) = X
= 7, (C,) [resp. n; (C,) = X7]. The span o(X) [resp. semi-span o,(X)] of X is
defined by

i

o(X)
(resp. o (X)

sup {o*(4)] A = X, A # @ connected}
sup {6§(A)] A = X, A # @ connected}.

It is known that the (semi-) span of a chainable continuum is zero. It is an open
question of Lelek whether a continuum of span zero is chainable. It follows from
[8] that such a continuum is atriodic tree-like.

* This research was supported in part by NSERC grant no. A5616 and by a University of
Saskatchewan research grant.
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Let C be the class of all mappings of the closed unit interval I = [0, 1]
onto itself and let f,gyeC. We say that [ and g have an g-uniformization
(see [117) prov1ded there exist a, beC such that fu = gb, where the meaning of
f=gis: |f)—g(t) < ¢ for every tel. It was proved in [11] that for every
g > 0 every pair of mappings f,geC admit an g-uniformization.

2. The span of continua. Let X = lim(X,, /) and Y = lim(Y,, gn) be two
inverse sequences of continua. Let [¢,: X, —~ Y,} be a sequence of mappings
and let {¢,} be a sequence of positive numbers such that lime, = 0 and for each
triple k, n,m (k < n < m), the following diagram is &, commutative:

m

X, = X,
(1) l‘l’n i’/’m
LY « Y,

) where

Define ¢: X = Y by @(x;, X5, X3,..) = (V1, V2, V3 -+

Yo = lim g @ (xn).
m-—r s

It was proved by Mioduszewski [12] that the map ¢ is well defined
and continuous. The map ¢ is said to be weakly induced by the sequence
(pa:X, — Y,! with respect to the sequence [¢,} . Conversely he has also shown
that for every map ¢: X — Y there exist infinite subsequences {n,}, {m,} and
mappings {@] X, — Y, | satisfying (1). Similar diagrams (see [12] for details)
exist between homeomorphic continua.

Let X and Y be continua. A mapping f* X — Yis called confluent (resp.
weakly confluent) provided for every continuum K < Y and every component
(resp. some component) C of /™! (K), /(C) = K. A continuum X is in class W
provided every mapping of any continuum onto X is weakly confluent. It is
known [3] that all atriodic tree-like continua are in class W. It is an easy
observation that every tree-like continuum, such that every proper
subcontinuum is arc-like, is atriodic and hence in class W. A mapping f: X = Y
is said to be irreducible provided no proper subcontinuum of X is mapped onto
Y.

2.1. THEOREM. Let X be a weakly-chuinable atriodic tree-like continuum such
that every proper subcontinuum is arc-like. Then the (semi-) span of X is zero.

Proof. Let X = lim(Xp, /) and let the pseudo-arc P = lim (I, %) where
the Xp's are trees and the I’s are arcs. Suppose that the map ¢: P — X is weakly
induced by the sequence {@p: I — Xp} with respect to the sequence {¢p]. We
may assume that ¢ is irreducible.

Suppose that the semi-span of X is positive. Hence there exists a number
n > 0, a continuum C and mappings h, k: C — X such that h(C) = X and
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d(h(c), k(c)) > n for every ceC. We may assume that k(C) # X or k is
irreducible. Moreover, we may assume that d(f; o h(c), fy0k(c)) > n for every
ceC. Here fp: X — Xp denotes the natural projection. Choose n > 0 such that
10¢, < 1.

Let P* = lim(I%, g| I%) be a proper-subcontinuum of P such that If is a
subcontinuum of I, and g¢,(P*) = I,. Put Y, = ¢(P¥), then Y; is a proper
subcontinuum of X. Since X is in class W, there exists a proper subcontinuum
C* of C such that h(C*).=Y,. Put k(C*) =Y,, then Y, is also a proper
subcontinuum of X. Note that Y; = hm(fp ), ) fP(Y)) (i =1,2), Since X is
in class W, there exists a continuum P = hm(lp, gP|1;) < P such that ¢ (P) '

=T,.

&n

® *
I, = 111 Iu
AY
. - “
{2) s l.” ol 1 N
\\\
B Iz I 1o a
I X X, @, (L)) S
\
o \\ N
N
24} \ Il,, \\
hY
i \\ ot \\bz
Nl N
A ~
/ B,
J2 / s
// //
“k s
// ! //
"o Ve //
f L
Fal
as
X, X, X @u(1,) / :
N
(3) s & vl
A /
[/l :D [I’

[
L

Since the map ¢ is almost induced and the continua Y; are chainable, it
follows that there exist integers s,u (n < s < u), arcs J; and mappings
oy . IX) = Jy, ey @,(1) = J, and f;: J, = X, (i = 1, 2) such that diagrams
(2) and (3) are 2¢,-commutative.

Since ¢, (I*) and g, (1,) are locally connected continua (approximating Y;
and Y,), there exist an arc A4 (approximating C*), mappings h,: A — ¢, (If) and
k,: A -~ ¢,(I,) (approximating f,oh and f,ok, resp.) such that

(4) d(fioh,@), flok, () >n VieA.
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Let & > 0 be such that x,yeJ; with d(x,y) < d implies

d(foBi(x).ffoBi(y) < &
fori=1,2.

Consider the mappings oy 0 @ |I¥: I¥ — J; and y o h,: A — J . It follows
from [11] that these mappings have a §-uniformization. Hence there exists an
arc B; and mappings a,: By — I¥, b,: B, » A such that
(5) %1 @y 8y F 0y h,by.

Simi]arl.y the mappings ayk,b;: By —J, and a,00,: I, = J, admit
a S-uniformization. Hence there exist an arc B, and mappings a,: B, — I,
b, B, — B, such that

82 9,4, T 2 k, by b,.

By ()

% @,ay b, T % hybyb,.

Hence

SiBraso,a,b, :ffﬁ1“1hub1bz and  ffB e, 9,0, fffﬂz“zkulhbr

It follows from (2) and (3) that

JiBray :—"'fxu and  fifa, =f{.
Hence

S ouarh, fnfxu hubib, and fio,a, £ Jik,by by.

Also f o, = fi 0,9" and hence

(6) J ongna b, :;'nfluhubl b, and flo.gia, E/kibyb,.
e

Sir.lce the map gia; b,: B, »I¥ =1, is onto and ghay: Bz ~1, <1, there
eumsts a toeB, such that g:albz(t0)=gﬂaz(t0). Hence by (6) d(f{'h,b, by(1o),
Sk, by by(to) < 8e, < 1. This contradicts {4) and the proof is complete.

22 Rema‘rk_s. In 1;4] Ingram constructed an uncountable planar
col]ectxqr{ of atrlodl{: tree-like continua of positive span. These continua satisfy
the additional condition that all proper subcontinua are arcs, He proved [5]
that at most countably many members of this collection are weakly chainable
and’ raised the question whether no member of this collection is weakly
chainable. The above theorem answers this question in the affirmative. Earlier it
had been announced by T. Moebus

that one particular member of this collection is not weakly chainable.

The authors were not able to solve the following problem:
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2.3. ProBrEM. Suppose X is a weakly-chainable atriodic tree-like
continnum. Is the span of X zero? What if X is also hereditarily
indecomposable? Does X have the fixed point property?

Problem 2.3 would have an affirmative answer if the following problem,
due to Lee Mohler, has an affirmative answer.

24. ProsLEM. Suppose X is a weakly-chainable atriodic tree-like
continuum, is X arc-like?

3. Fixed point properties. It is known (see [1], [13], [14]) that there are
atriodic tree-like continua without the fixed-point property. In addition these
continua satisfy the property that every proper subcontinuum is an arc. It is an
open problem to characterize the atriodic tree-like continua with the fixed-point
property. It follows immediately from Theorem 2.1 that weakly-chainable

. atriodic tree-like continua such that all proper subcontinua are arc-like have the

fixed-point property.

It is an open problem (cf. University of Houston problem book, problems
84 and 86) whether the confluent image of an arc-like continuum is arc-like or
has span zero. It is known (cf [10]) that such an image is an atriodic tree-like
continuum. The following problem is also open.

3.1. ProBLeM. Suppose f: X » Y is a confluent map of an arclike
continuum X onto a continuum Y. Does Y have the fixed-point property?

The following theorem gives a partial solution. By a ray we mean a one-to-
one continuous image of [0, ocv) or (— o0, c0). An upper semi-continuous set
valued function G: X — Yis called refluent [2] provided for every continuum
K < X and each component C of G(K), we have G(x) n C # @ for every
xekK.

3.2. THEOREM. Suppose f: X — Yis a confluent map of an arc-like continuum
X onto a continuum Y such that X contains a dense ray. Then Y has the fixed-point
property.

Proof. Suppose g: Y— Y is a fixed-point free map. Consider the set
valued function G = f ™! gf: X — X .1t follows easily that G is a fixed-point free
set valued refluent function. Let ¢ > Osuch that d(x, G(x)) > ¢forall xe X. Let

=1{U,,U,,..., U,} be an gchain irreducibly covering X.

For A,B < X, we say that A <B provided max {i|4AnU; # &}
< min{i|BnU; # &}. Let ‘p: [0,00)— X be a one-to-one continuous
function such that ¢ ([0, w)) " U, # @ and ¢ (0)e U,. Then ¢(0) < Go(0). Let
t; = sup {t'€[0, 00)| p(t') < G () for. all t'€[0, ]}, then t; < co. Suppose
¢(t;)eU,. Choose & >0 such that t;—06>0 and o(1 —8,t,+0))
= K < U,. By the definition of t,, there exist x, ye K and ze G(y) such that x
< G(x) and z < y. Let C be the component of G(K) containing the point z.
Since ze C and G(x) N C # @, C intersects elements U, and U, where p < ¢
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< r.Hence C U, # @. Let ueK such that G(u) " U, # @, then d(u, G(u)
< ¢. This contradiction completes the proof.

Problem 3.1 would have an affirmative answer if the following problem
due to Madkowiak (see [9]), has an affirmative answer.

3.3. ProsLEM. Do arc-like continua have the fixed-point property for upper
semi-continuous refluent set valued functions?
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Metrizability of certain quotient spaces

by
Yoshio Tanaka (Tokyo)

Abstract. The metrizability of certain sequential spaces can be characterized by whether or not
they contain two canonical subspaces.

Introduction. Let us begin with the following well known examples. These
example will play an important role in this paper. Let « be an infinite cardinal
number. Let S, be the space obtained from the topological sum of & convergent
sequences by identifying all the limit points. S, is especially called sequential
fan. We also need another canonical example S,. That is, S, = (Nx N)u
UNU {0}, N is the set of integers, with each point of N x N an isolated
point. A basis of neighborhoods of neN consists of all sets of the form
{n} U {(m, n);m = m,}. And U is a neighborhood of 0if and only if 0 U and U
is a neighborhood of all but finitely many neN.

We recall some basic definitions. Let X be a space and Let U be a cover
(not necessarily closed or open) of X. Then X has the weak topology with respect
to W, if F — X is closed in X whenever F n A4 is closed in 4 for each 4Ae 2. Of
course we can replace “closed” by “open”. A space X is sequential (resp. a k-
space), if X has the weak topology with respect to the cover consisting of all
compact metric subsets (resp. compact subsets). As is well known, a sequential
space (resp. k-space) is characterized as a quotient image of a metric space [5]
(resp. locally compact space [2]). A space X is a k,-space [14], if it has the weak
topology with respect to a countable cover consisting of compact subsets of X .
A space X is Fréchet (resp. strongly Fréchet [21], E. Michael [15] calls it
countably bi-sequential) if whenever xe A (resp. xe A, with 4,.., < 4,), there
exist x, € A (resp. x, € 4,) such that x, — x. We shall remark that S is a Fréchet
k,-space which is not strongly Fréchet, and that S, is a non-Fréchet, k,-space.

Now, S, (resp. S,) is helpful in analyzing the gap of Fréchet spaces and
strongly Fréchet spaces [22; 16 (b)] (resp. gap of sequential spaces and Fréchet
spaces [6; Proposition 7.37). A.V. Arhangel'skii and S. P. Franklin [1]
introduced the sequential order o (X) of a space X. For a hereditarily normal
sequential space X, V. Kannan [11] gave a characterization of o (X) by whether
or not X contains spaces S, defined inductively, and showed that such a space X
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