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On a relationship between countable functionals
and projective trees*

by
Helmut Vogel (Miinchen)

Absiract. The countable functionals of the type (0 — k) — 0 define a class of k-trees whose nodes
are labeled by countable functionals of pure type k. The paper discusses some elementary delinability
properties of the countable functionals leading to the notion of partially wellfounded tree and
identifies the supremum of the lengths of the above mentioned k-trees as the projective ordinal m, . The
countable functionals are presented in terms of convergence spaces with countable bases of finite
functionals.

The theory of the countable functionals has many aspects, e.g. topological,
proof theoretic, recursion theoretic ones. Because each countable functional can
be coded by a function, and the set of codes of countable functionals of pure type
n-+1is complete in I75, the theory is also part of descriptive set theory (Hyland
[5], Normann [13]). The purpose of the present paper is to show that also the
projective ordinals are well-known inhabitants in the land of the countable
functionals. With a type o the type ¢ =(0—0) —0 is associated, and a
countable functional f of type o * is envisaged as a tree T; of objects of type o as
follows: If s = (ug, ..., 4,-1)is a finite sequence of countable functionals of type ¢
and § the corresponding infinite sequence given by §(i) =u; if i <n, =
zerofunctional 0° otherwise, then se T <+f () > n. Scarpellini [15] exhibits
Spector’s bar recursion in his model as recursion on these wellfounded trees.
Therefore we call the length |T;| of T, the Spector ordinal of f and denote the
supremum of | T;| for countable f of type n* by y,. The main result of the paper is
the theorem of D. Normann, saying that y, is the projective ordinal z}, i.e. the
supremum of the lengths of the [J} prewellorderings in the Baire space. But before
this we give a brief introduction into the theory of the countable functionals from
the point of view of limit-spaces, following Scarpellini [15]. Other treatments like
the Kleene-Kreisel definition of Ct via associates [8], [9], Ershov’s embedding in
his general theory of partially continuous functionals [1], which is related to
Scott’s work on lattices, Hyland’s filter spaces [4], [6], or Troelstra’s ECF model
[18] may be in some respect superior to the pure limit-space approach, but the

* This paper has its origin in the author’s doctoral dissertation. The author would like to
express his sincerest thanks to his thesis advisor, Prof. J. Diller, for his guidance and encouragement
then and ever since.
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latter makes it easy to emphasize the role of the finite functionals. These can be
readily identified with a countable dense subset of Lim, the space of the
continuous functionals. The finite functionals are codable as numbers, and so the
set of the convergent sequences of (coded) finite functionals constitutes a set coff
of descriptions for Lim. Each countable functional f has a standard description
obtained by restricting f to f|n of lenght n; in Normann's terminology the
sequence An. f|nis (almost the same as) the trace of f, which s left by f'in the finite
functionals. Traces or coffs can often play a similar role in Lim as Kleene’s
associates do in Ct, but there are differences: the evaluation expressed in coffs is
not recursive ; the function which maps a functional to its trace is continuous, but
the reverse function which maps a coff to the represented functional is not. In
section 2 Coff (¢ —~ o) is characterized as the set of those o, which applied
(explained in the text) to any feCoff(g) gives a value a(B) e Coff (¢), and the
completeness of Coff(n+1) is proved. There we need a lemma which says that
each IT;set A is of the form {xe#: VgeLim(n3i R(x, g, i)} with a countable
predicate R. In analogy to the tree representation of I7}-sets the elements of Acan
be considered as partjally wellfounded trees. Although there is no obvious
definition of length for partially wellfounded trees the axiom of projective
determinacy allows comparison of such trees by a projectively defined
prewellordering: & < o iff there is a “monotone” mapping of the tree belonging to
@ into the tree belonging to «. This discussion is continued in section 3 with the
. concept of Spector trees.

§ 1. Limit continuous functionals. There are various ways to introduce the
countable functionals topologically. We mentioned already Ershov's partially
continuous functionals and Hyland’s filter spaces. In this paper we will use
Scarpellini’s model of limit continous functionals. Scarpellini [15] is inspired by
the chapter on #*-spaces in Kuratowski [12], where the notion of a convergent
sequence is basic. If — denotes a binary relation between sequences F: o — X of
aset X and elements fof X, then (X, —) must satisfy three conditions in order to
be a L*-space:

(i) if F is eventually constant f, then F — £,

(i) all subsequences G of F - f converge against f,
and the Urysohn-condition, ’ :

(iii) if F does not converge against f, there is a subsequence G of F such
that no subsequence H of G converges against f.

A P*-space is discrete, if the eventually constant sequences are the only
convergent ones. The discrete space w of the natural numbers will also be denoted
by Lim (0). If (X, —)is a #*-space, let L(X) denote the set of maps F: wu{oo}
— X st. inew. F(n) - F(c0). A map f between two Z*-spaces (X, L(X)) and
(Y, L(Y)) is continuous iff it transports all convergent sequences G & L(X) into
convergent sequerces foG € L(Y). The set Z of the continuous maps is endowed
with a $*structure: FeL(Z) iff for all GeL(X) Xi-F()(G(@))eL(Y). To
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emphasize the homomorphic aspect of this definition we often write F (G) for
Ai*F (i) (G (i). With these function spaces the category of #*-spaces is cartesian
closed. If X has elements of type ¢ and Y of type o, then the elements of Z are of
type ¢ — o. Starting from 0, the type of the natural numbers, and disregardjpg the
product types one obtains all finite types. For technical reasons the deﬁnm.on of
Lim (¢ — o), the space of the continuous functionals of type ¢ — 0, is sllghtly
modified: let (Lim (g), L(g)) and (Lim (o), L(0)) be given, 7 = ¢ — 0. We define
first I*(t) as the set of F: wu{co} — Lim (g) — Lim (o) s.t. F(G)e L(0) for all
GeL(g). Then Lim (z) consists of all /' Lim(g) — Lim (o) with Ai:f € I*(r) and
L(z) of all F e I¥ () with range (F) < Lim (r). We write F —fiff F' e I* (1), V\_/here
F': @wu{oo} - Lim (o) — Lim (0) is defined by F'(n) = F (n) and F’(c0) =f? and
say “F converges against f in ‘Lim (z)", ie. F —f in Lim (7), iff F —>f aqd
Vn F(n)eLim (t)andf € Lim (7). In this notationf € Lim (g - o) iff An-g, > g in
Lim () implies An-f (g,) —f (g) in Lim (o). The set of all strictly increasing j: @
— wis denoted by mon. The subsequences of F: w — X are then given as the Foj
with j e mon. We leave it as an exercise to prove that I* (t) is closed against taking
subsequences. The pure types are denoted by natural numbers and defined by
n+1=n-0. Lim(0) is the discrete space w, Lim (1) is identified with the
Baire space # of the irrationals, Lim (2) is the set of all continuous (in the
usual topological sense) maps between # and w. I

Often one wants to prove f, —fin Lim (7) by considering approximating
sequences F, —f,. Then Lemma 1.1 can be helpful.

Lemma 1.1. Let © = ¢ » 6 and f, > f: Lim (g) = Lim (o), F,: @ — Lim (o}
— Lim () with F, —f, for all n. Then f, -1, if for all jemon An-F,(j(n)) >f.

Proofbyinduction on types. The corresponding statement for z = Ois true.
Let G — g in Lim (). Then 4i-F, (i) (G (n) —f,(G(n) in Lim (o) for each n and
An-F,(j(n)) (G (n) = f (9)in Lim (o) for eachj e mon. With ind hyp for & we obtain
anf,(G(W) »f (@) in Lim (o).

As a corollary we have

Lemma 1.2. Let v = g — ¢ and f: Lim (g) — Lim (z). If F — f for a sequence
F: w — Lim (g) — Lim (o) then f is continuous, i.e. f €Lim (7).

Proof. Let g, —g¢ in Lim (). Then Ai-F (i) (g,) —f(gs) for each n and
n-F(j(n) (g,) = f (g) for each je mon. With Lemma 1.1 f(g,) —f (9} in Lim (o).

In the remainder of section 1 we derive some well-known topological
properties of the countable functionals in this limit-space setting. First Kre.isel‘s
question on the continuity of moduli of continuity. If is a continuous functional
oftype 6™ = (0 — o) — O then a function u(f): Lim (0 — ¢) — w is a modulus of
continuity (moc) for f iff for all geLim (0 — o) u(f) (g) gives a number m s.t.
(Vg eLim (0 o) (Vi< mg() =F@1)=r(g) =f(@). u(f) is called the mini-
mal moc for f, denoted p,, (f), if the m in (y) is minimal. Each continuous f has
a minimal moc, because otherwise there would be g € Lim (0 — ¢), and for each m
gmeLim (0 — ¢) with Vi < m(g() = g,,(?)) and [ (g) # f (9m), contradicting the
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continuity of f. If f is continuous of type 2 then each modulus u(f): #— w is
continuous too. But there is no continuous u: Lim (2) —» Lim (2) s.t. for all
feLim (2) u(f) is a moc for f, an old result of Kreisel, see [11], p. 154.In a letter
"(11.11. 1975) Kreisel asked wether every functional of type 2* has a continuous
modulus of continuity. Independently Howard, Hyland and the author gave a
negative answer. The simple counter example is contained in

Lemma 1.3, Let feLim (2%) be defined by f(g) = g(0) (An-gn0') for
geLim (0 —2). Then f has no continuous modulus of continuity.

Proof. Assume that u(f) is a continuous moc for f. Let kew be fixed,
h:=0°"2 Hnma:=0if a(k+1)<n, =1 otherwise; Gnm:= Hnm if m <k,

=Ax'n+1 otherwise. Because of f(Hn) =0 and f(Gn) =1 is u(f) (Hn)> k.

Because of H —h and the presupposed continuity of u(f) is u(f)(h) > k.
But k was arbitrary. '

Convergence in Lim (2) can be reduced to pointwise convergence with the
help of the minimal modulus of continuity.

Lemma 1.4. Let f,, feLim (2). Then f, —f is equivalent to
(A) Vo ImAng Vn > ng (tin (£) (@) < mAS, (@) =1 ().

It follows that for each convergent F: w — Lim (2) and each a € R the set
{ i (F () (@): new) is bounded in .

Proof. Let f, —f and assume not (A). By considering subsequences we can
assume w.Lo.g. the existence of an a s.t. p, (f,) (@) > nand £, (o) = f («) for all n,
Then for each n there are o, with Vi < n «,(i) = a(i) and f, (a,) # fu(®). Therefore
o, — o and f, (a,) = f () =1, (a) for large n, contradiction. The other direction is
equally simple.

Lemma 1.5. For each felim(2) and mew there is F:w — Lim (2) with
F —f and Vnp, (Fm)(0) = m.

Proof. Define F (n) (a): = f (&), if o (m) < n; : = £ (01)+1 otherwise. F -~ fis
clear. Let « = 0' and assume p,,,,(F (n)) (a) < m for some n. Define f(i) = n+ 1, if
i=m, =0 otherwise. Then Vi<ma(i)=p(), but F(n)(2) =f(x) and
F(n) (f) =/ («)+1, contradiction. '

As a corollary we obtain the mentioned result of Kreisel:

Choose f,, f in Lim (2) with f, >fs.t. f, #f for all n. Lemma 1.5 gives
for each n a sequence Aify, »f, with p..(f£.)(0Y) > n. If u would be a
continuous moc for Lim (2) then u(f,) (0*) = n and u(f) (0') = n for all n,
which is absurd. Now set 4:= {f,;: n, iecw} with the above Jui» Jus J- Then A
contains no sequence converging against f. The argument uses Lemma 1.4:
Let G: w — A4 and assume G —f. Then only finitely many of the f,, of the
range(G) can have the same subscript n, because otherwise there would be a
subsequence converging against f, + f. Therefore {u, (G(k) (0Y): Keiw) is
unbounded, contradicting Lemma 1.4. The natural closure operator cl (B) for
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subsets B of Lim (z) is defined by: fecl (B) <> there is F: w — B with F — '
in Lim (z). For the A as above we have shown fecl(cl(4))\cl(4), and

LemMA 1.6. The natural closure operator for Lim (2) is not idempotent.

Nevertheless each Lim (z) is separable in the sense that there is a countable *
set Fin(z) with cl(Fin(z)) = Lim(z). The reason is that a continuous functional
disposes only of countable information, and can be approximated by functionals
containing only a finite amount of information: each natural number n is
identified with {i < n}. Fin(z, n) will denote the set of the finite functionals (ff) of
type  and length n. To avoid the empty set Fin (0, n)is definedasn+1 = {i < n}.
Fin(g — o, n)is just the set of all functions from Fin (g, n) into Fin(c, n). The set
Fin(z) of the ffs of type t is the union of the Fin(, n). The restriction iln of a
natural number i to nis i if i < n, n otherwise. We define inductively two families
of mappings, the sections s;: Fin(r, n)— Lim(z) and the retractions,
£: Lim () — Fin (¢, n): for © =0 we set s8():=i for i <n, r2(@):=1n for icw.
Let T = ¢ » 0. For f&Fin (t, n), geLim (g) we define '

| SOIOEEAVIO)]
For feLim(r), geFin(e, n) we define analogously
() (@) = e (f (s2(9)-

With the usual induction on types one sees easily that all s}, %, are well-defined,
and that ros! is the identity on Fin (z, n). We abbreviate s;or;(f) as f|n, “f
restricted to n”. For T =g —¢ and feLim (r) f|n has the direct definition
(fIn) (g) =f (gln)ln for geLim (g). Obviously f|nfn =fln. Often Fin(r, n) is
identified with its image s% (Fin (z, n)) and r},(f) withf|n. The restriction operator
gets on well with the convergence:

Lemma 1.7. (i) If An:f, »f and jemon then An-flitn = f.

(i) If f is continuous then An:fin—f.

Proofof(i)forj = identity by induction on 7 is straightforward. For j e mon
define an increasing function k: w —w with koj=id. Then An:fy, —f,
Anfumln =1, Anfigamli(n) = 1.

(ii) is immediate from (i).

With Lemma 1.1 we obtain the following converse of (i):

If An-f,lj(n) —f for all jemon then in:f, —f.

The hypothesis can not be weakened to j =1d as the following example
shows: Define F: w —»Lim(2) by F(n) (o) =0 if a(n) =a(n+1), =a(n+1)
otherwise. Because of (afk) (n+1) =a(n+11k)k = (alk)(n) for k<n is
(F(m)|k) (@) = O for k < n, therefore in-F (n)|n — 02 and An*F (n)|k — 0? for each
k, but F(n) (identity) =n+1 # 0.

§ 2. Convergent sequences of finite functionals. A finite functional (abbr.: ff) is
a finite object and as such can be coded by a number. Let code,: Fin (t) — w and


GUEST


174 H. Vogel

decode,: w — Fin(z) be two functiens with decode,ocode, = identity on Fin(r)
s.t.the relevant operations on ffs are primitive recursive in the codes. For example
the length of a ff should be primitive recursively extractable from the code. The
application between two ffs f of type © = g — ¢ and g of type ¢ is defined as

1@ = (s50) (%))

where f eFin(t, n), geFin(g, m), max = maximum of n and m. This reduces to
ordinary application if n =m = max. Application has also to be primitive
recursive in the codes. Each continuous functional f of type t defines a sequence
Anf|n of ffs describing f completely. Adapting a denomination of Normann, we
call the function An-code, (1% (f)) the finite functional trace of fand denote it by f*
or r(f). ‘

Remark. Let As (k) denote the set of Kleene’s associates for pure type k and
Ct(k) the notion of the thereby defined functionals. Then Ct(k) = Lim (k)
(Hyland [4]). Let B be the set of continuous functionals which have an aséociate
o« beginning with s, that is &(n) =s for n=1Ih(s). Define ¢f = sk(f), if f
= decode(i) e Fin(k, n). Then the family (p¥: iew) has the following properties:

() of eCt(k). :

e B(’i‘i) If Bf is not empty, we may find primitive recursively in k, s an i with

(iii) The relation {(i, s): @¥eB*} is primitive recursive.

(The proof has to make use of the theory of associates and is outside the
scope of this paper.)

Depending on a familiy (¢} ~?) satisfying (i)—(iii) Normann [14] defines the
trace h; of a functional feCt(k) for k> 2 to be

by () =1 (9h71).
hy is recursive in f* and conversely: Let g = gF~!

n f : g = @i~ of length n. Then (r, f) (g)
=1,/ (5.9)) = r"(hf(cpde(g))) and f"(n) = code(r,(f)) can be composed of
the r,(f)(g) for geFin(g, n). Conversely let g = decode (i) e Fin(g, m) and
choose n > m so large that f(s,g) <n. Then _ ‘ ‘ ‘

hf (l) =f((Pn) =f(sm (g)) =’rn (f(sm g)) =Ty (f (S,, Ty Sp g)) = (7',, 1) (r, Sng) -
= code (r, f) (code (r, s, 9)) =" (m)|code (r,s,) (decode i)).

Each function.a can be seen as a sequence Ari-decodeT (ac (m)) of ffs of type ©
We call « a convergent sequence of ffs (coff) of type 7 iff the corrcspondiné
sequence of ffs converges in Lim (). We denote by Coff (7) the set of all coffs of type
7 and b.y s the map: Coff(r) —» Lim(), at> (o) = limit of An-decode (x(m). If
Coff() is considered as a subspace of %, then s is not continuous for ¢ 21 2 (deﬁne
the sequence F: @ — Lim(2) as at the end of § 1: F(m) (@) = 0if a(n) = a(n+1)
=a(n+1) ow., () =code(F(m}i), a(i)=code of the zerofunctional iv
Fin(2, i). Then «,, aeCoff(r) and for n>i a, (i) = (i), so ‘a,,-—»az but s(a,)

» n.
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= F(n) # 0? = s(«). The trace function r: Lim(z) — Coff(z) is continuous and
one-one. This contrasts to the properties of Kleene’s associates: the function
which maps an associate to the represented functional is continuous, but there is
no continuous function selecting an associate for a given functional (because
otherwise every modulus of continuity would be continuous). Observe also that
for each g # 0 there is a continuous injective map from Lim(g — o) into Lim(g),
whereas there is no continuous surjective map of Lim(g) onto Lim(g - o)
(assume f is such a map and define’ h by h(g) = vary(f(g) (9)) for a map
varye Lim (¢ — ¢). Then h would be a f(go) and h(ge) = vary (h{go)).

We search now for a simple inductive characterization of Coff(<). As a
bridge we use the following equivalence relation: two convergent sequences
are equivalent iff they have the same limit. This relation together with the
corresponding variant Limv of Lim has the following inductive formulation.
Limv(0) is © and F < F iff F, F: w—w are two convergent sequences with
the same number as limit. Let T = g — 0. We define first F « F for sequences
F. F: @ — Limv(g) — Limv(c) by ' . .

VG, G: - Lim() (G  G=F(G) » F(G)).

Limv(r) consists of all f with Ai:f+ diif. The following lemma has a
straightforward proof by induction on types.

Lemma 2.1. (i) F~ F=F ~F,

(i) + is an equivalence relation on {F: F ~ F}.

Lemma 2.2. Lim(z) = Limv(t) and F ~ F < 3feLim(t)F »f«F.

Proof.Lett = ¢ — o and F ~ F. Withind hyp we get for every ge Lim(¢) a.
f(¢)eLim(o) with in-F(n) (g) —f(g) < in-F (1) (g). We have to show that F —f
and F —f. If G: w—Lim(g), geLim(g) and G —g, then because of Anrg — g,
G ~ An-g and therefore F(G) ~ F(in-g) ~ An-f (g). This implies F(G) = f(9).
By symmetry F —f. The other direction is simple.

As a corollary we have

o + a<>aeCoff(r). ‘

Lemma 2.2 shows that if two equivalent sequences F and G are merged into a
sequence H then H is equivalent to F and G too. For two sequences F, G: @ — X
we define the merged sequence H = FxG by H(2n) = F(n) and H(2n+1) = G(n),
and the subsequences (F)uen, (Floaa DY (Floyen (n) = F (21), (F)oaa (n) = F (2n+1).
The following lemma should be clear. :

Lemma 23. () F ~F = (Flen ~ (Flaen A Flosa ~ (Floga-

(i) F~F = F~(Flyen ~ Flaag-

(iii) F converges <> F ~F <> (F)yo ~ (Floga <> F*F converges.

Lemma 24. Let t =9 —0.

@) &ro < VB B (BxB = aPB) »a(p).
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(ii) xeCoff(r) < VpeCoff(g) «(B) e Coff(o), :
where o(B) (i) = a(i) of type t applied to B(i) of type o as codes of ffs as defined
above. ‘

Proof of @). (=) is trivial (<=): Let G + G and &(i))eFin(z, Ii(i))ﬂ
a()eFin(e, [(@), ) =r4,(GM), B =r4y(G®)). Then & (G)
= S %o’((i) (B()) and «() (G(i)):s,(,-)(aii) (). Wilog we assume k, [emon.
Then f ~ B and &(F) ~ a(B), then &(G) ~ (G). ,

Proof of (ii). (=): BeCoff(p) = B~ B = off) ~a(f) = a(f)eCoff(s).
(=) By B = BxBeCoff(o) = a(B+p)eCoff(6). Therefore (okyen ~ (@ua then
aeCoff(t). Ce

With Lemma 24 it is easily seen that Coff(0) is X3, Coff(1) is I73, Coff(2) is
T, and Coff(k+1) is IT} for k>1. We say that a relation P < Lim(r,) ...
-..xLim(t,) is countable iff its characteristic function Xy, defined by
*p(g1) (g2) ... () =0 < P(gy, ..., g,) is continuous.

LemMma 2.5. Let P be a countable predicate on & x Lim (k) x w and A = R be
given by

oeAd < VgeLim(k)3iP(x, g, ).

Then A is continuously reducible to Coff (k+1), i.e. there is a continuous ma
@1 A~ A with aeAd = ¢(a)eCoff (k+1). '

Proof. For aec® and geFin(k, n) define a*(meFin(k+1,n) by
a*(n) (9) = least p < n with P(x, g, p), if there is such a p, = n otherwise,
and @() (n) = code,. , (a* (m)). '

We have to show

(i) ot>a* is continuous,

(i) ae A = a*eCoff(k+1),

(i) x¢ A = a*¢Coff(k+1).

ad (i): Fix n and let a; - a. For large i and geFin(k, n) is least p < n.
P(oy, g, p) = least p < n-P(w, g, p). Then a* (n) = o* (m) for large i, because there
are only finitely many geFin(k, n). i

gd (ii): .Let BeCoff(k). We show that a*(f) is eventually constant. Let
gele(k)vwnh 5(B) =g. Because of o€ 4 there is a minimal p with P(a, g, p).
Because § — g this pis also minimal w.r. to §(n), that is o* (n) (B(n)) = pfor large
n. '

ad (iii):~ If a¢ A we have geLim(k) with Vi <n71P(a,g,i) for all n
Because P is countable there is a Jemon with Vi< n =1 P(a, glj(n), i). Put
B(n):=code(glj(n). Then BeCoff(k) and (@*0)(B)(n) = o* (j(m) (B (m) = n.
Therefore («*oj) (B) is unbounded and a*0j, a* not a coff. :
_ Kreisel observed in [9] that the quantifier-free axiom of choice is valid
in Ct (see also Troelstra [18] for a proof related to his model ECF)
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Lemma 2.6. Let P be countable. Then
Vf eLim(p) 3g e Lim(o) P(f, g, h) = 3GeLim (¢ — o) Vf eLim(g) P(f, Gf, h).
Proof. Assume the hypothesis with fixed h and define G(f)=g, if
geFin(o) and P(f, g, h) and code,(y) is minimal with this property.
Lemma 2.7. If P is a I} -predicate (k > 1) then there is a countable R with
P(a) <= VgeLim(k) 3iR(«a, g, i).
Proof by induction on k. Let k>1 and P(a) < VB Q(B,x) with
QeZl_,. With ind hyp we have a countable R, with
P(a) = VB 3IAgeLim(k—1) ViR, (B, o, g, i)
< VBVfeLim(k) IgeLim(k— 1) Ro (B, 2, 9, / (9))
<> VfeLim(k) 3geLim(k— 1) R, (a, g, / (9))
< VfeLim(k) 3geFin(k—1)R, (. g, [ (9))
<> YfeLim(k) 3iR, (oc, decode (i), f (decode(i)))
< VfeLim(k) iR, (a, f, i)

with appropriate countable Ry, R,.

CoroLLARY 2.8. Coff(k+1) is complete in [I} for k> 1.

GAMES AND TREES. :

We discuss briefly the theorem of Martin and Moschovakis that II, and
Zisy for odd n have the prewellordering property assuming projective
determinacy (PD). The knowledge of the already classical proof (e.g. Hinman
[2]) is presupposed. A prewellordering (pwo) is a binary relation on a set
which is reflexive, transitive, connected, and wellfounded. We define the
proper field F of a pwo <X by: a¢ F < Va(d <X a). Let <; (i = 0, 1) be pwo’s
on the Baire space with proper fields F;. The union < of <, and =<, is then
defined by:

@ By < (@ B) = a<oan@¢Fona¢Fy = F=<, ).
It is easily verified that ={ is a pwo and the proper field F of =< is given by
(o, B)eF < aeFqv peF,.

Now let 7 = g — o0 and suppose that pwo’s ={, with proper field "1Coff ()
(the complement of Coff(¢)) and <, with proper field Coff(s) are given. If <
denotes the union of =<{, and ={, and «(f) again application on Coff(t) x
x Coff(g) then we have

(2 (B), B)eproper field () <= (BCoff(g) = a(B)eCoff(c)).

The missing universal quantifier is provided by playing the following game.
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Define G(&, o) € #x X by
(B, BeG@E, @) < (@B), B)<(x(8). B)

and &=, a by:

IT has a winning strategy in the game G (&, «), where I plays § and II
plays B, and I1 wins iff (8, f) ¢ G(&, «). With the well-known arguments <, is
seen to be a pwo with proper field Coff(z).

Coff(0) is endowed with the trivial pwo: & ,a <> (aeCoff(O) =
&cCoff(0)). Assume that there are pwo’s <3eXl , and <jelll_, with
proper field T1Coff(n), which give 1., the pwo property.

Define games G; and G, by

(B, B#Gx(@, o) <> &(B) <o (B) A (#(B) ¢ Coff(0) na(B) ¢ Coff (0) = B < B).
and Gy analogously with IT and ¥ exchanged and prewellorderings <5, <p
by

&=z <> II has winning strategy in G;(&, a),

@<po < I has no winning strategy in Gg(&, a).

Then: #eCoff(n+1) vaeCoff(n+1) = (=418 < §X;0 < & <%); s,
<p and <,.,; with proper field Coff(n+1) give II} the pwo property.

Lemma 2.7 motivates the notion of a partially wellfounded tree. Assume
that a set A = # has the following description:

(V) xed <« VBeV 3i Q(x, B(}), with Q “simple”.

(For example you can find a IT!_,-complete V s.t. for each IT Lset A4
there is a recursive Q satisfying (V). Like in I1} try to see acA as a tree:

seT,: <> seSeq A Vi< 1h(s) 10Q(a, si).

Define: T is a V-founded tree<>T is a trec and Vfe V3iB(@¢ T

Then: aed <> T, is a V-founded tree.

Let T, T" be V-founded trees. A function 6: w — @ is V-monotone from
T into T’ iff '

@) o(<>)=<>,

(ii) VseSeq Vu v (o (s*il) = o(s)* ),

(iii) VBeV[o(BeV AVi(B()eT = a(f) ()eT)],
where o (B) (i) = (o (B(i+1)).

We define a relation on V-founded trees by
T<T < there is V-monotone o from T' into T, and #<Xa <> X T,

The relation =< is reflexive and transitive.
If we define the game G, (&, a) by

B Bty & a) = (BeV = (BeVau-B()¢ Tz < 4-Bo)¢ T).

then T;<X T, <> II has winning strategy in G, (&, o).
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If all these games Gy (&, @) are determinate, then <{ is connected and
wellfounded too. Of course these games can also be used to prove the zigzag
picture of pwo properties.

§ 3. Trees of higher types. To explain the idea we describe the concept of
Spector trees first in the classical theory of the Baire space 4.

Its topology is induced by the Baire neighborhoods N (s) consisting of the o’s
with @(lh(s)) =s. From a lecture of Kechris [7] we learned the following
convenient way of associating a function & to feLim(2) which describes f°
completely. Say that ¢ is an associate of the openset A = #iff 4 = |J N (&(i)).The
graph G, of a partial f: # — is the set {#i*a| f(0) = u} where (o) (0) = u and
(@+a) (I+1) = a(i). Similarly the concatenation sx*a of a finite sequence se Seq
and an infinite sequence a. Then fis partially continuous on its open domain iff G,
is open and we call ¢ an associate of (iff ¢ is an associate of G,. In this case we write
{e} for f. The set Tot:= {g| {¢} is total} plays the same role as Coff(2), in
particular it is II] and IT}-complete:

An arbitrary IT}-set A is of the form Vp 3i R(x, B, i) with recursive R.

Define the partial recursive selection functional Sel by

Sel(e, B):~ least i with R(«, B, i).
With the parameter theorem find a primitive recursive functional f: # — %
with :
{fi(@)} (B) = Sel(x, B).
Then f, reduces 4 to Tot.
By using an idea of Spector we assign to each continuous functional fof type
2 a countable ordinal | f| which measures the complexity of f. Let 0 be the

constant zero function and say that f has no predecessors if £ (0') = 0 and that
otherwise f has the predecessors fxii for uew where f*i is defined by

(f*i) (@)~ f (@*a) = 1.
So we define. |f]:=0 if f(0') =0 and
| |f]:= sup*|fdl

otherwise. It is useful to iterate the process of getting predecessors:

f if Ih(s) =0,
(f*ryxid  if §=r*i.

f*s:={

Let B li:= B(i))*0'. Then the sequence (# i) converges against f and the
continuous f satisfies the Spector condition

VBIif(Bl)<i.


GUEST


180 : H. Vogel

Because of the equivalence
SBT)<i = (fxB@)(©0)=0

| f1is a welldefined ordinal. Observe that the argument goes through equally well
for the set of partially continuous functionals f which are defined for the
countably many f [i and satisfy the Spector condition. Let Fun 2 Tot denote the
corresponding set of associates and [g|: = |{¢}| for e Fun. The same f, as above
shows that also Fun is IT}-complete.

The Spector tree T, < Seq is defined for eeFun by

ameT, <= Vi<n{e (@) >i.

Ife e Fun then T, is a wellfounded tree and the canonical length | T;] of 7, is equal to
le]. Shoenfield’s Lemma 2 on page 182 in his book [17] says especially for
£,eeFun:

|&] < |e] iff there is a monotone mapping from T; to T,.

complete Fun gives I} the prewellordering property. That this norm is equally
well suited for recursion — and proof theoretical purposes lis shown by the
following table where for a set M < Lim(2) |M] is the supremum of all |f| with
feM. '

The right side is a £} condition and so the norm |-|: FunAF N, for the II}-

M |M]
continuous Ny
recursive w;

- definable in PR+ Peg +10 .

bar recursion of type 0 the Bachmann-Howard-ordinal

definable in PR £
where PR denotes the set of the Hilbert-G&del primitive-recursive functionals of
finite types.

‘ (The first two lines are classical results, the third line is due to Howard [3]
(difficult dlrfect]on) and the author [19] (simple direction), the last line is
connected with the names of Tait, Schwichtenberg (see [16]) and Howard which
also studied the fine structure of the hierarchy.)

The generalization is now straightforward. Let the variables Y, ¢, u range
over continuous functionals of types o*:=(0 - g) =0, 00, o resp. Let ¢[n
denqte the sequence with (¢ ['n) (i) = ¢ (i) for i < n and 0° otherwise. Then éach
continuous Y satisfies the Spector condition

“Vedi Y(cl)<i.

As above Fhe corresponding  Spector tree T, S Seq,:= {(ug, ..., )
Vi <nueLlim(o)} is wellfounded with the length |T;|. Let 0 derotes the
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Zero fuﬁctiona] of type 0 —» o and Y=i be defined by
(Yxi) (¢):= Y(txc)=1.
In case Y0 >0 the Y« are the predecessors of Y and
|¥] = sup {|Y*4|+1] ueLim(o)},
in case YO =0 Y| =0. Then |Y| =|Ty|. To get back the Y from the predecessors
Y *il is possible only for “normed” Y and is solved by the following supremum
operation sup, of type (¢ »a*)—a7:
sup z¢ = z(c0) (c*)+1
where z is of type 0 — ot and (*c)* =c¢. Then
zu = (sup z)*il.
In analogy to the Kreisel-Troelstra set X from [ 10] we define inductively a set
A7 < Lim(c*) by ’ :
1.0 ex,
2. YVuelim(o) zue A"° = supzeA”.

- Then for all YeX™:

Y = sup (AuY i)

Recursion on the wellfounded trees Ty is Spector’s bar recursion. The bar
recursion operator B¥ of type ¢t -1 —((6 > 1)>1) >t i defined by

Y0=0 = B*YGH =G,
YO>0 = B*YGH = H(AuB*(Y %) GH).

With induction on |Y| one shows that B* is continuous wHich is essentially
Scarpellini’s argument from [15].
The functional C:= AY-B* YO sup is a retraction from Lim (o *) onto ™
with Ty = Ty and |Y] = |CY]. So, if we want, we can restrict ourselves to %"
For T. T < Seq, F: T — T is monotone iff F transports branches in T into
branches in T. Then

|¥] <|Y| « 3F: T— T monotone.

The argument is given by playing the following game G (Y, Y):
@ )¢G(F Y) = least - V(i) < least j-Y(clf) <.

I plays @, II plays cand I winsiff (¢, ¢)e G (¥, Y). This is an open game in the usual
sense and so by open game determinancy either I or II has a winning strategy
(ws). If IT has a ws then there is a monotone F: Ty — Ty;if I has a ws then there is
a uelim (6) and a monotone F: Ty — Tp,;.
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For M clim(c™) |M] s the supremum of all |¥] with YeM. The function
sp: @ — {types} is defined by sp (0) =0 and sp (n+1) =sp (n)™ and

Pni=|Lim (sp (n+1).

yo = |Lim (2)] = X, and by going down to the associates it is clear that y, < z,,,
Where 7, is the supremum of the [T} prewellorderings of the Baire space.

The proof of the following unpublished result of D. Normann is included
here with his permission. '

TueoreM 3.1 (Normann). Vn = -

Proof. Let T be a [T} -tree over the Baire space. We construct a continuous
functional Y of type (n+1)* with |Y| > lenght of T. To this end choose a
countable predicate R with

oaeT c»'VgeLim (m)3Ip R(a, g, p)
and define u,, u* by

Uy (g) ~least p-R(x,g,p) ~and uf =<, u,),

where { > here and in the following is an appropriate coding functional. Define a
new wellfounded tree T* by

T* = {<u¥ypys oo Whap gy ) 0oy ooes €T

Obviously the length of T is less than or equal to the length of T*. The crucial
observation is that for an arbitrary (total) continuous functional v of type n-+1 if
we know v ¢ T* we can continuously verify this fact. Because of the encoding of
the parameter this boils down to finding a continuous g with u(g) 5 u, (g) under
the proviso u # u, for a fixed a. :

- We have to consider two cases. If u, is total we shall find eventually a finite
functional g with u(g) # u,(g). If u, is not defined or equivalently 7R («, g, p)for
all p, then for k:=u(g) and large i we have T1R(x, gli, k) and u(gli) = k, so again
t(gli) # u.(gli). Therefore the following definition gives actually a total
continuous functional ¥ of type (n+1)*:

Y(c):=least (i, e) (in e steps we know {(c,, ..., > ETH).
Y has the property that if {c,, ..., ¢;_ > & T* then Y (cli) > i which shows
[Y]| = length (T*) > length (T). -
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