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w-Trees in stationary logic
by
A. Baudisch, D. G. Seese and H. P. Tuschik (Berlin)

Abstract. It is proved that for all trees 4, B of height at most w 4 = B(Q,) implics.ﬁl = B(ua).
Moreover all such trees are finitely determinate and the theory of the class of all trecs of height at most
w in stationary logic is decidable.

Preliminaries. The study of stationary logic L,,(aa) was begun by J.
Barwise, M. Kaufmann and M. Makkai [1], following a suggestion of S. Shelah
[8]. In their paper Barwise, Kaufmann and Makkai proved Completeness,
Compactness, Downward-Léwenheim-Skolem-Theorem and Omitting Types
theorems for stationary logic. The quantifier @, “there exist uncountably many”
is definable in stationary logic. Thus L, (Q,)is a sublogic of L, (aa). We assume
the reader familiar with stationary logic.

Throughout this paper L denotes an elementary language for partially
ordered structures with finitely many individual constants and predicates
eventually.

Structures for L are denoted by A, B, etc. and their universes |A4|, | B, etc. by
the corresponding capital letters 4, B, etc. For a set M let P,,, (M) denote the set of
all countable subsets of M.

A set 4 <P, (4) is unbounded if every BeP, (4) is a subset of
some Ced. 4 is closed if the union of each increasing sequence
B, =B, c .. c B, < ... of elements of 4 is again an element of 4.

Closed and unbounded (cub) subsets of P,,, (4), P,,, (B), etc. are denoted by
A, B, etc.

B get L(aa) we expand L by adding countably many set variables
X, X3, ..., the esymbol and a new quantifier aa. Formulas of L(aa) are formed
as usual with the new formation rule:

if ¢ is a formula of L(aa) so is (uaX)¢ for each set variable X.
For an L-structure 4, A|=(aaX ¢(X) holds iff there is a cub collection

4 < P, (4) such that for all Be AAl= ¢(B) hold. Let K be a class of structures
for L then Th,,(K), Th; (K) denote the theory of K in the language L(aa), L(Q,)
respectively. In case that K has only one element 4 we write Th,, (4), Th, (4)

instead of Th,,(K), Th,(K) respectively.
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By induction on the complexity of the formulas ¢ of L(aa) we define the
quantifier rank of ¢

gr¢:=0 if ¢ is atomic,
qr ¢ AY:=max ({qr ¢, gr ¥}),
ar T1ei=qr ¢,

Cqr(@aaX)e:=qr@x)p:=qr o+1.
If ¢ is a formula of L(Q,), then we have to add the clause

ar(@ x)¢:=qr ¢+1.
For two L structures 4 and B and a natural number n we write
A =, B(aa) iff for all sentences ¢ of L(aa) with

qre<n AF o iff B o.

We write
A =,B(Q,) iff for all sentences ¢ of L(Q,) with

qre<n AE ¢ iff Bl ¢.
In this case 4 and B are said to be (aa, n)-equivalent, (Q,, n)-equivalent
respectively. We write 4 =DB(aa) (A=B(0,) if 4 =,B(aa) (4 =,B(Q,)
respectively) holds for all new. Following Kaufmann [5] we define for an
clementary language L, a natural number k and an L-structure A:

A is finitely k-determinate if every sentence of L(aa) which has the following
form, and has quantifier rank at most k, is true in 4

(aaX) (V%) (aaY) (X, %, Y) v (aaY) Te(X, x, Y)).

A is finitely determinate if A is finitely k-determinate for each ke .
Finitely determinate structures have nicé model theoretic properties.

A lot of results can be found in Kaufmann [5] and in Eklof and Mekler [3].

The following is taken from Kaufmann [5]. :

DerFiniTioN. Fix two L-structures 4 and B.(Fy: k < n)is a determinate (aa, n)
back-and-forth system from A to B if it satisfies the following conditions:
(1) for all feF,, f<[4 ><B:|u[Pw1 (A)><Pm1 (B)] and for every atomic

formula ¢, 4= ¢(dom f) iff Bl ¢(rn f). Here dom f and rn-f denote

corresponding enumerations of dom /' and n f.

(2) OegrF,. i
(3) Whenever k <!<n and feF; '
(i) (VaeA) @beB) [ful(a, b))]eF,, o
(ii) (VbeB) @ae ) [fu l(a, b)}]eF,, n
(i) there are cub collections CsP, (4)and D P,, (B) such that
(VCeQ)(VDeD) [fu(C, D)1]eF,. v
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Tueorem 1 (Kaufmann [5]). If Lis a finite language, A and B are L-structures
and n is a natural number, then the following are equivalent:
(i) There is a determinate (aa, n) back-and-forth system from A to B.
(i) A =,B(aq) and A is (and B is) finitely n-determinate.
A partially ordered set (4, <) is a tree, if for each ae A, the set
d:=1{b: beA and b < a}
is well ordered by <. We define the height h, (a)for each tree 4 and eachae 4 by:
hy(ay:= {hy(b): b < a}.
The height h(4) of the tree 4 we define by
h(4):= U (hy(@u {hy(a)}).

aed

Trees of height < w we shall denote as w-trees. A tree 4 is said to be connected if

AFE3IxVy(x<y) For each aeA we define :
A;i=1{b: beAd and a<b} and A,:=(4,, < [A4,).

Q,-equivalence for w-trees. Let 4 and B be connected w-trees of cardinality
N,. We assume that n is a natural number greater 0 and that

S ={ay, by), ..., (@, by), (A1, By), .-, (4, B))}
is a partial function from AUP, (4) in BUPml (B). Moreover we define
dom f:=(ay, ..., G Ay, ..., A,
mf:=(by,..., b, By, ..., B,
fi={(A;, By), ..., (41, B)} = f (P, (A x P, (B)),
(W)nzz(AlmA,,, ..., 4nA,) for each ac4
and
(;f_’)b:=(1§, NB,, ..., BinB,) for each beB.
For all a;, a;eA, and all by, b, B, we define:
ay ™ an @2 U (s (W)w al) EAn(-ﬁiai (W)m a2)(Qy),
by s an bz iff (B, (0", b1) = 4n(By, (0 [y, b2) ().

It is obvious that ,~,,, , ~ 4. are equivalence relations on A4,, B, respectively.
Let EY, ..., E%, (EY, ..., El, respectively) be all uncountable equivalence
classes of , ~ 4, (, ~ 4, reSpectively). Moreover let E® (E respectively) be the union
of allequivalence classes of , ~ 4, (, ~ 4, r€Spectively) which are at most countable.
Now we assume that C, D are subsets of 4, B respectively with the following

properties
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(@) card (C)= N, and dom (f)n4 = C,
card (D) = X, and m (f)nB< D,

(i) (4, COFVYxVyxeCary<x—yeC,
(B, D)= V¥xVyxeDAay<x—yeD,

(it) E“< C and card (CEf) =N, for all aeC and 1<i<s(a),
E* =D and card (DNE?) = X, for all beD and 1< i< s(b).

LemMA 2. Let A, B, n and f be given as above and let Cy, Dy be countable
subsets of A, B respectively. Then there exist C, D with C; = C < A and
D, € D < B such that C and D have the above properties (i), (ii) and (iii).

This lemma is an easy consequence of the above definitions. The essential
point is that the height of the regarded trees is smaller than w;.

Also the proof of the following lemma is a simple consequence of the above
definitions and is left to the reader.

Lemma 3. Let A, B, n and f be given as above. For each icw let C;, D; be
countable subsets of A, B respectively with the properties (i), (i) and (iii). Then
U Ci, U D; have the properties (i), (ii) and (iii), too.
iew iew

LemMA 4. Let n be a narural number, A be an w-tree and let a, b and c be
elemfnts of A. Moreover let A' = (A}, ..., A withAje P, (A)(for 1 <i<k)and
let d=(dy,...,d;) with dieA (for 1 <j<) be given in such a way that
d;¢(A\Na}) (for all j: 1 <j< 1) and that ‘

(+) (4o A1NAgy .y Ain Ay, b) S4n(Aas ALN Ay, -0y AN A, €) (Q1).

Then (4, A', d, b) =4,(4, A, , ¢) (Q,) holds.

The proof is left as an exercise for the reader (hint: use Lippner—Vinner
games; player II has to play in (4\A4,) isomorphic and in 4, using the winning
strategy for player II in the game corresponding to (+)).

LemMA 5. Let A, B, n(n > 0) and f be as above and let C, D be subsets of A, B
respectively with the properties (i), (ii) and (iii). Then (A, dom f) =,(B, El?) @Q,)
implies (4, dom f, C) =, (B, ™ f, D) (Q,).

Proof. To prove (4,domf, C)=,_,(B, mf, D) (Q,) we shall use

Lippner-Vinner games. In the following we assume that the reader is familiar
with the game.

Hence we have to prove that player II has a winning strategy in the
corresponding game over (n—1) rounds.

We assume that the game is played over m < n—1 rounds and that
¢y, ..., ¢y and dy, ..., d,, are the already chosen elements. Moreover we assume
that there are elements cj, ¢, ¢;”, dj, di’ and d;” (for each i with I' < i < m)suchthat
the following conditions (1), ..., (8) and (3), ..., (8') are fulfilled

1) c,ec,c'edA(l<i<m and d;, d;, df, d/"eB (1 <i<<m).
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’ "

(2) ({ii: domf, cla C’l, CI!.’: c’l”r"w cma C;,,, c:v,n C;,’,’ E4n—4m (E,I'nf, dla dl: 1s
rl”a [ERE] dm: d:m d:v,n d;t,l/) (Ql)

1

(3) Ifc;eC and there is an ae(dom f)nA with ¢; < a, then¢; = c=cf =¢.
(4) Hc¢eCandthereisanj <iwithc;eCand ¢ < ¢j, thenc; = ¢ =cf =c"

(5) If ¢;eC and there is an j <i with ¢j" <¢; and ¢; < ¢, then ¢; = ¢ = ¢/
Ui

="
(6) If ¢;e C but fulfils not the premise of (3), (4) and (5), then ¢; = ¢f' = ¢i” and

¢ =min {c: ceA&c < ;& c fulfils not the premise of (3)
& c fulfils not the premise of (4)
&c fulfils not the premise of (5)}.

7

(7) Ifc,¢C andthereis anj <iwithe; > cj and cj¢C,thenc) =cf, ¢’ = cj’
and ¢ =¢.

(8) If ¢;¢C and there is no j <i with ¢; > ¢j and ¢/ ¢C, then ¢ is the
immediate predecessor of cf,

¢/ =min{c: ceA&c < ¢ &c¢C} and
¢ =min{c: ceA&c < ¢/ & (there is no ae(dom f)n4
with ¢ < a) & (there is no j<i with ¢ <¢)}.

The properties (3), ..., (8) bold for all i with 1 < i < m. We get the properties
(3), ..., (8) from the properties (3), ..., (8) respectively by a substitution of C, ¢;,
¢, Ciy ---, domf, A by D, d;, d;, ..., f, B respectively.

Now we suppose that player I has chosen an element ¢, ; € A. Then player
II has to proceed as follows. We have to regard some cases.

Case 1. Cps 1 €C and there is an ae(dom f)n A4 with ¢, < a. At first we
§et Chpiq = Clia 1 = Coe1 = Cms1- BY (2) there exist elements dpy 1> Gt 1o Dt 15
dy)., eB with

() (4, QOmS, C1, s Chr) Zinmsims 1B, 10 diy oor il 1)(@)-

Hence dpiy =dhsy =dmss =dmey and there is an element b from
(rnf)NB with dy., <b. We get dpy, eD by property (i) and property
(i) of D.

Case2.¢y4,€Candthereisaj < mwithc;eCand ¢y < ¢;. Weset iy
=,y =y = Cmey and proceed as in Case 1.

Case3.c,. cCandthereisaj < mwithcy” <c;and cpsy < cj’. Let jo be
the minimal j with this property. We set Cp+41 = Cp4y = Cilvy = Cmsy and
proceed at first as in case 1. Hence there exist elements dpt1, ot 1 dmt 15
d.,€B which fulfil (¥). Hence we get o <d;, and dpiy <djy. Using
(3", ..., (7)) we get from (8") that dj, = min {d: deB&d < d;, & d ¢ D} and-that
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dj; is the immediate predecessor of dj,. Hence we get A1 €D, sinCE dyy iy S df,
Cased4.c,,, € C and the premises of (3), (4) and (5) are not fulfilled. Then set
Cm+1 = Cm+1 = Cmsy and
Chyy =min le: ce A& < cpyy &c fulfils not the premise of (3)
& c fulfils not the premise of (4)
&c fulfils not the premise of (5)}.

Now let d,f,,eB be such that

(**) (’_47 domf, Cpavees C;,’,/, C:n+1) EAn—A,m—I(Es I'—I;?.. dl! [ ] d;”l,’ d;+l)(Q1)

Using m < n—1 we get by (*#) that

di., =min{d: deB&d < d},, &d fulfils not the premise of (3
&d fulfils not the premise of (4)
&d fulfils not the premise of (5}

If dt,,eD, then we set d,,., =d;,, and get (x*x) from (**):

(#+%) (A, dom f,cq,..., s Crut 1) San-am-1(B, mf dy,y oo dy dig  1Q1)

If d. ¢D, then we proceed as follows.

Obviously all elements d € Bwithd < d,f,, arein D, since for these elements
the premises of (3'), (4') or (5') are fulfilled. Let d* * be the immediate predecessor
of d},,, ie. the maximal element of B which is smaller than d;;,, (ie. d**
=max {d: deB&d <dj.,})

Using property (iii) of D for d** we get the existence of an element d* **
with the following properties

d**+eD,

+ 4+
dm+1d++"‘4nd b

(l'nf)ﬁB,,+++ =0,
dy, dy, df, dY', ..., dy, dyy, do, d’"¢Bd4++,
(B1ﬁBd+++)U U(Blde+++)

(hint: The equivalence class of d;f , ; withrespect to
. d

dp1 €D).

Betweend* * andd* * * there are no elements of B(i.e.d* * is the immediate
predecessor of d***), since m <n—1.

§o+w wesetd, ., =d***. Weknow that d* * is the immediate predecessor
of d and of d,,,, and that dy,y 4+ ~4,d*** holds. Hence we get by
Lemma 4, the transitivity of =,, (Ql) and (%) that (+*%) holds.

+ ~ 4n 1S Uncountable since
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Using (+**) we get the existence of an element d,,,, with the property:

(/_41 domf, Clyvnns C:"{: c:n+11 Cm+1)

E4n—4m—~2(l_;= ;675 Adl’ R ]
If d,,.,eD, then set dyg =dnyy =dpiy.

Ifd;, , ¢ D, then we use property (iii) for ;. , and get similarly to the above
an element d, ., €D with

d;r’l’> ;n+l: ;n_-f-l) (Ql)

(?v }_1:177 dh LERE]

Ay 15 Aoy
=4n—gm-2(B, mf, dy, ..o, dyy dysys dmiy) (@y)-

If we set now dif., =dy., =d,.,, then we get (#).

Case 5. ¢p+1¢C and there exists an j <m+1 with ¢, =¢f and
cf¢C. At first we set cppy =¢f, Cpyy =€) and Cpp1 = Cprit- Using (2) we
get the existence of elements d,,,+1, Ay, d,,,+1 and d),, € B such that (%) is
fulfilled. Hence dpy; = dy, dr,, = df’, dyyq =dyyy and dye; is the
immediate predecessor of d. ;. d}/e,éD and d}”eD by (8'). Hence d,+1¢D.

Case 6. Cpy( ¢ C and thereis noj < m+1with ¢,y > ¢f and ¢} ¢ C. Then
we set

Cmr1&cgC}  and

Chyey =min {¢: ceA & <cm+1&(there is no ae(domf)nA
w1th c < a) & (there is no j <m+1 with ¢ < ¢p)}.

¢’y =min {¢: ceA&c <

Let ¢/, , be the immediate predecessor of c,.,. Similarly as in Case 4 it is
possible to show that there exists an element d,,, €D with (x*x). Moreover
d’,., has the property that if its immediate predecessor d exists, then there
exists an element b (rn /)N B with d < b or there exists an j < m~+1 with
d < d;. This we get by (++x) using m < n—1. Using the same methods as

e

above‘m Case 4 we get the existence of an element d).,eD with

(és domfa [S TR c;r’xlh c;n+h c;"l"‘*l)
= gpeam-2 (B, f, dy, ..,

Hence there exists an element d,5.f; with

dyly dypieys d's 1) (Q1)-

(A, dom f, ¢y, ..

e " "

s Cms Cmats Cm+ s Cm+1)
_ r e g1 e +
=4n—4m-— 3 B rnf dl’ dm’ m+1s Ym+ 12 dm+1) (Ql)

such that d./,, is the immediate predecessor of dif,. If dit, ¢D, then set
dl., =d}},. If this is not the case, then proceed as follows. By ¢y, ¢C, the
above equivalence and property (iii) of C we get the existence of a natural number

io with 1 < iy < 5(d2s,) such that dj 5, EE;‘(')"H. E;‘(')"* 1 contains only elements


GUEST


212 A. Baudisch, D.G. Seese and H. P. Tuschik

which have d},, as immediate predecessor, since n # 0. But D is countable.

Hence there is an element d, 4 EE;”(’)"+ 1\D. Now we use Lemma 4 and get:

(4, dom 7, ¢y, ..

-5 Co> Cmt15 Cmt 15 Cme+1)
Sgneam-3Bornf,dy, o dy Ay, dpiys dile ) (Q4).
But using property (i) of D this gives the existence of an element d,,,.., € B\D
with ().
If player I chooses a subset A’ < A of cardinality N, then at first player 17
hasto ﬁ.nd aset B’ = Bof cardinality X;.To do this he has to proceed as follows.
Using cf (w,) = w,, property (i) and (ii) of C we get the existence of an
element ¢, and of a subset A" < A’ with the following properties:
card (A") = Ny,
all elements of A” have the same height,
A'"nC =9,
! C:,’,’+ 1 € C’
At Ay,
m+1

@\ )NC = {cify 1} for all acA”.
By (2) there exists an element dj.,eD with
©) (4, domf, ¢y, ooy, Ciat) Saneame1 (B, IS, dy, .., i, dis 1) Q).

Player 11 has in the game corresponding to (o) a winning strategy. We assume
that player I has_chosen in this game the set A”. Let B”” be those set, which player
u chopses in this game using his winning strategy. B"' has a subset B” with the
following properties:

card (B") = ¥,

B"'n0 =@,

B" < By | and (B\dy\)nD ={dy.,,} for all B".

Player 11 chooses now in the original as B’ this set B". Player I can now choose an
element d,,.,eB = B". By (o) player II gets some Cm+1 EA” with

(OO) (1_4y domf’ [STRTRN C:,’,’, c;t’ll-f'l, cm+J.)

Sanam-2(B.INS, dyy ooy & Ay, dis ) (Q)-
Then we set

v C o
Crt1 =Min {c: cEA&e iy &ty <c¢} and

Cppty = min {c:’ ceA&e ‘_<c{,’,‘+l & (there is no ae((dom f)n 4)
with ¢ < a) & (there is no I <m with ¢ < c,)}."
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By (0o) there exist elements dj,., and d,,, from B with

(A, dom f, cqis -.es Crivn) = 4n—am-4(B, ;;17, dy, ooos dme1)(Q4)-

Hence we get

v =min {d: deB&d < dpy, &dyy, <d} dnd

., =min {d: deB&d < di,, &(there is no be((rn f)B)
with d < b)&(there is no j <m with d <d)},

since m < n—1. It is obvious that ¢, ¢}, ¢, ¢/"(1 <i<m+1) and 4, d;, 4,
dy'(1 < i < m+1) fulfil conditions (1), ..., (§) and (3), ..., (8.

In case that player I chooses an element d,,,., €B or a subset B'< B with
card (B') = N, we have to changethen only 4 and Bina corresponding way. m

Applications.

THEOREM 6. There is a recursive function r such that for each natural number n
and all connected w-trees A and B the following holds: A =, B(21) implies A
=,B(aa). Moreover A and B are finitely determinate.

Proof. We define r(0):=0and r(n):= Y. 4 for n > 0. Now we assume 4

i=1
=, B(Q,). By Theorem 1 it is sufficient to find a determinate (aa, n) back-and-
forth system from A to B. We define (F,: k < n) as follows

feF, iff f: A(JPa,l(A)—bBuPu,l(B), card (dom f) = n—k
and (4, dom f) = (B, rn 1)(Qy)-

Obviously properties (1), (2), (3i) and (3ii) from the definition of a determinate
(aa, n) back-and-forth system are fulfilled for (F;: k < n). But Lemma 2, Lemma
3 and Lemma 5 imply that also property (3iii) holds for (F: k< n). =

Remark. Using the usual technics of interpretability, which holds also for
stationary logic we get that the restriction to connected w-trees in Theorem 6 is
not necessary.

CoroLLARY 7. Let A and B be two w-trees which fulfil A = B(Q,). Then
A = B (aa) holds.

CoroLLARY 8. Each w-tree is finitely determinate.

THEOREM 6. There is a recursive function r such that for each natural number n
and let ay, ..., a, be elements of A. Moreover ler L be an elementary language
for w-trees and let ¢(Xy, ..., Xi, X1, .- %, ¥) be a formula of L(aa). Then
the following conditions are equivalent: :

(1) There exists a cub system C <P, (4) such that for all CeC
AE o4y, ..., 4 ay, o Q).
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(2)  There exists a set C’ with the properties (i), (i) and (iii) (see aboue‘ Lemma 2)
for B=A, n=qr(p) and [ = {(Ay, A1) ..., (4, A, (ay, ar), .., (&, @}
such that A= ¢(Ay, ..., A}, ay, ..., &, C') holds.

Proof. We get the implication (1) —(2) by Lemma 2 and Lemma 3. The
implication (2) — (1) follows by Lemma 5, Lemma 2 and Lemma 3. =

THeEOREM 10. Let T (and CT) be the class of all (connected) w-trees. Then
Th,, (T} and Th,, (CT) are decidable.

Proof. Using a simple interpretability argument it is sufficient to proof
the decidability of Th,,(CT).

Let L;; be the monadic second order language for the class of all w-
trees. We assume that L, (Q,, Qy) is the extension of L;, by the quantifiers
Qo and Q;. Q, and Q, are used for individuales only and have the usual
interpretation.

Let (w—CT(X,)) be the class of all conncctcd w-trees of cardinality at
most ;. Let Thy g o, ((w CT(NI))) be the set of all sentences of the
language L;;(Qo, Q) which are valid in (w—CT(N,)). This theory is decid-
able (see Seese [6]). We shall give now an interpretation of Th,, ((w-
—CT(NI})) in this theory. For each formula ¢ of L(aa) let & be the
corresponding translation of in Ly (Qo, Qy)-

It is sufficient to show that for each formula ¢ (Xy,..., X;, X1, ..., X, Y)
of the language L(aa) can be effectively found a formula. W (X,, ...

- Xpy X1, ..., X, Y) from the language L;,(Q,, ;) such that the following
holds: ) .
for each connected w-tree 4, all sets 4, ..., Aie P, (A) and all elements
ay, ..., g€ A the following holds: '
(A, Ay .. Ay ay, ..., @)= (aaY) @Ay, ..., Ay ay, ..., a, Y)
iff
4,A4,,..., A4, a4, ..., ak)}=3Y(l//(A1, v Apag, o, a, Y)Y A
A¢(A1, .. A,, ay, ..os ) Y)).

Thxs can be proved using Theorem 9. Obviously it is sufficient to find a
formula ¢ (...) with the following property:

for all sets C'< A AE=Y(Ay, ...,
properties (i), (i) and (iii).

Ay ay, ..., 4, C') holds iff C' has the

Hence it is sufficient to prove that properties (i), (i) and ( (iii) can be expressed
in Ly (Qo, Q).

For (i) and (ii) this is obvious. To see that property (iii) is expressable in
Ly1{Qo, @y it is sufficient to see that the relation ,~,, is definable in this
language.

To show this it is sufficient to construct effectively a formula
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An( X1y ooes Xpy Xis oy Xy X, ¥, 2) from Ly (Qo, @;) such that for all
Ay, .o, A€ P, (A) and all ay, ..., a, a, b, ce A:
AEx(Ay, ..., A ag, oo, a,a, b, ) 9T by~y,c.

But this follows from the definition of ,~,,, since the corresponding lan-
guage L is a finite language (use e.g. Proposition 04 on page 59 of
Kaufmann [5]). =

For a language with a binary irreflexive symmetric relation instead of <
all results of this paper are proved by Baudisch and Tuschik [2]. The
generalizations to w-trees are due to Seese (see Seese [6]). Furthermore
Baudisch and Tuschik have the following.

TueoreM 11 (Baudisch and Tuschik [2]). Let F be the class of all graph
theoretical forests (i.e. symmetric graphs without circles, regarded as structures
with one binary relation; see Harary [4]) and let L be a corresponding
elementary language. Every formula ¢(X) of L(aa) is equivalent relative to
Th,,(F) to a formula (%) of L(Q,). The correspondence is effective.

This result is proved using a strengthening of results from Seese and
Tuschik [7].

A simple corollary of Theorem 10 is also the following:

COROLLARY 12. The theory of one equivalence relation in stationary logic
is decidable and each equivalence relation is finitely determinate.

We conclude this article with the following problems.

ProsLEM 1. Is it possible to prove an analog version of Theorem 11 also
for w-trees instead of forests?

ProBLEM 2. Is each tree of height < w, finitely determinate?
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